Lecture Notes - Week IX

Polyhedral Theory

Fernando Dias, Philine Schiewe and Piyalee Pattanaik

CHAPTER

1

Linear Programming

So far in this course, we are solving either algorithms or an integer linear programming formulation.
In terms of ILP, they always follows the same format. Consider a model in the general (or standard) form:

$$
\begin{aligned}
& \min \quad f(x) \\
& \text { s.t.: } g_{i}(x) \leq 0, i=1, \ldots, m \\
& \\
& \quad h_{i}(x)=0, i=1, \ldots, l \\
& \quad x \in X
\end{aligned}
$$

which is equivalent to a matrix format:
$\max c^{\top} x$
s.t.:

$$
\begin{aligned}
& A x \leq b \\
& -A x \leq-b \\
& x \leq 0
\end{aligned}
$$

or the brand-new polyhedral form:

$$
\begin{array}{ll}
\max & c^{T} x^{+}-c^{T} x^{-} \\
\text {s.t.: } \\
& A x^{+}+A x^{-}+I s=b \\
& x^{+}, x^{-}, s \geq 0 \\
& x=x^{+}-x^{-}
\end{array}
$$

Based on those polytope, we can have different levels and dimensions such as An example of 2-D polytope:
and an example of 3-D polytope:

CHAPTER

Farkas Theorem

Farkas' theorem plays a central role in deriving optimality conditions. It can assume several alternative forms, typically referred to as Farkas' lemmas. In essence, Farkas' theorem demonstrates that a given system of linear equations has a solution if and only if a related system can be shown to have no solutions and vice-versa.

Theorem 1 Let A be an $m \times n$ matrix and c be an n vector. Then exactly one of the following two systems has a solution:

$$
\begin{aligned}
& \text { (1) : } A x \leq 0, c^{\top} x>0, x \in \mathbb{R}^{n} \\
& \text { (2): } A^{\top} y=c, y \geq 0, y \in \mathbb{R}^{m} .
\end{aligned}
$$

Proof 1 Suppose (2) has a solution. Let x be such that $A x \leq 0$. Then $c^{\top} x=\left(A^{\top} y\right)^{\top} x=y^{\top} A x \leq 0$. Hence, (1) has no solution.

Next, suppose (2) has no solution. Let $S=\left\{x \in \mathbb{R}^{n}: x=A^{\top} y, y \geq 0\right\}$. Notice that S is closed and convex and that $c \notin S$.

There exists $p \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$ such that $p^{\top} c>\alpha$ and $p^{\top} x \leq \alpha$ for $x \in S$.
As $0 \in S, \alpha \geq 0$ and $p^{\top} c>0$. Also, $\alpha \geq p^{\top} A^{\top} y=y^{\top} A p$ for $y \geq 0$. This implies that $A p \leq 0$, and thus p satisfies (1).

The first part of the proof shows that if we assume that system (2) has a solution, then $c^{\top} x>0$ cannot hold for $y \geq 0$. The second part shows that c can be seen as a point not belonging to the closed convex set S for which there is a separation hyperplane and that the existence of such plane implies that system (1) must hold. The set S is closed and convex since it is a conic combination of rows a_{i}, for $i=1, \ldots, m$. Using the $0 \in S$, one can show that $\alpha \geq 0$.

The last part uses the identity $p^{\top} A^{\top}=(A p)^{\top}$ and the fact that $(A p)^{\top} y=y^{\top} A p$. Notice that, since y can be arbitrarily large and α is a constant, $y^{\top} A p \leq \alpha$ can only hold if $y^{\top} A p \leq 0$, requiring that $p \leq 0$ since $y \geq 0$ from the definition of S.

Farkas' theorem has an interesting geometrical interpretation from this proof, as illustrated in Figures 2.1. Consider the cone C formed by the rows of A

$$
C=\left\{c \in \mathbb{R}^{n}: c_{j}=\sum_{i=1}^{m} a_{i j} y_{i}, j=1, \ldots, n, y_{i} \geq 0, i=1, \ldots, m\right\}
$$

The polar cone of C, denoted C^{0}, is formed by all vectors having angles of 90° or more with vectors in C. That is,

$$
C^{0}=\{x: A x \leq 0\} .
$$

Notice that (1) has a solution if the intersection between the polar cone C^{0} and the positive (H^{+}as defined earlier) half-space $H^{+}=\left\{x \in \mathbb{R}^{n}: c^{\top} x>0\right\}$ is not empty. If (2) has a solution, as at the beginning of the proof, then $c \in C$ and the intersection $C^{0} \cap H^{+}=\emptyset$. Now, if (2) does not have a solution, that is, $c \notin C$, then one can see that $C^{0} \cap H^{+}$cannot be empty, meaning that (1) has a solution.

Figure 2.1: Geometrical illustration of the Farkas' theorem. On the left, system (2) has a solution, while on the right, system (1) has a solution

