### Lecture IX - Polyhedral Theory

<sup>1</sup> Department of Mathematics and Systems Analysis, Systems Analysis Laboratory, Aalto University, Finland

March 11, 2024



**Aalto University** 



Combinatorial Optimization

Previously on.

Linear Programming

Farkas Theorem

Farkas' theorem

### Previously on..



Combinatorial Optimization

Previously on..

Linear Programming

Farkas Theorem

Farkas' theorem

- Dynamic Programming Theory;
- Knapsack Problem, Tower of Hanoi and Bellman-Ford algorithm;
- Enumeration;

**PREVIOUSLY ON...** 



Combinatorial Optimization

Previously on..

Linear Programming

Farkas Theorem

Farkas' theorem

# Linear Programming

Combinatorial Optimization



Combinatorial Optimization

Previously on..

Linear Programming

Farkas Theorem

Farkas' theorem

# So far in this course, we are solving either **algorithms** or an **integer linear programming formulation**.

In terms of ILP, they always follows the same format. Consider a model in the **general (or standard) form**:

min 
$$f(x)$$
  
s.t.:  $g_i(x) \le 0, i = 1, ..., m$   
 $h_i(x) = 0, i = 1, ..., l$   
 $x \in X$ ,

## Matrix Form



#### Aalto University

Combinatorial Optimization

Previously on ..

Linear Programming

Farkas Theorem

Farkas' theorem

$$\begin{array}{ll} \max & c^T x\\ \text{s.t.:}\\ & Ax \leq b\\ & -Ax \leq -b\\ & x \leq 0 \end{array}$$

# Polyhedral Form



#### Aalto University

Combinatorial

max 
$$c^T x^+ - c^T x^-$$
  
s.t.:  
 $Ax^+ + Ax^- + Is = b$   
 $x^+, x^-, s \ge 0$   
 $x = x^+ - x^-$ 

s.



Combinatorial Optimization

Previously on..

Linear Programming

Farkas Theorem

Farkas' theorem

### An example of 2-D polytope:



An example of 3-D polytope:





Aalto University

Combinatorial Optimization

Previously on ..

Linear Programming

Farkas Theorem

Farkas' theorem

- Combinatorial Optimization

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < 0 < 0</li>
9/15



Combinatorial Optimization

Previously on..

Linear Programming

Farkas Theorem

Farkas' theorem

### Farkas Theorem

### Farkas' theorem

### Theorem

Let A be an  $m \times n$  matrix and c be an n-vector. Then exactly one of the following two systems has a solution:

(1): 
$$Ax \le 0, c^{\top}x > 0, x \in \mathcal{R}^n$$
  
(2):  $A^{\top}y = c, y \ge 0, y \in \mathcal{R}^m$ .



Combinatorial Optimization

Previously on ..

Linear Programming

Farkas Theorem Farkas' theorem

### Farka's proof



Combinatorial Optimization

Previously on..

Linear Programming

Farkas Theorem Farkas' theorem

Suppose (2) has a solution. Let x be such that  $Ax \leq 0$ . Then  $c^{\top}x = (A^{\top}y)^{\top}x = y^{\top}Ax \leq 0$ . Hence, (1) has no solution.

Next, suppose (2) has no solution. Let  $S = \{x : x = A^{\top}y, y \ge 0\}$ . Notice that S is closed and convex and that  $c \notin S$ . There exists  $p \in \mathcal{R}^n$  and  $\alpha \in \mathcal{R}$  such that  $p^{\top}c > \alpha$  and  $p^{\top}x \le \alpha$  for  $x \in S$ .

As  $0 \in S$ ,  $\alpha \ge 0$  and  $p^{\top}c > 0$ . Also,  $\alpha \ge p^{\top}A^{\top}y = y^{\top}Ap$  for  $y \ge 0$ . This implies that  $Ap \le 0$ , and thus p satisfies (1).

### Geometry of the Farkas' theorem



Combinatorial Optimization

Previously on..

inear Programming

Farkas Theorem Farkas' theorem

Consider the cone formed by the rows  $a_i$  of A:  $C = \{c \in \mathcal{R}^n : c_j = \sum_{i=1}^m a_{ij}y_i, j = 1, \dots, n, y_i \ge 0, i = 1, \dots, m\}$ . Its polar cone

is given by  $C^0 = \{x : Ax \le 0\}$ . If  $c \in C$ , then (2) has a solution. Otherwise, (1) has a solution as  $\{x : c^{\top}x > 0\} \cap C^0 \neq \emptyset$ .

### Geometry of the Farkas' theorem



Geometrical illustration of the Farkas' theorem. On the left, system (2) has a solution, while on the right, system (1) has a solution



Combinatorial Optimization

Previously on ..

Linear Programming

Farkas Theorem Farkas' theorem





Programming

Theorem Farkas' theorem

thank you