Lecture VIII - Exact Solutions

${ }^{1}$ Department of Mathematics and Systems Analysis, Systems Analysis Laboratory, Aalto University, Finland

February 23, 2024

Aalto University

Previously on..

- NP-Completeness;
- Polynomial transformation;

PREVIOUSLY ON...

- Common problems "transforms".

Now, when you have a problem that is NP-Complete, what are the alternatives besides ILPs?

Enumeration Process

Combinatorial
Optimization

Previously on.

Enumeration Process

Dynamic
Programming

Enumeration

In order to find the optimal solution, the most natural process is list of all the solutions and test each one individually.

Each solution can be easily tested, but listing is the challenging part.

Example

	HP	Hunger Games	LotR	PJ\&O	ATTWN	maximal weight
weight	426 g	332 g	841 g	852 g	113 g	1000 g
value	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	-

With 5 elements, all 2^{5} combinations have to be tested.

For such a small problem, such approach is acceptable.

Challenges

- Guaranteed optimal solution;
if runtime is not relevant, an optimal solution will be found;
- Scalability.
the runtime increases exponentially with the size of the instances;

Alternatives

Instead of enumerating and testing all possibilities, is there a way to learn from small or previous solutions?

Perhaps, an more structured and intelligent search? Guided even?

Dynamic Programming

Combinatorial
Optimization

Previously on.
Enumeration
Process

Dynamic
Programming

Definition

Dynamic programming is a solution method by breaking them into a collection of

If the sub-problems are nested recursively inside a larger problem, dynamic programming is applicable.

Requirements

A solution method involving dynamic programming requires two main conditions:

- Recursion; solution of larger problems have to be derived from solution small problems;
- Suboptimal Structure; if a small problems has a guaranteed optimal solution, any larger problem built upon will also have an optimal solution; Remark: Recursion does not meant "it needs to be recursive".

Simple Example

Fibonacci series $\operatorname{Fib}(n)$:

$$
\begin{equation*}
\operatorname{Fib}(n)=\operatorname{Fib}(n-1)+\operatorname{Fib}(n-2) \tag{1}
\end{equation*}
$$

Combinatorial

Optimization

Previously on..
Enumeration
Process

Dynamic

21

$$
8
$$

Dijkstra's Attempt

Shortest Path problem can also be solved via Dynamic Programming:
Problem
In a graph $G=(V, E)$, find the shortest path between node p and q.
\longrightarrow if R is a node in the minimal path between P and Q, it is implied that the minimal path between P and R is also known.

This is guaranteed by the definition of the Dijkstra's algorithm.

Application

In a general problem, what are the steps to apply dynamic programming:

- Recurrence relation: small problems;
- Optimal from A to Z can be calculated by optimal from A to B then optimal from B to Z, i.e. shortest path or general flow problems;
- In an iterative process, the solution until this iteration is optimal, and from this point forward is the same problem but smaller, i. e. Fibonacci series, decomposition problems.

Recurrent solution \longrightarrow preferably smaller;

Applications

- Base Cases;

After smaller problems are found, the smallest possible problem should be trivial to solve;

- For Fibonacci series, for example, the initial values are easily to established;
- For shortest path, the path between the source and the first node in the optimal should be easily found;
- Same strategies in the knapsack problem.

Applications

Recursive or Iterative: depending of the problem, both strategies are valid and provide pros and cons:

- Recursive: Better memory control; stack overflow; easier reasoning;
- Iteration: Less memory control; no problems with stack overflow; less intuitive to implementation;

Other choices: top-down (most common) or bottom-up; memoization, etc.

Example I: Knapsack

Back from original example:

	HP	Hunger Games	LotR	PJ\&O	ATTWN	maximal weight
weight	4 g	3 g	8 g	8 g	1 g	10 g
value	2	4	2	2	5	-

Example I: Knapsack

Vertical: items;

Horizontal: weights;
Each cell is filled such as follows:
$1 m_{0, \text { weight }} \leftarrow 0$
2 for each cell $m_{\text {item, weight }}$ do
$3 \mid m_{\text {item,weight }} \leftarrow m_{\text {item }-1, \text { weight }}$ if weight $t_{\text {item }}>$ weight
$4 \quad m_{\text {item,weight }} \leftarrow \max \left(m_{\text {item-1,weight }}, m_{\text {item }-1, w-\text { weight }_{\text {item }}}+v_{i}\right)$ if

Example I: Knapsack

Combinatorial
Optimization

Enumeration
Process

Example II: Tower of Hanoi

It is a puzzle consisting of three rods and a set of disks with ranging diameters. It starts with all disk in a single rod, stacked in increase diameter size.

The goal is to move all disk to another rod using the following rules:

- A disk has to be moved to the top of another stack or an empty rod;
- In a rod, the diameter should increase from top to bottom.

Figure: Tower of Hanoi puzzle

Example II: Tower of Hanoi

Figure: Tower of Hanoi with three disks

Example II: Tower of Hanoi

```
Algorithm: Hanoi(BFS)
Input: Disk, Source, Destination, Auxiliary Rod
1 if Disk == 1 then
2 move Disk from Source to Destination;
3 else
4 Hanoi(Disk-1,Source,Auxiliary Rod, Destination)
5 move Disk from Source to Destination;
6 Hanoi(Disk-1, Auxiliary Rod, Destination, Source)
```


Example III: Bellman-Ford Algorithm

An alternative version of the Dijkstra's algorithm.
It is slower, but allows negative weights.

Algorithm: Bellman-Ford's Algorithm - Preparation
Input: undirected, connected graph G, weights $c: E(G) \rightarrow \mathbb{R}$, nodes V, source s
$1 d_{v}$ distance to reach node v
$2 p_{v}$ node predecessor to node v
$3 Q \leftarrow \emptyset$ set of "unkown distance" nodes.
4 for each node v in V do
$5 \quad d_{v} \leftarrow \infty$
$\mathbf{6} \quad p_{v} \leftarrow F A L S E$
$7 d_{s} \leftarrow 0$

Example III: Bellman-Ford Algorithm

```
Algorithm: Bellman-Ford's Algorithm - Calculation
Output: \(d_{v}, p_{v}\)
\(\mathbf{1}\) for each node \(v\) in \(V\) do
2 for each edge \((u, v) \in E\) do
\(3 \quad\) temp-dist \(\leftarrow d_{u}+c_{u v}\)
    if temp-dist \(<d_{v}\) then
        \(d_{v} \leftarrow\) temp-dist
        \(p_{v} \leftarrow u\)
        for each edge \((u, v) \in G\) do
        if \(d_{u}+c_{u v}<d_{v}\) then
            return Error: Negative Cycle Exist
10 return \(d_{v}, p_{v}\)
```

A
thank you

