

§ Week I §

Problem 1: All representations

Figure 1: Example of an undirected graph.

Represent the graph above using $\mathbf{incidence\ matrix}$ and $\mathbf{list}\ \mathbf{adjacency}.$

Solution:

Incidence matrix:

(A	B	C	D	E	F	$G^{\mathbf{h}}$
A	0	1	1	1	0	1	0
B	1	0	0	0	1	0	0
C	1	0	0	0	0	1	0
D	1	0	0	0	0	1	0
E	0	1	0	0	0	0	0
F	1	0	1	1	0	0	1
$\backslash G$	0	0	0	0	0	1	0 /

Adjacency list:

 $A : \{B, C, D, F\}$ $B : \{A, E\}$ $C : \{A, F\}$ $D : \{A, F\}$ $E : \{B\}$ $F : \{A, C, D, G\}$ $G : \{F\}$

Problem 2: DFS by Hand

Considering the graph from the previous problem, write up all the steps required to complete the **DFS** algorithm.

Solution:

We have a selection of nodes to follow to build into another data structure S:

- Starting from node A, we have four options: B, C, D and F. Then, add A in $S(S\{A\})$;
- Picking B and put into $S (S = \{A, B\};$
- From B, the next option to go is E which we would add to $S (S = \{A, B, E\};$
- E is a dead-end, so it is returning to B, which does not have any other alternative to go, so it goes back to A;
- From A, it goes to C ($S = \{A, B, E, C\}$) then goes to F ($S = \{A, B, E, C, F\}$;
- From F, it goes to G, which is a dead-end, so it returns to $F(S = \{A, B, E, C, F, G\};$
- From F, the only available route is D resulting in $S = \{A, B, E, C, F, G, D\}$

Note that there is no single solution, and different DFS are possible.

Problem 3: Escape Room

Using any graph representation of your choice, express the following maze as a graph:

Figure 2: Search for the keys

Figure 3: Graph from maze

Using visual representation:

Using incidence matrix:

(A	B	C	D	E	F	G	H
A	0	1	0	0	1	0	0	0
B	1	0	0	0	0	0	0	0
C	0	0	0	1	0	0	1	0
D	0	0	1	0	0	0	0	0
E	1	0	0	0	0	1	0	0
F	0	0	0	0	1	0	1	0
G	0	0	1	0	0	1	0	0
$\backslash H$	0	0	0	0	0	0	1	0 and

Using adjacency list:

 $A : \{B, E\} \\ B : \{A\} \\ C : \{D, G\} \\ D : \{C\} \\ E : \{A, F\} \\ F : \{E, G\} \\ G : \{C, H\} \\ H : \{G\}$

Problem 4: Escaping

Using DFS, find at least two different routes to reach room H.

Solution:

First, using DFS:

- 1. Starting for A, we can go to B ($S = \{A, B\}$);
- 2. B is a dead-end; then we return to A and take E instead $(S = \{A, B, E\})$;
- 3. From E, it goes to G, where it has two options: first, let us take C ($S = \{A, B, E, F, G, C\}$);
- 4. From C, it goes to D and then reaches a dead-end $(S = \{A, B, E, F, G, C, D\});$
- 5. Returns to G, the only option available is H ($S = \{A, B, E, F, G, C, D, H\}$).

The two ways to reach H could be from $A(A \rightarrow E \rightarrow F \rightarrow F \rightarrow G \rightarrow H$ and from $D(D \rightarrow C \rightarrow F \rightarrow H)$.

Problem 5: DFS vs Reachability

In a sufficient large graph, a **DFS algorithm** showed that such a graph is disconnected. How would you **justified** that?

Solution: If the size of DFS is the same as the size of the original graph G, all nodes in the DFS are connected in the original graph.

Problem 6: Building blocks organically

The hydrocarbons known as alkanes have chemical formula $C_p H_{2p+2}$, alkanes where C and H represent atoms of carbon and hydrogen, respectively. Graphs can represent alkane molecules. Draw a figure of a methane $C_1 H_4$ molecule. How many "different" $C_3 H_8$ molecules are there?

Solution:

If you know the chemical properties of alkanes, many different molecules are available. However, those graphs would be connected and have the same DFS.

Figure 4: Methane

Figure 5: Propane