
LECTURE NOTES - WEEK VIII
Exact Solutions

Lecture Notes - Week VIII
Exact Solutions

Fernando Dias, Philine Schiewe and Piyalee Pattanaik

February 23, 2024

1



LECTURE NOTES - WEEK VIII
Exact Solutions

CHAPTER 1
Enumeration Process

In order to find the optimal solution, the most natural process is list of all the solutions and test each one
individually. Each solution can be easily tested, but listing is the challenging part.
Using an instance of the knapsack problem as an example:

HP Hunger Games LotR PJ&O ATTWN maximal weight

weight 426g 332g 841g 852g 113g 1000g
value c1 c2 c3 c4 c5 -

With 5 elements, all 25 combinations have to be tested. For such a small problem, such approach is
acceptable.
The benefits of such methods relying on the guarantee of an optimal solution; especially if the runtime
is not relevant. However, due to scalability, the runtime increases exponentially with the size of the instances.

Instead of enumerating and testing all possibilities, is there a way to learn from small or previous solutions?

Perhaps, an more structured and intelligent search? Guided even?

CHAPTER 1. ENUMERATION PROCESS 2



LECTURE NOTES - WEEK VIII
Exact Solutions

CHAPTER 2
Dynamic Programming

The first approach that satisfy the conditions listed above is Dynamic Programming.

Dynamic programming is a solution method by breaking them into a collection of simpler sub-problems,
solving them once and storing their solutions. If the sub-problems are nested recursively inside a larger
problem, dynamic programming is applicable.

A solution method involving dynamic programming requires two main conditions:

• Recursion; solution of larger problems have to be derived from solution small problems;

• Suboptimal Structure; if a small problems has a guaranteed optimal solution, any larger
problem built upon will also have an optimal solution;

Remark: Recursion does not meant ”it needs to be recursive”.

A classical example of dynamic programming is the infamous Fibonacci series F ib(n):

F ib(n) = F ib(n − 1) + F ib(n − 2) (2.1)

For each value of n, the value can calculated by solving smaller problems (sub-problems) and it is done
via recursion (nested recursion, in this case).

Shortest Path problem can also be solved via Dynamic Programming. Recalling the definition of such
problem:

Problem 1 In a graph G = (V ,E), find the shortest path between node p and q.

The logic lies on that fact that if R is a node in the minimal path between P and Q, it is implied that the
minimal path between P and R is also known. Which is guaranteed by the definition of the Dijkstra’s
algorithm.

In a general problem, what are the steps to apply dynamic programming:

CHAPTER 2. DYNAMIC PROGRAMMING 3



LECTURE NOTES - WEEK VIII
Exact Solutions

Figure 2.1: Golden spiral and Fibonacci’s series

• Recurrence relation: small problems;

– Less amount of items, i.e. knapsack problem;

– Optimal from A to Z can be calculated by optimal from A to B then optimal from B to Z, i.e.
shortest path or general flow problems;

– In an iterative process, the solution until this iteration is optimal, and from this point forward is
the same problem but smaller, i. e. Fibonacci series, decomposition problems.

Recurrent solution −→ preferably smaller;

• Base Cases;
After smaller problems are found, the smallest possible problem should be trivial to solve;

– For Fibonacci series, for example, the initial values are easily to established;

– For shortest path, the path between the source and the first node in the optimal should be
easily found;

– Same strategies in the knapsack problem.

• Recursive or Iterative: depending of the problem, both strategies are valid and provide pros and cons:

– Recursive: Better memory control; stack overflow; easier reasoning;

– Iteration: Less memory control; no problems with stack overflow; less intuitive to implementation;

Other choices: top-down (most common) or bottom-up; memoization, etc.

CHAPTER 2. DYNAMIC PROGRAMMING 4



LECTURE NOTES - WEEK VIII
Exact Solutions

CHAPTER 3
Example I: Knapsack

Back from original example:

HP Hunger Games LotR PJ&O ATTWN maximal weight

weight 4g 3g 8g 8g 1g 10g
value 2 4 2 2 5 -

We can build the following table, where each columns represent a different weighted value (with single
integer increment) and each row corresponds to addition of a new item (normally sorted based on value.

0 0 0 0 2 2 2 2 2 2 2
0 0 0 4 4 4 4 6 6 6 6
0 0 0 4 4 4 4 6 6 6 6
0 0 0 4 4 4 4 6 6 6 6
0 5 5 5 9 9 9 9 11 11 11

Each cell is filled such as follows:

1 m0,weight ← 0
2 for each cell mi tem,weight do
3 mi tem,weight ← mi tem−1,weight if weighti tem > weight
4 mi tem,weight ← max(mi tem−1,weight ,mi tem−1,w−weighti tem + vi) if weighti tem ≤ weight

CHAPTER 3. EXAMPLE I: KNAPSACK 5



LECTURE NOTES - WEEK VIII
Exact Solutions

CHAPTER 4
Example II: Tower of Hanoi

It is a puzzle consisting of three rods and a set of disks with ranging diameters. It starts with all disk in a
single rod, stacked in increase diameter size.

Figure 4.1: Tower of Hanoi puzzle

The goal is to move all disk to another rod using the following rules:

• Only one disk can be moved at the time;

• A disk has to be moved to the top of another stack or an empty rod;

• In a rod, the diameter should increase from top to bottom.

The following algorithm solves larger instance of this puzzle:

Algorithm: HANOI(BFS)
Input: Disk, Source, Destination, Auxiliary Rod

1 if Disk == 1 then
2 move Disk from Source to Destination;

3 else
4 Hanoi(Disk-1,Source,Auxiliary Rod, Destination)
5 move Disk from Source to Destination;
6 Hanoi(Disk-1, Auxiliary Rod, Destination, Source)

Example:

CHAPTER 4. EXAMPLE II: TOWER OF HANOI 6



LECTURE NOTES - WEEK VIII
Exact Solutions

Figure 4.2: Tower of Hanoi with three disks

CHAPTER 4. EXAMPLE II: TOWER OF HANOI 7



LECTURE NOTES - WEEK VIII
Exact Solutions

CHAPTER 5
Example III: Bellman-Ford Algorithm

An alternative version of the Dijkstra’s algorithm can be derived directly from dynamic programming
principles. It is slower, but allows negative weights.

Algorithm: BELLMAN-FORD’S ALGORITHM

Input: undirected, connected graph G, weights c : E(G)→ R, nodes V , source s
1 dv distance to reach node v
2 pv node predecessor to node v
3 Q ← ∅ set of ”unknown distance” nodes.
4 for each node v in V do
5 dv ←∞
6 pv ← FALSE

7 ds ← 0 for each node v in V do
8 for each edge (u, v) ∈ E do
9 temp-dist← du + cuv

10 if temp-dist < dv then
11 dv ← temp-dist
12 pv ← u

13 for each edge (u, v) ∈ G do
14 if du + cuv < dv then
15 return Error: Negative Cycle Exist

16 return dv ,pv

CHAPTER 5. EXAMPLE III: BELLMAN-FORD ALGORITHM 8


	Enumeration Process
	Dynamic Programming
	Example I: Knapsack
	Example II: Tower of Hanoi
	Example III: Bellman-Ford Algorithm

