

Lecture Notes - Week IX

Polyhedral Theory

Fernando Dias, Philine Schiewe and Piyalee Pattanaik

CHAPTER **1** Linear Programming

So far in this course, we are solving either algorithms or an integer linear programming formulation.

In terms of ILP, they always follows the same format. Consider a model in the general (or standard) form:

min
$$f(x)$$

s.t.: $g_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., l$
 $x \in X$,

which is equivalent to a matrix format:

$$\begin{array}{ll} \max & c^T x \\ \text{s.t.:} \\ & Ax \leq b \\ & -Ax \leq -b \\ & x \leq 0 \end{array}$$

or the brand-new polyhedral form:

max
$$c^{T}x^{+} - c^{T}x^{-}$$

s.t.:
 $Ax^{+} + Ax^{-} + Is = b$
 $x^{+}, x^{-}, s \ge 0$
 $x = x^{+} - x^{-}$

Based on those polytope, we can have different levels and dimensions such as An example of 2-D polytope:

and an example of 3-D polytope:

CHAPTER **2** Farkas Theorem

Farkas' theorem plays a central role in deriving optimality conditions. It can assume several alternative forms, typically referred to as Farkas' lemmas. In essence, Farkas' theorem demonstrates that a given system of linear equations has a solution if and only if a related system can be shown to have no solutions and vice-versa.

Theorem 1 Let A be an $m \times n$ matrix and c be an n vector. Then exactly one of the following two systems has a solution:

(1):
$$Ax \leq 0$$
, $c^{\top}x > 0$, $x \in \mathbb{R}^n$
(2): $A^{\top}y = c$, $y \geq 0$, $y \in \mathbb{R}^m$.

Proof 1 Suppose (2) has a solution. Let x be such that $Ax \leq 0$. Then $c^{\top}x = (A^{\top}y)^{\top}x = y^{\top}Ax \leq 0$. Hence, (1) has no solution.

Next, suppose (2) has no solution. Let $S = \{x \in \mathbb{R}^n : x = A^\top y, y \ge 0\}$. Notice that S is closed and convex and that $c \notin S$.

There exists $p \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ such that $p^\top c > \alpha$ and $p^\top x \le \alpha$ for $x \in S$.

As $0 \in S$, $\alpha \ge 0$ and $p^{\top}c > 0$. Also, $\alpha \ge p^{\top}A^{\top}y = y^{\top}Ap$ for $y \ge 0$. This implies that $Ap \le 0$, and thus p satisfies (1).

The first part of the proof shows that if we assume that system (2) has a solution, then $c^{\top}x > 0$ cannot hold for $y \ge 0$. The second part shows that *c* can be seen as a point not belonging to the closed convex set *S* for which there is a separation hyperplane and that the existence of such plane implies that system (1) must hold. The set *S* is closed and convex since it is a conic combination of rows a_i , for i = 1, ..., m. Using the $0 \in S$, one can show that $\alpha \ge 0$.

The last part uses the identity $p^{\top}A^{\top} = (Ap)^{\top}$ and the fact that $(Ap)^{\top}y = y^{\top}Ap$. Notice that, since *y* can be arbitrarily large and α is a constant, $y^{\top}Ap \leq \alpha$ can only hold if $y^{\top}Ap \leq 0$, requiring that $p \leq 0$ since $y \geq 0$ from the definition of *S*.

Farkas' theorem has an interesting geometrical interpretation from this proof, as illustrated in Figures 2.1. Consider the cone C formed by the rows of A

$$C = \{c \in \mathbb{R}^n : c_j = \sum_{i=1}^m a_{ij}y_i, j = 1, ..., n, y_i \ge 0, i = 1, ..., m\}$$

The **polar cone** of *C*, denoted C^0 , is formed by all vectors having angles of 90° or more with vectors in *C*. That is,

$$C^0 = \{x : Ax \le 0\}.$$

Notice that (1) has a solution if the intersection between the polar cone C^0 and the positive (H^+ as defined earlier) half-space $H^+ = \{x \in \mathbb{R}^n : c^\top x > 0\}$ is not empty. If (2) has a solution, as at the beginning of the proof, then $c \in C$ and the intersection $C^0 \cap H^+ = \emptyset$. Now, if (2) does not have a solution, that is, $c \notin C$, then one can see that $C^0 \cap H^+$ cannot be empty, meaning that (1) has a solution.

Figure 2.1: Geometrical illustration of the Farkas' theorem. On the left, system (2) has a solution, while on the right, system (1) has a solution