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CHAPTER 1
Linear Programming

So far in this course, we are solving either algorithms or an integer linear programming formulation.

In terms of ILP, they always follows the same format. Consider a model in the general (or standard) form:

min f (x)

s.t.: gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l

x ∈ X ,

which is equivalent to a matrix format:

max cT x

s.t.:

Ax ≤ b

− Ax ≤ −b

x ≤ 0

or the brand-new polyhedral form:

max cT x+ − cT x−

s.t.:

Ax+ + Ax− + Is = b

x+, x−, s ≥ 0

x = x+ − x−

Based on those polytope, we can have different levels and dimensions such as An example of 2-D polytope:

CHAPTER 1. LINEAR PROGRAMMING 2



LECTURE NOTES - WEEK IX
Polyhedral Theory

and an example of 3-D polytope:
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CHAPTER 2
Farkas Theorem

Farkas’ theorem plays a central role in deriving optimality conditions. It can assume several alternative
forms, typically referred to as Farkas’ lemmas. In essence, Farkas’ theorem demonstrates that a given
system of linear equations has a solution if and only if a related system can be shown to have no solutions
and vice-versa.

Theorem 1 Let A be an m × n matrix and c be an n vector. Then exactly one of the following two systems
has a solution:

(1) : Ax ≤ 0, c⊤x > 0, x ∈ Rn

(2) : A⊤y = c, y ≥ 0, y ∈ Rm.

Proof 1 Suppose (2) has a solution. Let x be such that Ax ≤ 0. Then c⊤x = (A⊤y)⊤x = y⊤Ax ≤ 0.
Hence, (1) has no solution.

Next, suppose (2) has no solution. Let S = {x ∈ Rn : x = A⊤y , y ≥ 0}.Notice that S is closed and convex
and that c /∈ S.

There exists p ∈ Rn and α ∈ R such that p⊤c > α and p⊤x ≤ α for x ∈ S.

As 0 ∈ S, α ≥ 0 and p⊤c > 0. Also, α ≥ p⊤A⊤y = y⊤Ap for y ≥ 0. This implies that Ap ≤ 0, and thus p
satisfies (1).

The first part of the proof shows that if we assume that system (2) has a solution, then c⊤x > 0 cannot hold
for y ≥ 0. The second part shows that c can be seen as a point not belonging to the closed convex set S
for which there is a separation hyperplane and that the existence of such plane implies that system (1) must
hold. The set S is closed and convex since it is a conic combination of rows ai , for i = 1, . . . ,m. Using the
0 ∈ S, one can show that α ≥ 0.

The last part uses the identity p⊤A⊤ = (Ap)⊤ and the fact that (Ap)⊤y = y⊤Ap. Notice that, since y can
be arbitrarily large and α is a constant, y⊤Ap ≤ α can only hold if y⊤Ap ≤ 0, requiring that p ≤ 0 since
y ≥ 0 from the definition of S.

Farkas’ theorem has an interesting geometrical interpretation from this proof, as illustrated in Figures 2.1.
Consider the cone C formed by the rows of A

C = {c ∈ Rn : cj =

m∑
i=1

ai jyi , j = 1, . . . , n, yi ≥ 0, i = 1, . . . ,m}
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The polar cone of C, denoted C0, is formed by all vectors having angles of 90◦ or more with vectors in C.
That is,

C0 = {x : Ax ≤ 0}.

Notice that (1) has a solution if the intersection between the polar cone C0 and the positive (H+ as defined
earlier) half-space H+ = {x ∈ Rn : c⊤x > 0} is not empty. If (2) has a solution, as at the beginning of the
proof, then c ∈ C and the intersection C0 ∩ H+ = ∅. Now, if (2) does not have a solution, that is, c /∈ C,
then one can see that C0 ∩ H+ cannot be empty, meaning that (1) has a solution.

C0 C0
C C
c

c
a1 a1

a2 a2

a3 a3

Figure 2.1: Geometrical illustration of the Farkas’ theorem. On the left, system (2) has a solution, while on
the right, system (1) has a solution
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