Lecture VIII - Exact Solutions

¹ Department of Mathematics and Systems Analysis, Systems Analysis Laboratory, Aalto University, Finland

February 23, 2024

Aalto University

Combinatorial Optimization

Previously on.

Enumeration Process

Dynamic Programming

Previously on..

Combinatorial Optimization

Previously on.

Enumeration Process

Dynamic Programming

• NP-Completeness;

- Polynomial transformation;
- Common problems "transforms".

Now, when you have a problem that **is NP-Complete**, what are the **alternatives** besides ILPs?

PREVIOUSLY ON...

Combinatorial Optimization

Previously on..

Enumeratio Process

Dynamic Programming

Enumeration Process

Enumeration

Aalto University

Combinatorial Optimization

Previously on ..

Enumeration Process

Dynamic Programming

In order to find the optimal solution, the most natural process is **list** of all the solutions and **test** each one individually.

Each solution can be **easily** tested, but listing is the **challenging** part.

Example

Aalto University

Combinatorial Optimization

		ly on			

Dynamic Programming

	HP	Hunger Games	LotR	PJ&O	ATTWN	maximal weight
weight	426g	332g	841g	852g	113g	1000g
value	c_1	c_2	c_3	c_4	c_5	-

With 5 elements, all 2^5 combinations have to be tested.

For such a small problem, such approach is **acceptable**.

Challenges

Guaranteed optimal solution;

if runtime is not relevant, an optimal solution will be found;

• Scalability.

the runtime increases exponentially with the size of the instances;

Combinatorial Optimization

Previously on ..

Enumeration Process

Combinatorial Optimization

Previously on..

Enumeration Process

Dynamic Programming

Instead of enumerating and testing all possibilities, is there a way to **learn** from **small** or previous **solutions**?

Perhaps, an more **structured** and **intelligent** search? **Guided** even?

Combinatorial Optimization

Previously on ..

Enumeration Process

Dynamic Programming

Definition

Combinatorial Optimization

Previously on ..

Enumeration Process

Dynamic Programming

Dynamic programming is a solution method by breaking them into a collection of simpler **sub-problems**, solving them once and storing their solutions.

If the sub-problems are **nested recursively** inside a larger problem, dynamic programming is applicable.

- Recursion; solution of larger problems have to be derived from solution small problems;
- Suboptimal Structure; if a small problems has a guaranteed optimal solution, any larger problem built upon will also have an optimal solution;
 Remark: Recursion does not meant "it needs to be recursive".

Combinatorial Optimization

Previously on..

Enumeration Process

Simple Example

Fibonacci series Fib(n):

Element California I and Element's series

Aalto University

Combinatorial Optimization Shortest Path problem can also be solved via Dynamic Programming:

Problem

In a graph G = (V, E), find the shortest path between node p and q.

 \longrightarrow if R is a node in the minimal path between P and Q, it is implied that the minimal path between P and R is also known.

This is **guaranteed** by the definition of the Dijkstra's algorithm.

Combinatorial Optimization

Previously on ..

Enumeration Process

In a general problem, what are the steps to apply dynamic programming:

- Recurrence relation: small problems;
 - Less amount of items, i.e. knapsack problem;
 - Optimal from A to Z can be calculated by optimal from A to B **then** optimal from B to Z, i.e. **shortest path** or general flow problems;
 - In an iterative process, the solution until this iteration is optimal, and from this point forward is the same problem **but smaller**, i. e. **Fibonacci series**, decomposition problems.

Recurrent solution \longrightarrow preferably smaller;

Combinatorial Optimization

Previously on..

Enumeration Process

Applications

Base Cases;

After smaller problems are found, the smallest possible problem should be trivial to solve;

- For Fibonacci series, for example, the initial values are easily to established;
- For **shortest path**, the path between the source and the first node in the optimal should be easily found;
- Same strategies in the knapsack problem.

Previously on..

Enumeration Process

Applications

Recursive or Iterative: depending of the problem, both strategies are valid and provide pros and cons:

- Recursive: Better memory control; stack overflow; easier reasoning;
- Iteration: Less memory control; no problems with stack overflow; less intuitive to implementation;

Other choices: top-down (most common) or bottom-up; memoization, etc.

Combinatorial Optimization

Combinatorial Optimization

Previously on ..

Enumeration Process

Dynamic Programming

Back from original example:

	ΗP	Hunger Games	LotR	PJ&O	ATTWN	maximal weight
weight	4g	3g	8g	8g	1g	10g
value	2	4	2	2	5	-

Vertical: items; Horizontal: weights;

Each cell is filled such as follows:

1 $m_{0,weight} \leftarrow 0$

4

2 for each cell $m_{item,weight}$ do

3
$$m_{item,weight} \leftarrow m_{item-1,weight}$$
 if $weight_{item} > weight$

$$\begin{array}{c} m_{item,weight} \leftarrow \max(m_{item-1,weight}, m_{item-1,w-weight_{item}} + v_i) \text{ if} \\ weight_{item} \le weight \end{array}$$

Combinatorial Optimization

Previously on..

Enumeration Process

Example I: Knapsack

Aalto University

Combinatorial Optimization

Previously on..

Enumeration Process

0	0	0	0	2	2	2	2	2	2	2
0	0	0	4	4	4	4	6	6	6	6
0	0	0	4	4	4	4	6	6	6	6
0	0	0	4	4	4	4	6	6	6	6
0	5	5	5	9	9	9	9	11	11	11

Example II: Tower of Hanoi

It is a puzzle consisting of **three rods** and a **set of disks with ranging diameters**. It starts with all disk in a single rod, stacked in increase diameter size.

The goal is to move all disk to another rod using the following rules:

- Only one disk can be moved at the time;
- A disk has to be moved to the top of another stack or an empty rod;
- In a rod, the diameter should increase from top to bottom.

Combinatorial Optimization

Previously on..

Enumeration Process

Example II: Tower of Hanoi

Figure: Tower of Hanoi with three disks

Combinatorial Optimization

Previously on ..

Enumeration Process

Dynamic Programming

Combinatorial Optimization

Example II: Tower of Hanoi

Algorithm: HANOI(BFS)

Input: Disk, Source, Destination, Auxiliary Rod

- 1 if Disk == 1 then
- 2 move Disk from Source to Destination;

3 else

- 4 | Hanoi(Disk-1,Source,Auxiliary Rod, Destination)
- 5 move Disk from Source to Destination;
- 6 *Hanoi*(Disk-1, Auxiliary Rod, Destination, Source)

Aalto University

Combinatorial Optimization

Previously on..

Enumeration Process

Example III: Bellman-Ford Algorithm

An alternative version of the Dijkstra's algorithm. It is slower, but allows negative weights.

Algorithm: BELLMAN-FORD'S ALGORITHM - Preparation

Input: undirected, connected graph G, weights $c \colon E(G) \to \mathbb{R}$, nodes V, source s

- 1 d_v distance to reach node v
- 2 p_v node predecessor to node v
- 3 $Q \leftarrow \emptyset$ set of "unkown distance" nodes.
- 4 for each node v in V do

$$\mathbf{b} \mid d_v \leftarrow \infty$$

 $\mathbf{6} \quad \boxed{p_v \leftarrow FALSE}$

7 $d_s \leftarrow 0$

Combinatorial Optimization

Previously on..

Enumeration Process

Example III: Bellman-Ford Algorithm

Algorithm: Bellman-Ford's Algorithm - Calculation **Output:** d_n, p_n 1 for each node v in V do for each edge $(u, v) \in E$ do 2 temp-dist $\leftarrow d_u + c_{uv}$ 3 if temp-dist $< d_v$ then 4 $d_v \leftarrow \mathsf{temp-dist}$ 5 $p_v \leftarrow u$ 6 for each edge $(u, v) \in G$ do 7 if $d_u + c_{uv} < d_v$ then 8 return Error: Negative Cycle Exist q

10 return d_v , p_v

Combinatorial Optimization

Previously on ..

Enumeration Process

