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1 Statistical Tools: Markov and Chernoff Bound
In this lecture, we want to perform some statistical analysis of algorithms, and
we will need several statistical tools in order to do this. For a randomized
algorithm A which output a real number, we can define the expectation of A as∑

z∈Supp(A)

z · Pr[A = z],

which the the average number which A outputs. For us, A will often be a
randomized experiment or an algorithm which takes as input λ random bits,
and in this case, we can write the expectation equivalently as

E(A) =
∑

r∈{0,1}λ

2−λA(r).

We have seen such probability statements already many times in the course in
the case where the algorithm (adversary) A returns 0 or 1. Note that each r is
chosen with probability 2−λ. We call an algorithm that maps random strings
to a real number a random variable. We will now see two bounds that tell us
whether a random variable is likely to be far from its expectation, and if so,
how likely. To appreciate the quality of the different bounds, let us consider the
following example:

Example: We flip a coin which has a 0 on one side and a 1 on the
other side, such that the probability of getting 0 is 1

2 . Now, if we
flip a coin 1000 times, we get 500 zeroes in expectation. How likely
is it that we get much more than this, say, that we get 750 zeroes?

My intuition says that this should be quite unlikely. Let’s now look at some
popular tail bounds and see what they say about our example. The first bound
is the Markov bound that is valid for all random variables that are positive. In
the lemma, we replace the explicit notation Prr←${0,1}n [A(r) ≥ v] by the implicit
notation Pr[A ≥ v], since this allows us to speak about arbitrary randomized al-
gorithms/random variables without making explicit how long the random string
is.
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Lemma 1 (Markov Bound). For all non-negative random variables A and all
positive real numbers v, we have

Pr[A ≥ v] ≤ E(A)
v

and
Pr[A ≥ v · E(A)] ≤ 1

v
.

The expectation of a random variable gives some information about a random
variable, but not necessarily very much. For instance, the Markov bound only
tells us some very weak relation between a random variable and its expecta-
tion. The Markov bound is not particularly good for repeated, independent
experiments such as our example. However, Markov bound only tells us that
this probability is lower than 2

3 (which is not very informative). Therefore, we
need better bounds such as the Chernoff bound (below) which tells us that the
probability is really small. We now turn to repeated experiments with 0 − 1
random variables Exp, i.e, random variables that either return 0 or 1 such as
our security experiments.

Lemma 2 (Chernoff Bound). For all p ≤ 1
2 , for all Exp1, Exp2, ..., Expn in-

dependent 0-1 random variables so that for all i Pr[Expi = 1] = p, for all ε,
0 < ε ≤ p(1 − p), we have

Pr
[∣∣∣∣∑n

i=1 Expi

n
− p

∣∣∣∣ > ε

]
< 2 · e−ε2n

and

Pr
[

n∑
i=1

Expi > (p + ε)n
]

< 2 · e−ε2n

In our example, p = 1
2 , n = 1000 and ε = 1

4 , which yields that the probability
of obtaining more than 750 zeroes is very small.
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Definition 1 (Expectation). When A is a randomized algorithm or experiment
which outputs a real number (e.g., 0, or 1), we define its expectation as

E(A) :=
∑

z∈Supp(A)

z · Pr[A = z].

Lemma 1 (Markov Bound). For all non-negative random variables A and all
positive real numbers v, we have

Pr[A ≥ v] ≤ E(A)
v

and
Pr[A ≥ v · E(A)] ≤ 1

v
.

Lemma 2 (Chernoff Bound). For all p ≤ 1
2 , for all Exp1, Exp2, ..., Expn in-

dependent 0-1 random variables so that for all i Pr[Expi = 1] = p, for all ε,
0 < ε ≤ p(1 − p), we have

Pr
[∣∣∣∣∑n

i=1 Expi

n
− p

∣∣∣∣ > ε

]
< 2 · e−ε2n

and

Pr
[

n∑
i=1

Expi > (p + ε)n
]

< 2 · e−ε2n
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