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• Dynamic Programming Theory;

• Knapsack Problem, Tower of Hanoi
and Bellman-Ford algorithm;

• Enumeration;
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So far in this course, we are solving either algorithms or an integer linear
programming formulation.

In terms of ILP, they always follows the same format. Consider a model in the
general (or standard) form:

min f(x)

s.t.: gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l

x ∈ X,
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Matrix Form

max cTx

s.t.:

Ax ≤ b

−Ax ≤ −b

x ≤ 0
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Polyhedral Form

max cTx+ − cTx−

s.t.:

Ax+ +Ax− + Is = b

x+,x−, s ≥ 0

x = x+ − x−
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An example of 2-D polytope:
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An example of 3-D polytope:
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Theorem
Let A be an m× n matrix and c be an n-vector.
Then exactly one of the following two systems has a solution:

(1) : Ax ≤ 0, c⊤x > 0,x ∈ Rn

(2) : A⊤y = c, y ≥ 0, y ∈ Rm.

– Combinatorial Optimization 11/15



Combinatorial
Optimization

Previously on..

Linear
Programming

Farkas
Theorem

Farkas’ theorem

Farka’s proof

Suppose (2) has a solution. Let x be such that Ax ≤ 0. Then
c⊤x = (A⊤y)⊤x = y⊤Ax ≤ 0. Hence, (1) has no solution.

Next, suppose (2) has no solution. Let S = {x : x = A⊤y, y ≥ 0}. Notice that S is
closed and convex and that c /∈ S. There exists p ∈ Rn and α ∈ R such that
p⊤c > α and p⊤x ≤ α for x ∈ S.

As 0 ∈ S, α ≥ 0 and p⊤c > 0. Also, α ≥ p⊤A⊤y = y⊤Ap for y ≥ 0. This implies
that Ap ≤ 0, and thus p satisfies (1).
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Geometry of the Farkas’ theorem

Consider the cone formed by the rows ai of A:
C = {c ∈ Rn : cj =

∑m
i=1 aijyi, j = 1, . . . ,n, yi ≥ 0, i = 1, . . . ,m}. Its polar cone

is given by C0 = {x : Ax ≤ 0}. If c ∈ C, then (2) has a solution. Otherwise, (1)
has a solution as {x : c⊤x > 0} ∩ C0 ̸= ∅.
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Geometry of the Farkas’ theorem

C0 C0
C C
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Geometrical illustration of the Farkas’ theorem. On the left, system (2) has a solution, while on
the right, system (1) has a solution
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