
Lecture 5: Complexity-theoretic hash-functions
Extractors, Universal hash-functions and more

Christopher Brzuska

February 5, 2024

1 Complexity-theoretic hash-functions: theory
and practice

In the first couple of weeks of this course, we looked into cryptographic hash-
functions, and we saw that building collision-resistance hash-functions from
standard one-way functions seems difficult, at least in a black-box way. In
turn, we saw that given a normal one-way function f , we can build a pre-image
resistance hash-function by applying an extractor to the input first:

(x, s) 7→ (f(ext(x, s)), s)

The extractor ensures that if x is drawn from a high-entropy distribution, then
the output is almost uniformly distributed. And thus, afterwards, we can simply
rely on the security of the one-way function.
Today, we are going to see how to construct such extractors. What I find exciting
is that, in fact, we can prove that randomness extractors exist, very different
from our typical crypto scenario where we always need to rely on assumptions.
The approach will be to take a complexity-theoretic hash-function, known as a
2-universal hash-function and show that it is a good extractor. This theorem
(or lemma...) is also known as the leftover hash-lemma which is an important
lemma both in complexity-theory and (theoretical) cryptography.
Now, is this all theory, or are extractors also used in practice? Interestingly, we
all use extractors everyday when we check our eMails or visit a website using
https. The underlying security protocol, Transport Layer Security (TLS), allows
to rely on different types of key material, namely symmetric keys and Diffie-
Hellman secrets. When both are available, then the protocol first extracts from
them, and then combines them into a key together. The extraction process is
very important, because TLS is so widely used, and one cannot really be sure
how well the secret keys have been generated, since they come from some other
application.
TLS also derives multiple keys from one key, and the approach used for this
derivation is known as the extract-then-expand appraoch where TLS first runs
an extractor and then uses a pseudorandom function (PRF) to expand the
key into several. The extract-then-expand approach was proposed by Hugo
Krawczyk, one of Oded Goldreich’s first PhD students, and a solid researcher
in theoretical computer science. Hugo wrote a paper https://eprint.iacr.
org/2010/264 and later an IETF standard https://datatracker.ietf.org/

1

https://eprint.iacr.org/2010/264
https://eprint.iacr.org/2010/264
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869

Advanced topics in crypto Lecture 5: Complexity-theoretic hash-functions

doc/html/rfc5869 on hashed key derivation functions (HKDF), and HKDF is
used as an essential building block in the (quite new) TLS 1.3 standard https:
//datatracker.ietf.org/doc/html/rfc8446.
Since TLS 1.3 is considered to be top state-of-the-art in terms of key derivations,
the messaging layer security (MLS) standard also uses a very similar approach
for key derivations https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/.
(If you are curious about this, you can reach out. Together with colleagues,
we analyzed both, the TLS 1.3 key derivations https://eprint.iacr.org/
2021/467 and the MLS key derivations https://eprint.iacr.org/2021/137.
The latter article is based on the master thesis of Eric Cornelissen who was a
SECCLO student at Aalto.)
Now, TLS 1.3 does not use one of these complexity-theoretic extractors for
extraction, but instead uses a cryptographic hash-function for extraction also.
One of the reasons that one can consider for this is that in TLS 1.3., it is hard to
ensure that the seed s used for extraction is independent from the symmetric-
key and uniformly random. Thus, TLS 1.3. uses a fixed seed in some instances,
and one of the heuristic arguments in favor of a cryptographic hash-function is
that for a cryptographic hash-function, it is much harder to exploit relations
between inputs and outputs than for complexity-theoretic extractors.
Let us now move to extractors—but before we can go to the proof, we’ll need
some technical tools, so we know them beforehand and don’t need to jump to
understanding the tools in the middle of the proof. This is what Section 2 is
about.

2 Statistical Distance and Collision Probability
We recall from Pihla’s lecture last week the definition of statistical distance
(also called total variation distance or the distance induced by the |.|1-norm).
Statistical distance is useful to describe a statistical analogue of computational
indistinguishability. I.e., let X and Y be PPT algorithms that get as input
the security parameter 1λ and output some bitstring. If the statistical distance
between the induced distributions X(1λ) and Y (1λ) is a negligible function in
λ, then no efficient or even inefficient adversary can distinguish between X(1λ)
and Y (1λ) with more than negligible probability.
Definition 2.1 (Statistical Distance). For two random variables X and Y , we
define the statistical distance between X and Y as

SD(X, Y) := 1
2

∑
z∈Supp(X)∪Supp(Y)

|Pr[X = z] − Pr[Y = z]|,

where the support Supp(X) denotes the set of values z where Pr[X = z] > 0.
Lemma 1. (Properties of statistical distance)
Triangle Inequality. For three random variables X, Y , and Z, we have

SD(X, Z) ≤ SD(X, Y) + SD(Y, Z).

Computational Distance. Let X and Y be PPT algorithms that get as input
the security parameter 1λ and output some bitstring. Then, for all probabilistic
algorithms A (both efficient and inefficient), we have that∣∣Pr

[
1 = A(1λ, X(1λ))

]
− Pr

[
1 = A(1λ, Y (1λ))

]∣∣ ≤ SD(X(1λ), Y (1λ)).

2

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/
https://eprint.iacr.org/2021/467
https://eprint.iacr.org/2021/467
https://eprint.iacr.org/2021/137

Advanced topics in crypto Lecture 5: Complexity-theoretic hash-functions

Often, it is difficult to directly compute the statistical distance, and there are
many ways of relating statistical distance to other notions of distance. For
example, it is often useful to determine how far a distribution is from the uniform
distribution. In cryptography, this is particularly important, because we often
need to construct (pseudo-)random strings as keys, and in the extractors which
we construct today, we will also want to say that their output is close to uniform.
One indirect way of assessing the statistical distance of a random variable from
the uniform distribution is by looking at the collision probability, i.e., when
sampling twice from X (let us denote by X ′ an independent copy from X),
independently, from the same distribution, what is the probability that one
yields the same sample?

Prz←$X,z′←$X′ [z = z′]

=
∑

x∈Supp(X)

Prz←$X,z′←$X′ [x = z = z′]

=
∑

x∈Supp(X)

Pr[X = x] · Pr[X ′ = x]

=
∑

x∈Supp(X)

(Pr[X = x])2

This is indeed the sum of squares of the probabilities.

Definition 2.2 (Collision Probability). Let X be a random variable, then its
collision probability is defined as

CP(X) :=
∑

z∈Supp(X)

(Pr X = z)2

The uniform distribution Un over {0, 1}n has collision-probability 2−n, since∑
x∈{0,1}n

Pr[Un = x]2 =
∑

x∈{0,1}n

(2−n)2 =
∑

x∈{0,1}n

2−2n = 2n · 2−2n = 2−n.

In turn, any other distribution over {0, 1}n will have higher collision probabil-
ity.1

Lemma 2 (Bounding SD from uniform via CP). Let X be a distribution over
{0, 1}n, and let Un denote the uniform distribution over {0, 1}n. Then, we have
that

SD(X, Un) ≤ 1
2 2 n

2
√

CP(X) − 2−n

Proof. In this proof, we will view the distribution X over bitstrings {0, 1}n as
a vector with 2n entries px := Pr[X = x], one for each x ∈ {0, 1}n such that∑

x∈{0,1}n px = 1. In this view, we can write the statistical distance as a norm
of the difference of two vectors, namely

SD(X, Un) = 1
2 ||X − Un||1,

1To see this intuitively, observe that if a+b = 1, then a2 +b2 is minimized when a = b = 1
2 ,

and maximized when a = 1 and b = 0. More rigorously, we can use that f : x 7→ x2 is a
convex function.

3

Advanced topics in crypto Lecture 5: Complexity-theoretic hash-functions

where ||v||1 :=
∑

x∈{0,1}n |vx| is the 1-norm in a 2n-dimensional vector space.
We can then use the known relation between the 1-norm and 2-norm, namely
||v||1 ≤

√
2n ·

√
||v||2, where ||v||2 :=

√∑
x∈{0,1}n(vx)2. Thus,

SD(X, Un) = 1
2 ||X − Un||1 ≤ 1

2 2 n
2 ||X − Un||2. (1)

Now,

(||X − Un||2)2

=
∑

x∈{0,1}n

(Pr[X = x] − Pr[Un = x])2

=
∑

x∈{0,1}n

(Pr[X = x])2 − 2 Pr[X = x] · Pr[Un = x] + Pr[Un = x]2

=
∑

x∈{0,1}n

(Pr[X = x])2 +
∑

x∈{0,1}n

Pr[Un = x]2 − 2 · 2−n ·
∑

x∈{0,1}n

Pr[Un = x]

=CP(X) + CP(Un) − 2 · 2−n = CP(X) − 2−n (2)

Putting (2) and (1), we obtain

SD(X, Un) ≤ 1
2 2 n

2
√

CP(X) − 2−n

as required.

Finally, let us recall the definition of min-entropy, i.e., the logarithm of the value
with the highest probability (in absolute values).

Definition 2.3 (Min-entropy). The min-entropy H∞(X) of a random variable
X is defined as

H∞(X) := min
x∈Supp(X)

|log2(Pr[X = x])|.

3 Extractors
3.1 Definition
We can now move to the formal definition of extractors. Intuitively, we want
that if X is a source with min-entropy k, then an extractor extracts (almost)
k (almost) uniformly random bits from X, i.e., when S is a uniformly random
seed and Um denotes the uniform distribution over {0, 1}m (where m is just
a little bit smaller than k), then the statistical distance of (ext(X, S), S) and
(Um, S) should be small.

Definition 3.1 (Strong extractor). A function ext : {0, 1}n × Rm → {0, 1}m

is an (k, ε)-strong extractor if for all random variable X with H∞(X) ≥ k, we
have that

SD((ext(X, S), S), (Um, S)) ≤ ε.

Here, the set Rm is a set of randomness which depends on m.

This definition is referred to as strong extractors since closeness is required even
when the seed S is given while a weaker notion of extractor compares ext(S, X)
alone to Uk′ .

4

Advanced topics in crypto Lecture 5: Complexity-theoretic hash-functions

3.2 Construction
We will build an extractor based on a complexity-theoretic hash-function, namely
a 2-universal hash-function. The idea is that a hash-function should behave
random. Again, as for the extractor case, we cannot expect a fixed function to
behave random, so we sample a key S from a randomness set Rm, and we want
that any distinct pair of inputs x and x′ will be mapped to two independent
output values, i.e., all pairs of output values in {0, 1}m are equally likely and
thus have probability 2−2m.

Definition 3.2 (2-universal hash-function). A function h : {0, 1}n × Rm →
{0, 1}m is a 2-universal hash-function if for all z, z′ ∈ {0, 1}m and for all distinct
x, x′ ∈ {0, 1}n, we have that

PrS←$Rm [h(x, S) = z ∧ h(x′, S) = z′] = 2−2m

2-universal hash-functions are also called pairwise independent hash-functions.
The syntax of a 2-universal hash-function and an extractor is very similar, and
indeed, we will see that a 2-universal hash-function is an extractor, and indeed
a very good one. This fact is known as the leftover hash lemma which is a useful
and popular statement in complexity theory and cryptography.

Lemma 3 (Leftover Hash Lemma). Let h : {0, 1}n × Rm → {0, 1}m be a
2-universal hash-function. Then h is also a strong (k, ε) extractor as long as
k ≥ m + 2 · log2(1

ε).

Proof. Let n, m, k and ε be such that k ≥ m + 2 · log2(1
ε). And let X be a

random variable over {0, 1}n such that H∞(X) ≥ k. Moreover, assume that
Rm = {0, 1}m (for simplicity).
In this proof, we want to bound the statistical distance between (h(X, Um)||Um)
and U2m, where Um denotes the uniform distribution over {0, 1}m and U2m

denotes the uniform distribution over {0, 1}2m. In order to bound this statistical
distance, we want to use Lemma 2, so if we can show that

CP(h(X, Um)||Um) ≤ c, (3)

then Lemma 2 in dimension 2m implies that

SP(h(X, Um)||Um), U2m) ≤ 1
2 2m

√
c − 2−2m.

For our lemma, we need that

1
2 2m

√
c − 2−2m ≤ ε,

and for simplicity, let’s just look at values c where it even holds that

2m
√

c ≤ ε.

This holds for all values c such that

c ≤ 22m · ε2.

5

Advanced topics in crypto Lecture 5: Complexity-theoretic hash-functions

Thus, all remains to prove Lemma 3 is to prove Inequality 3 for c ≤ 22m · ε2.
In the following, we denote by X ′ and independent copy of X and by U ′m and
independent copy of Um

CP(h(X, Um)||Um)
def= Prx←$X,x′←$X′,r←$Um,r′←$U ′

m
[h(x, r) = h(x′, r′) ∧ r = r′]

= Prx←$X,x′←$X′,r←$Um,r′←$U ′
m

[h(x, r) = h(x′, r′) | r = r′] · Prr,r′ [r = r′]
= 2−m Prx←$X,x′←$X′,r←$Um [h(x, r) = h(x′, r)]
= 2−m(Prx←$X,x′←$X′,r←$Um

[h(x, r) = h(x′, r) | x 6= x′] · Pr[x 6= x′]
+ Prx←$X,x′←$X′,r←$Um

[h(x, r) = h(x′, r) | x = x′] · Pr[x = x′])
= 2−m(Prx←$X,x′←$X′,r←$Um

[h(x, r) = h(x′, r) | x 6= x′] · (1 − CP(X))
+ 1 · CP(X))

2-uni-hash= 2−m(2−2m · (1 − CP(X)) + CP(X))

4 Distributional One-Way Functions
Definition 4.1 (Distributional One-Way Function). A polynomial-time com-
putable function f : {0, 1}∗ → {0, 1}∗ is a distributional one-way function if
there exists a positive polynomial p : N → R+

0 such that for all efficient ad-
versaries A and large enough λ, the following two distributions have statistical
distance at least 1/p(λ):

Real(λ)
x←$ {0, 1}λ

y ← f(x)
return (y, x)

Adversarial(λ)
x←$ {0, 1}λ

y ← f(x)

x′ ←$A(1λ, y)
return (y, x′)

6

	Complexity-theoretic hash-functions: theory and practice
	Statistical Distance and Collision Probability
	Extractors
	Definition
	Construction

	Distributional One-Way Functions

