
Lecture VIII - Exact Solutions

1 Department of Mathematics and Systems Analysis,
Systems Analysis Laboratory, Aalto University, Finland

February 23, 2024



Combinatorial
Optimization

Previously on..

Enumeration
Process

Dynamic
ProgrammingPreviously on..

– Combinatorial Optimization 2/25



Combinatorial
Optimization

Previously on..

Enumeration
Process

Dynamic
Programming

• NP-Completeness;

• Polynomial transformation;

• Common problems ”transforms”.

Now, when you have a problem that is NP-Complete, what are the alternatives
besides ILPs?
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Enumeration

In order to find the optimal solution, the most natural process is list of all the
solutions and test each one individually.

Each solution can be easily tested, but listing is the challenging part.
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Example

HP Hunger Games LotR PJ&O ATTWN maximal weight

weight 426g 332g 841g 852g 113g 1000g
value c1 c2 c3 c4 c5 -

With 5 elements, all 25 combinations have to be tested.

For such a small problem, such approach is acceptable.
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Challenges

• Guaranteed optimal solution;
if runtime is not relevant, an optimal solution will be found;

• Scalability.
the runtime increases exponentially with the size of the instances;
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Alternatives

Instead of enumerating and testing all possibilities, is there a way to learn from
small or previous solutions?

Perhaps, an more structured and intelligent search? Guided even?
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Definition

Dynamic programming is a solution method by breaking them into a collection of
simpler sub-problems, solving them once and storing their solutions.

If the sub-problems are nested recursively inside a larger problem, dynamic
programming is applicable.
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Requirements

A solution method involving dynamic programming requires two main conditions:

• Recursion; solution of larger problems have to be derived from solution
small problems;

• Suboptimal Structure; if a small problems has a guaranteed optimal
solution, any larger problem built upon will also have an optimal solution;

Remark: Recursion does not meant ”it needs to be recursive”.
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Simple Example

Fibonacci series Fib(n):

Fib(n) = Fib(n− 1) + Fib(n− 2) (1)

Figure: Golden spiral and Fibonacci’s series– Combinatorial Optimization 12/25
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Dijkstra’s Attempt

Shortest Path problem can also be solved via Dynamic Programming:

Problem
In a graph G = (V ,E), find the shortest path between node p and q.

−→ if R is a node in the minimal path between P and Q, it is implied that the
minimal path between P and R is also known.

This is guaranteed by the definition of the Dijkstra’s algorithm.
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Application

In a general problem, what are the steps to apply dynamic programming:

• Recurrence relation: small problems;

• Less amount of items, i.e. knapsack problem;

• Optimal from A to Z can be calculated by optimal from A to B then optimal
from B to Z, i.e. shortest path or general flow problems;

• In an iterative process, the solution until this iteration is optimal, and from this
point forward is the same problem but smaller, i. e. Fibonacci series,
decomposition problems.

Recurrent solution −→ preferably smaller;
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Applications

• Base Cases;

After smaller problems are found, the smallest possible problem should be
trivial to solve;
• For Fibonacci series, for example, the initial values are easily to established;

• For shortest path, the path between the source and the first node in the
optimal should be easily found;

• Same strategies in the knapsack problem.
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Applications

Recursive or Iterative: depending of the problem, both strategies are valid and
provide pros and cons:

• Recursive: Better memory control; stack overflow; easier reasoning;

• Iteration: Less memory control; no problems with stack overflow; less intuitive
to implementation;

Other choices: top-down (most common) or bottom-up; memoization, etc.
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Example I: Knapsack

Back from original example:

HP Hunger Games LotR PJ&O ATTWN maximal weight

weight 4g 3g 8g 8g 1g 10g
value 2 4 2 2 5 -
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Example I: Knapsack

Vertical: items;
Horizontal: weights;

Each cell is filled such as follows:

1 m0,weight ← 0
2 for each cell mitem,weight do
3 mitem,weight ← mitem−1,weight if weightitem > weight
4 mitem,weight ← max(mitem−1,weight,mitem−1,w−weightitem + vi) if

weightitem ≤ weight
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Example I: Knapsack

0 0 0 0 2 2 2 2 2 2 2
0 0 0 4 4 4 4 6 6 6 6
0 0 0 4 4 4 4 6 6 6 6
0 0 0 4 4 4 4 6 6 6 6
0 5 5 5 9 9 9 9 11 11 11
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Example II: Tower of Hanoi

It is a puzzle consisting of three rods and a set of disks with ranging
diameters. It starts with all disk in a single rod, stacked in increase diameter size.

The goal is to move all disk to another rod using the following rules:

• Only one disk can be moved at the time;

• A disk has to be moved to the top of another stack or an empty rod;

• In a rod, the diameter should increase from top to bottom.

Figure: Tower of Hanoi puzzle
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Example II: Tower of Hanoi

Figure: Tower of Hanoi with three disks
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Example II: Tower of Hanoi

Algorithm: Hanoi(BFS)

Input: Disk, Source, Destination, Auxiliary Rod
1 if Disk == 1 then
2 move Disk from Source to Destination;

3 else
4 Hanoi(Disk-1,Source,Auxiliary Rod, Destination)
5 move Disk from Source to Destination;
6 Hanoi(Disk-1, Auxiliary Rod, Destination, Source)
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Example III: Bellman-Ford Algorithm

An alternative version of the Dijkstra’s algorithm.
It is slower, but allows negative weights.

Algorithm: Bellman-Ford’s Algorithm - Preparation

Input: undirected, connected graph G, weights c : E(G)→ R, nodes V ,
source s

1 dv distance to reach node v
2 pv node predecessor to node v
3 Q← ∅ set of ”unkown distance” nodes.
4 for each node v in V do
5 dv ←∞
6 pv ← FALSE

7 ds ← 0
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Example III: Bellman-Ford Algorithm

Algorithm: Bellman-Ford’s Algorithm - Calculation

Output: dv,pv
1 for each node v in V do
2 for each edge (u, v) ∈ E do
3 temp-dist ← du + cuv
4 if temp-dist < dv then
5 dv ← temp-dist
6 pv ← u

7 for each edge (u, v) ∈ G do
8 if du + cuv < dv then
9 return Error: Negative Cycle Exist

10 return dv,pv
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