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So far in this course, we are solving either algorithms or an integer linear
programming formulation.

In terms of ILP, they always follows the same format. Consider a model in the
general (or standard) form:
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Polyhedral Form A
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Farkas' theorem A
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Let A be an m X n matrix and ¢ be an n-vector. _
Theorem

Then exactly one of the following two systems has a solution:

(1): Az <0,¢'z >0,z € R"
(2): Aly=c,y>0,y e R™.
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Farka's proof

Suppose (2) has a solution. Let x be such that Az < 0. Then
c'e=(ATy)T2 =yT Az < 0. Hence, (1) has no solution.

Next, suppose (2) has no solution. Let S = {z : x = ATy, y > 0}. Notice that S is
closed and convex and that ¢ ¢ S. There exists p € R™ and a € R such that
ple>aandp'z<aforzes.

AsOe S, a>0andpTec>0. Also, « >p' ATy =y T Ap for y > 0. This implies
that Ap <0, and thus p satisfies (1).

A

Aalto University

Combinatorial
Optimization

Previously on..

Linear
Programming

Farkas
Theorem

Farkas’ theorem

— Combinatorial Optimization «O>«Fr» «E>» «E>»



Geometry of the Farkas' theorem A
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Consider the cone formed by the rows a; of A: B g
m . .
C={ceR":c;=>"1aiy,j=1,...,n,9, > 0,i=1,...,m}. Its polar cone o
Theorem

Farkas’ theorem

is given by C¥ = {z : Az < 0}. If c € C, then (2) has a solution. Otherwise, (1)
has a solution as {z : c¢'z > 0} N C° # §.
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Geometry of the Farkas' theorem A
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Geometrical illustration of the Farkas’ theorem. On the left, system (2) has a solution, while on
the right, system (1) has a solution
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