Week VIII

Overview

- Enumeration;
- Dynamic Programming.

Enumeration

Enumeration is the process that **list** of all the solutions and **test** each one individually.

Dynamic Programming

Dynamic programming is a solution method by breaking them into a collection of simpler **sub-problems**, solving them once and storing their solutions.

It requires two properties:

- Recursion;
- Suboptimal Structure.

Knapsack Problem

1 $m_{0,weight} \leftarrow 0$

² for each cell m_{item, weight} do

- $m_{item,weight} \leftarrow m_{item-1,weight}$ if 3 weight_{item} > weight
 - $m_{item, weight} \leftarrow$ $\max(m_{item-1, weight}, m_{item-1, w-weight_{item}} + v_i)$ if weight_{item} \leq weight

Tower of Hanoi

Algorithm 1: HANOI(BFS)

Input: Disk, Source, Destination, Auxiliary Rod 1 if Disk == 1 then

2 move Disk from Source to Destination;

3 else

4

- Hanoi(Disk-1,Source,Auxiliary Rod, 4 Destination)
- move Disk from Source to Destination; 5
- Hanoi(Disk-1, Auxiliary Rod, Destination, 6 Source)

Bellman-Ford Algorithm

1 d_v : distance to reach node v ² p_v : node predecessor to node v 4 for each node v in V do $d_v \leftarrow \infty$ $p_{\nu} \leftarrow FALSE$ 6 $7 d_s \leftarrow 0$ 8 for each node v in V do for each edge $(u, v) \in E$ do 9 temp-dist $\leftarrow d_u + c_{uv}$ 10 11 $d_v \leftarrow \text{temp-dist}$ 12 $p_v \leftarrow u$ 13 for each edge $(u, v) \in G$ do 14 if $d_u + c_{uv} < d_v$ then 1<mark>5</mark> 1<mark>6</mark> 17 return d_{v}, p_{v}

Fernando Dias

fernando.dias@aalto.fi **Combinatorial Optimization**

```
Algorithm 2: Bellman-Ford's Algorithm
 Input: undirected, connected graph G, weights
         c: E(G) \to \mathbb{R}, nodes V, source s
Q \leftarrow \emptyset : set of "unknown distance" nodes.
```

```
if temp-dist < d_v then
```

```
return Error: Negative Cycle Exist
```

