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o NP-Completeness; PHEVIﬁUSLY o"
f—_— Enumeration

® Polynomial transformation; Process

Dynamic

° Common pr0b|ems ”transforms” . Programming

Now, when you have a problem that is NP-Complete, what are the alternatives
besides ILPs?
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Enumeration A
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In order to find the optimal solution, the most natural process is list of all the
H . . Dynamic
solutions and test each one individually. Programming

Each solution can be easily tested, but listing is the challenging part.
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HP  Hunger Games LotR PJ&O ATTWN | maximal weight

weight 426g 332¢g 841g 8b2g 113g 1000g Dynamic.
value C1 Cco c3 c4 cs _ Programming

With 5 elements, all 2° combinations have to be tested.

For such a small problem, such approach is acceptable.
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Challenges A
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® Guaranteed optimal solution;
if runtime is not relevant, an optimal solution will be found; Dyl

Programming

® Scalability.
the runtime increases exponentially with the size of the instances;
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Alternatives A

Aalto University

Combinatorial
Optimization

Previously on..

Instead of enumerating and testing all possibilities, is there a way to learn from
. . Dynami
small or previous solutions? Programming

Perhaps, an more structured and intelligent search? Guided even?
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Definition A
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Dynamic programming is a solution method by breaking them into a collection of Process
simpler sub-problems, solving them once and storing their solutions.

If the sub-problems are nested recursively inside a larger problem, dynamic
programming is applicable.
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Requirements

A solution method involving dynamic programming requires two main conditions:

® Recursion; solution of larger problems have to be derived from solution
small problems;

® Suboptimal Structure; if a small problems has a guaranteed optimal
solution, any larger problem built upon will also have an optimal solution;

Remark: Recursion does not meant it needs to be recursive”.
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Simple Example A
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Fibonacci series F'ib(n): Combinatorial

Optimization

Fib(n) = Fib(n — 1) + Fib(n — 2) (1)
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Dijkstra’s Attempt A
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Shortest Path problem can also be solved via Dynamic Programming:
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Enumeration

P I’Oblem Process
In a graph G = (V, E), find the shortest path between node p and q.

— if R is a node in the minimal path between P and (), it is implied that the
minimal path between P and R is also known.

This is guaranteed by the definition of the Dijkstra's algorithm.
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Application A
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In a general problem, what are the steps to apply dynamic programming: Corasflueizenie]

Optimization

® Recurrence relation: small problems;
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® Less amount of items, i.e. knapsack problem;

® Optimal from A to Z can be calculated by optimal from A to B then optimal
from B to Z, i.e. shortest path or general flow problems;

® |n an iterative process, the solution until this iteration is optimal, and from this
point forward is the same problem but smaller, i. e. Fibonacci series,
decomposition problems.

Recurrent solution — preferably smaller;
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Applications A
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After smaller problems are found, the smallest possible problem should be

trivial to solve;
® For Fibonacci series, for example, the initial values are easily to established;

® For shortest path, the path between the source and the first node in the
optimal should be easily found;

® Same strategies in the knapsack problem.
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Applications A
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Recursive or lterative: depending of the problem, both strategies are valid and oreviously on
prOVide prOS and cons: Enumera;ion

Process

® Recursive: Better memory control; stack overflow; easier reasoning;

® |teration: Less memory control; no problems with stack overflow; less intuitive
to implementation;

Other choices: top-down (most common) or bottom-up; memoization, etc.
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Example |: Knapsack A
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Back from original example:
Process

HP Hunger Games LotR PJ&O ATTWN | maximal weight

weight 4g 3g 8g 8g 1g 10g
value 2 4 2 2 5 -

«4O0>» «F» « = «E>»
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Example |: Knapsack A
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Vertical: items;
Horizontal: weights; Previously on..
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Each cell is filled such as follows: Process

1 Mo weight 0

2 for each cell mjterm weight dO

3 Mitem,weight < Mitem—1,weight if weightitem > weight

4 Mitem, weight < max(mitem—l,weighta Mitem—1,w—weight;tem + Ui) if
weightitem < wetght
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Example |: Knapsack
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Example Il: Tower of Hanoi A

Aalto University

Combinatorial

It is a puzzle consisting of three rods and a set of disks with ranging Gmoatore
diameters. It starts with all disk in a single rod, stacked in increase diameter size.
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The goal is to move all disk to another rod using the following rules:

Enumeration
Process

® Only one disk can be moved at the time;
e A disk has to be moved to the top of another stack or an empty rod;

® |n a rod, the diameter should increase from top to bottom.

Figure: Tower of Hanoi puzzle
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Example Il: Tower of Hanoi
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3Disk 1
ﬁ ﬁ_\_L Previously on..
# B c A B c
Enumeration
2 4 Process
A ] G A B [ A ] c
5 § 7
3 B c A B C A B C

Figure: Tower of Hanoi with three disks

21/25

Combinatorial Optimization



Example Il: Tower of Hanoi

Algorithm: HAaNOI(BF'S)

Input: Disk, Source, Destination, Auxiliary Rod
1 if Disk == 1 then
2 |_ move Disk from Source to Destination;

3 else
4 Hanoi(Disk-1,Source,Auxiliary Rod, Destination)
5 move Disk from Source to Destination;

6 Hanoi(Disk-1, Auxiliary Rod, Destination, Source)
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Example IlI: Bellman-Ford Algorithm A
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An alternative version of the Dijkstra’s algorithm. Combinatorial

Optimization

It is slower, but allows negative weights.
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Algorithm: BELLMAN-FORD’S ALGORITHM - Preparation Enumeration

Input: undirected, connected graph G, weights c¢: E(G) — R, nodes V/, _
source s

d, distance to reach node v

Py node predecessor to node v

Q <+ 0 set of "unkown distance” nodes.

for each node v in V do

S A W N -

dy 00
py < FALSE

7ds+ 0
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Example IlI: Bellman-Ford Algorithm

Algorithm: BELLMAN-FORD’S ALGORITHM - Calculation

Output: d,,p,

1 for each node v in V do

2 for each edge (u,v) € E do
3 temp-dist < d, + cyuyp

4 if temp-dist < d, then
5 dy < temp-dist

6 L Py — U

7 for each edge (u,v) € G do
if dy + cyy < d,, then
9 L return Error: Negative Cycle Exist

10 return d,,p,
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