

## Matching

Dias, Schiewe, Pattanaki Instructor: Pattanaki

# § Week IV §

## **Problem 1: Maximal Matching**

Find a maximal and a maximum match in the following graph:



Figure 1: Undirected weighted graph

## Problem 2: Ford vs Edmond

Find the maximum flow in the following graph using Ford-Furkelson;



Figure 2: Undirected weighted graph

#### Problem 3: Flows and matchings

How can Ford-Fulkerson can be used for maximum matchings?

#### Problem 4: Gale-Shapley

Gale-Shapley is an algorithm developed by two American scientists: David Gale and Lloyd Shapley, to find solutions to stable matching problems. In their formulation, the polynomial algorithm (linear in the input size) works as a truthful mechanism from the point of view of the proposing participants, for whom the solution will always be optimal. In addition, the Gale-Shapley algorithm produces stable matchings on complete bipartite graphs. Consider now complete graphs. Are all matchings stable?

#### Problem 5: Tic-Tac-Toe

A positional game consists of a set X of positions and a family  $W_1, W_2, \dots, W_m \subset X$  of winning sets (Tic-Tac-Toe has 9 positions corresponding to the 9 boxes, and 8 winning sets corresponding to the three rows, three columns, and two diagonals). Two players alternately choose positions; a player wins when they collect a winning set.

Suppose that each winning set has size at least a and each position appears in at most b winning sets (in Tic-Tac Toe a = 3 and b = 4). Prove that Player 2 can force a draw if  $a \ge 2b$ .

*Hint*: Form a bipartite graph G with bipartition (X, Y) where  $Y = \{W_1, W_2, \dots, W_m\} \cup \{W'_1, W'_2, \dots, W'_m\}$  with edges  $xW_j$  and  $xW_0$  whenever  $x \in W_j$ . How can Player 2 use a matching in G?