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To formulate a general discrete-time optimal control problem, we combine the notions
on dynamic systems and simulation with the notions on nonlinear programming

® We understand/treat general (discrete-time) optimal control problems as a
special form of nonlinear programming and discuss its numerical solution
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Consider a system f which maps an initial state vector zj onto a final state vector zj1

® We also consider the presence of a control u; that affects the transition
1 = f (z, uglz), (k=0,1,...,K —1)

We consider transitions over an arbitrary time-horizon, from time k& = 0 to time k = K

Oeeelevene- (k—1)- k- (k1) (K-1)---K

Over said time-horizon, we have the following sequences of state and control variables
~ For the controls, we have {uk}kK:_O1 with u;, € RN

~ For the states, we have {z;}X_, with z, € RN=

For notational simplicity, we used time-invariant dynamics f

® In general, we may have z1 = fi (zx, ur|0z)
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py1 = f (g, ugl0z), (k=0,1,...,K —1)

Semmlkicnmon The dynamics f are often derived from the discretisation of a continuous-time system
S p— ® As result of a numerical integration schemes, under piecewise constant controls
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py1 = f (g, ugl0z), (k=0,1,...,K —1)

Given an initial state zgp and some sequence of controls {uk}ngol, we know {z }K_

Sequential approach
The forward-simulation function determines the sequence {3 }X_ of visited states
fuim : RNeH(EXN) _y o (K4+1)Ns

¢ (20, uo, U1, .-, uk —1) — (20,31, - - ., TK)

For systems with no special structure, the forward-simulation map is built recursively

o = To
il :f(qul'f)'el)
2 = f (@1, u1]0z)

f (20, u0]0z) , u1|0z)
T2, u2|0y)

(
(
(
(f (f (20, u0|0) , u1]0z) , u2|6s)

f
z3=f
f
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Overview (cont.)

xk+1:f(xk7uk‘ez)7 (kzovlszil)

In optimal control, the dynamics can be used as equality constraints in optimisation

In this case, the initial state vector zp is not necessarily known, nor its is fixed
® Therefore, it can be one of the decision variables to be determined

® Moreover, certain additional constraints may be required to it

Similarly, also the final state zx can be treated as decision variable in an optimisation
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Overview (cont.)

Initial and terminal state constraints
We express the constraints on initial and terminal states in terms of function r (2o, zx )

r: RNe+Ne _y R Nr

‘We express the desire to reach certain initial and terminal states as equality constraints

r(20,2K) =0

For fixed initial state zg = Zo, we have
r (20, TK) = 20 — Zo
For fixed terminal state zx = Tx, we have

(20, 2K) = TK — Tk

For fixed both initial and terminal states, 1o = Tog and zx = Tg, we have

xo—i’o}
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When both the initial and terminal states are fixed (20 = To and zx = Tx ), we have

Sequential approach

oD~z ]
IO(Q) . 582)

2V (o)

r(z0,TK) =
(1) _ (1)
T — T
&ty
T — Tk

o) _ 5]

Npx1
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We express certain constraints on state and control values z; and wuy along their path

Simultaneou

\pproach ~+ These constraints often represent technological restrictions and/or desiderata

Sequential approach

~» They are commonly expressed in terms of inequality constraints

® The main idea is to use them to prevent operational violations
h(xk,U,k-)S(L kZO,].,,K—]_

For notational simplicity, we used time-invariant inequality constraint functions h

For common upper and lower bounds on the controls, upin < v < Umax, we have

U, — Umax
h (z, u) = |:’u,min - uk]

For common upper and lower bounds on the states, zmin < Zx < Zmax, we have

T, — Tmax
o) = [ o]
min
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For common upper and lower bounds on the controls, umyijn > Ui > Umax, we have

Sequential approach

SCORNOV I

— Umax

qu) - ur(nQa)x

— I 1 — ' :
. o o)

u o )
‘ b | h (zy, ug) =
S — ull) )
: : : : : : : : [ (&)
tU tl tQ t5 t4 t{, t()' t7 tg tg Upnin Uy,

o) ot
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For common upper and lower bounds on the states, yin > Tr > Tmax, we have

Sequential approach

[ $]§1) - :l:r(nla?x 1
oY~z
N ' X
fc,i ) — o
h (z, ug) =
o
(2 2
mi)n — )
0~ o)
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Discrete-time optimal control
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Formulations We are given system dynamics and specifications on the state and control constraints
Simultaneou

Lmeee We use them to formulate the discrete-time optimal control problem

Sequential approach

® Tt is a general constrained nonlinear program

min E(z E (z, w
ZQ,T1 50 TK ( K k> k
UQHUT 5.y UK — 1 k=0

Decision variables Objective function

subject to a:k+1—f(a:k,uk|02):0, k=0,1,..., K -1

Equality constraints
h(zg,ux) <0 k=0,1,..., K —1
Inequality constraints
r(20,2K) =0

Equality constraints
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K—1
o, i B (zk) + > L(w, u)
UQ UL 5oy UK — 1 k=0

subject to  zp41 — f (zk, uk|0z) = 0,
h (@, uy) <0,
7 (20, 2K) =0
The objective function, in general two terms

K-1

> L(zk,w) + B (ax)

k=0
The decision variables, in general two sets
Z0;x1y -y TK—1,TK
U, ULy -+ o5 UK 1
The equality constraints, in general two sets

opy1 — f (@, gl 0z)

=0
r (2o, 2x) =0

The inequality constraints

(k=0,..

LK - 1)

K-1

LK -1
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Formulations K—
oo zo,zrln’iﬂ,w E (zx) + Z L (zg, ug)
Sequential approach UQ UL 5y UK — 1 k=0
subject to  zp41 — f (zk, ukl0:) =0, k=0,1,..., K —1
h (@, u,) <0, k=0,1,..., K —1

r(z0,7K) =0

The objective function is the sum of all stage costs L (zx, ug) and a terminal cost E (zx)

K—

,_.

L xk, uk + E (:EK)
k=0

f(w)eER
That is,
L(z0,u0) + L (21, wm1) + -+ L(zx—1,ux—1) + E (zK)

Stage cost is a (potentially nonlinear and time-varying) function of state and controls

The terminal cost is a (potentially nonlinear and time-varying) function of state
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Sequential approach

K-1
zo,zrln,il},zK E('TK) + Z L(xk’uk:)
UQ,UL -y UK — 1 k=0

subject to  zp41 — f (2, uk|0:) =0, k=0,1,...,K —1
h (@, ui,) <0, k=0,1,...,K -1
r (20, 2x) =0

The decision variables are both the K X N,, controls and the (K + 1) X N, state variables

(w0, @1, -+, 2K —1, Tk ) U (w0, U1, - - -, UK 1)

State variables Control variables

wERK X Nu+(K+1) X Ny
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Problem formulations (cont.)

0,215, TK
UQ,UL 5o s UK —1

subject to  zp41 — f (zk, ukl0:) =0, k=0,1,...,K—1
h (zg, ux) <0, k=0,1,...,K -1

r (20, 7x) =0

K-1
min E(zx) + Z L (g, ug)
k=0

The equality constraints consist of the K dynamics and the N, boundary conditions

r(z0,7K) =0

g(w)ERNg

The inequality constraints

h(zg,u) <0 (k=0,1,..., K —1)

h(w)ERNn
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Formulations
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approach K
Sequential approach B (I}() + L (Ik, Uk)
0

|
-

min
T, L1y TR
UQ,UL 5o UK — 1 k

subject to  zp41 — f (g, uk|0:) =0, k=0,1,...
h(Zk,Uk)SO, k=0,1,...

r(zo0,2x) =0

VK —1
VK —1

The discrete-time optimal control problem is a potentially very large nonlinear program

® In principle, its solution can be approached using any generic NLP solver

We introduce the two approaches used to solve discrete-time optimal control problems

~~ The simultaneous approach

~+ The sequential approach



The simultaneous approach

Problem formulations
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approach

Sequential approach
T, L1 5, LI
UQHUL - UK — 1
subject to  zp41 — f (2, ukl0:) =0, k=0,1,..., K —1
h (a, w) < 0, k=0,1,...,K -1

r(z0,7K) =0

K—1
min E (zx) + Z L (g, ug)
k=0

The simultaneous approach solves the problem in the space of all the decision variables
w = (20, U0, T1, U1, - - -, TK—1, UK —1, TK )

Thus, there are (K X Ny) + ((K 4 1) X N;) decision variables
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Smmtersems The Lagrangian function of the problem,

approach

Sequential approach

L (w, A ) = f (w) + AT g (w) + " h (w)

The Karush-Kuhn-Tucker conditions,

Vi (w*) 4+ Vg (w*)A\* + Vh (w*)p* =0
g(w*)=0
h(w*) <0
p* >0
By By (W) =0, np=1,..., Ny
If point w* = (x5, us,. ., Tk _q1,uj_q,Zj) is a local minimiser of the nonlinear pro-

gram and if LICQ holds at w*, there there exist two vectors, the Lagrange multipliers
X € RNo and o € RNk, such that the Karhush-Kuhn-Tucker conditions are verified
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Problem formulations | Simultaneous approach (cont.)

Force [N]
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Simultaneous
approach

Sequential approach

. 4
SQP lter: 10 1
x 0,
of
= , 0
= “o 05 1 15 2 0 05 1 15 2
3 o
<)
S 4 4
w -10f 2 2
. ;01
€ 0f 0—2
N 5 2 -4
Time [s] -4 -6
~o 2

Time [s] Time [s]
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To understand more closely the structure and sparsity properties, consider an example

Simultaneous

approach K—1
Sequential approach .
min FE(xk) + E L (xy, u,
10,11,4.4,11( ( ) ( k7 k)
UQ UL 5oy UK — 1 k=0

subject to :Ek+1—f(:lik,uk‘9z):0, k=0,1,..., K -1

r (20, 2x) =0

‘We consider a discrete-time optimal control problem with no inequality constraints

® (The inequality constraints are omitted for notational simplicity)

x

The objective function f (w) = Z (z, ug) of the decision variables
k=0

w = ($07u07x17u17"'7IK—17uK—17 ZEK)
e N~ —_————
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K—-1
min E(zg) + E L (zy, ug
T0,T1 -+, TK (zx) (@, uk)
Simultaneous UQ, UL 5--- U — 1 k=0

approach

Sequential approach subject to Tpy1 — f ($k7 uk‘ez) =0, k=0,1,...,K—1

7 (z0,2x) =0
We define the equality constraint function g((w) by joining all the equality constraints

[ g1 (w)

g2 (w)
g(w) =
Ly, (w)

z1 — f (20, wo)
w2 — f (21, 11)

zx — f (T —1, UK —1)

L 7 (20, Tk ) J

((KXNg)+Np)x1
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K—-1
min E(zx) + E L (zp, ug
TO L] -y TK ( K) ( ks k)
Simultaneous UQ, UL 5 UK 1 k=0
approach

ooy e subject to @41 — f (@, ukl0s) =0, k=0,1,..., K —1

r(z0,zx) =0
We define the Lagrangian function (objective function and equality constraints, £(w, X))

L(w,\) = f(w) +ATg (w)

The Ny = (K x N;) + N; equality multipliers can be any real numbers Ang

A=A, A2, Ak, Ak, AN,
~~ -

Boundaries

Dynamics
First-order optimality is given by the KKT conditions

Vol (w,)\) =0
g(w)=0
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Problem formulations | Simultaneous approach (cont.)

z1 — f (70, uo)
22 — f (@1, w1)

op — [ (Th—1, uk—1)
MoAz - M o Axo1r Ak | Aw]

AT tx 1 — f (K2, uK_2)
o —f (T —1, uK 1)

7 (20, Tk )

g(w)

After expanding the terms in the inner product, we re-write the Lagrangian function

L(w,\) =

K-1 K-1
E (k) + > L(wg,u)+ (Z A1 (F (s we) — @g1) +>\1T/,.T(IO7$K)>
k=0 k=0

f(w) ATg(w)
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Problem formulations | Simultaneous approach (cont.)

Consider one, at any time k =1,2,..., K — 1, of the dynamic (equality) constraints

Tpq1 — f (o, up) =0

After expanding these equality constraints, more explicitly we have

:rl%_)l — fi (xg, ug) i 0
~73]£+)1 —f (mkauk) 0
o) — fo, (zwm) | = [0
z;gf“ll_vl) — g —1 (o, ur,) 8
by = I, (o0, ur) -

Nzx1
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Consider the associated inner product with the corresponding equality multiplier,
Simultaneous
T
e N1 (F (@, ug) — opg1)
Sequential approach
1X Ny Nz x1
1x1

After expanding the inner product, more explicitly we have

[ z,&)l—ﬁ (1, ur,)
xé?l — fa (@, ur)
1 2 g Ny—1 N, ng '
|:)‘§c-£1 )‘;le )‘I(c+1) )‘I(c+1 ) )‘I(c+1):| $;£+1)*nt (2, ur)
1X N,
xlgﬁi_l) — Iy —1 (zk, up)
a:(Nz) — fu (
k1 Ny Tge, Up)

Ny x1
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Similarly, consider the boundary constraint on the initial ad terminal state

Simultaneous T (a:o, $K) =0

approach

Sequential approach

After expanding also these equality constraints, more explicitly we have

- :1;0(1) —fél) -
270(2) _582)

2{Ne) _ 5o

r (70, 2N) =
PRCONIE1C)
zKQ) —EI?)

oo _ (o) |

N, x1
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Consider the inner product /\ITJTT (20, zi ) with the corresponding equality multiplier,

Simultaneous
approach

T
AN, 7 (20, 7K )
~~
1xN, Nrx1

[ ——
1x1

Sequential approach

After expanding the inner product, we have

- wél) —f(()l) -
35(52) _ 562)

2N _ z(e)

1 1 Ny Ny+1 Ny+2 2N,
PR A g ]
LX N, 2 71

a:gQ) — Eg)

o) L 00

Ny x1
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Putting things together, the Lagrangian function for equality constrained problems

Simultaneous
approach

Sequential approach

71 — f (20, uo0)
Nz x1
22 — f (21, u1)
Nz x1

D VA P :
E(w’)\):w—i_ M\i u\ﬁ m M\ﬁr zg — f (-1, uK—1)
Nz x1

)\T

~~
1X ((K X Ng)+Nr)

r (z0, Tx )
Np-x1

g (w)

((K X Ng)+Np)x 1
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Problem formulations | Simultaneous approach (cont.)
Vwl (w,A) =0
g(w)=0

The first KKT condition regards the derivative of £ with respect to the primal variables

w = (20, U0, T1, U1, ..., TK—1, UK —1, TK )

The Lagrangian function £(w, \) in structural (expanded) form,

K—1 K—1
E (zx) + Z L (zp, ug) + <Z )\;CTH (f (@, up) — Tpg1) + /\17\;7,7’(130,$K)>
k=0 k=0

f(w) AT g(w)

L(w,\)

The second KKT condition collects all the equality constraints

zpp1 — f (2, w) =0 (k=0,...,K—1)
r(20,25) =0
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Problem formulations | Simultaneous approach (cont.)
g9(w) =0

For the second KKT condition, we have the equalities

zk+1—f(zk,uk):0 (kZO,...,K—l)
r(z0,25) =0

That is, in a slightly more expanded form

[ @1 —f(20,u0) ] -0 7
Npx1 Noxl

w2 — f (21, 01) 0
~—
Ny x1 Ny x1

zx — f (wx—1,uk—-1)| | O
Ny x1 Ny x1
r (20, zK) \O/

L Nox1 ] LN, x 1
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Vwl (w,A) =0
Consider the gradient of the Lagrangian function with respect to the primal variables
w = (20, U0, T1, U1, - - - TK —15 UK —1, TK )
It is a concatenation of gradients of £L(w, \), each with respect to a primal variable

Vo £ (w, A)
Vi £ (w, \)

Vi £ (w,\)

Vwl (w,A) =

Voo £ (w, )
Vo £ (w, X)

[ Vg1 £(w, N)]

For the first KKT conditions, it is necessary to determine/evaluate derivatives
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K—

K—1
E (zx) + Z (71, up) + <Z Mo (f (2, wg) — 2pq1) + A,QT(IOJK))
k=0

L(w,\)

Consider the derivatives of the Lagrangian function with respect to state variables

® For k = 0, we have

Af (z0,u0) " ar (z0,2x) "
Vap £ (0,0) = Vi Lo ) + LU0y L0
0
® Forany k=1,...,K — 1, we have
Of (wp, up) ™
Vzk[l(w,)\) = Vsz(fl)k, uk) + ¥/\k+1 — Ak

Oz,

® For k = K, we have

or (zo, :EK)T/\

Vg L(w,\) =V E(zx) — Ak +
[0k

T
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Simultaneous
approach

(xka uk)T

o)
Consider the generic term Vg, £ (w, X) = Vg, L (2, ug) + / 3 Ak+1 — Ak, at k
— Tk

Sequential approach

After expanding the first expression, we have

[OL (w, \)]

89:,51)
oL (w, )

Vo £(w\) = | 0

oL (w, \)
3:r,£N’”)

Nz x1
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af (Ika uk) T
R Vay, L (w, A) = Vi, L(z, ug;) + TMH - Ak
Sequential approach —_———

Consider the derivative of the dynamics f (zy, ux) with respect to state variables zy,

Of (zk, uk)
oxy,

Remember that for the dynamics f (zj, ug), we have the component functions

-fl (z,gl),...,xl(gv’”),uo 1

I (g, ur) = | foy (g:,gl), .. .,xI((NE), uk)

_sz (zlgl), . , II((NI), uk)_
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-fl (-73]51)’ s :I[({Nz)v Uk) |

Simultaneous
approach

Ssmeni EupRaa (1) (Nz) _ (1) (Ng)
R f(ack oo Ty sug ) = | e (T T T T up

1 Ny
|/, (z;ﬁ ),~--7l’1(< ),uk)_
Thus, we have the corresponding component terms for the derivative of the dynamics

[ of (m,gl),...,x,iNz),uk) ]
oxy,

of (a:lgl), A IISNI), uk) Ofn, (I;Sl)» ) 7 I,IENI), Uk)

sz Bxk

Ofn, (z,il), R m,ENZ), uk>
L Dy i
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After further expanding the expression to highlight all of its terms, we have

A [ Of (@, we) O (w,w)  Ofi (wk, ur) T
Sequential approach 895(1) 61152) am(NT
of (Ik, ug)  Of2 (zg, ug) Of2 (@m uy,)
1o) s 2 e T4 (N
f (x, ur) — 8&0,51) 61,5 ) 8z,§ )
oxy,
Ofn, (o, wr)  Ofn, (aw,we) — Of, (zk, up)
1 2 .
L Bacli ) 8x]£ ) 6x]£ ) ]
Ny X Ny

For the inner product with the associated equality multiplier, we get

af (zkz uk)T
7)\1%‘,»1
Oy, N~

~M———— N, x1
Nz X Ny

Ny x1
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Problem formulations | Simultaneous approach (cont.)

Af (zo, w T or (zo,

Vo £ (w, A) = Vi L (w0, u0) + f (@0, u0) "y - Or (@0, k)
Oxo Oxo

—_————

Consider the derivatives of the boundary conditions with respect to zp

or (20, Tx )
Oxg

or (xop, T
Vg £ (w,\) = Var E (2x) — Aic + or (@0, ex)” \
Ok

-

Consider the derivatives of the boundary conditions with respect to zx

or (zo, Tk )
Ok
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Siale e Remember that for the boundary constraints on the initial ad terminal state, we have
approac
Sequential approach
ro (1 _ =) 1
o)t
To "~ %o

o) _ )

r (20, 2K) =
(1) _ ()

K

x

o) _ (o) |

N, x1
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Problem formulations | Simultaneous approach (cont.)

For the derivative of the boundary constraints with respect to zp, we have

ory (xél), :1:(52), e ID(NI),[EK) |
Oz
Ory (x(gD, z(gQ), e a:éNI),xK)
Oxg
orn, (:L‘él), xéQ), e xéN’”), zK)
or (a:él),zé2)7...,zéNw),wK) Oxo
(. —
Oxo
OTN, +1 (zél), zéQ), R zéN”), zK)
dz0 N
OTN, +2 (mél), zé ), TN :r(g ’), xK)
Oxo
oran, (zél),a:(EQ), R zéNw), mK)

Oz |
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Problem formulations | Simultaneous approach (cont.)

After further expanding the expression to highlight all of its terms, we have

[ Or1 (20, 2K) ory (20, zK )
8xé1> 8x(§2)
dry (70, zx) 2 (20, T )
Or(@,a) _ | gD oug”

Oxg

dran, (70, Ty)

dran, (w0, Tx )

Bx(gn

81:52)

or1 (20, zK) ]

Ba:éNI)
Ora (20, TK)

BacéN")

dran, (w0, Tx )

Ba:éN")

2Ny X Ny

For the inner product with the associated equality multiplier, we get

or (zo, xK)T

AN,
Oxg ~—
2N, x1
Ny X 2N,

Nz x1
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Similarly, for the derivative of the boundary constraints with respect to zx, we get

Simultaneous

e [ Or1 (20, 2K) or1 (0, Tx ) or1 (z0, zx) ]
Soauentiel approach 8:261({1) 8x§(2) 8x(Nz‘
Or2 (%0, Tk ) Orz (20, Tk ) dra (zo, Tr)
or s 1 2 T T4 (Ng)
(20, k) _ oz 8z Bz
Oz
Oron, (z0,7;)  Oman, (@0, TK) - Onay, (20, K )
L 835}((1) 8z§(2) 8z§(N’) ]
2N, X Ny

For the inner product with the associated equality multiplier, we get

ar (zo, zx) "

AN,
(k% ~
2N, x1
Nz X2N,

Ng X1
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Simultaneous
approach

Sequential approach

K- K-1
E(zk) + Z (T, u) + <Z At (f (o ug) — ogn) + Af;j(ﬂ:o&}())
k=0 k=0

L(w,\)

The derivatives of the Lagrangian function with respect to the control variables wuy,
® For any £k =0,..., K — 1, we have

af (s, w) "

Ve £ (w,\) = YV, L (zg, ug) + Dur

Ak+1
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Simultaneous
approach

Sequential approach

Problem formulations | Simultaneous approach (cont.)

VLl (w,A) =0
g(w)=0

We can collect all the KKT conditions and solve them using a Newton-type method

® The approach solves the problem in the full space of the decision variables
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Problem formulations | Simultaneous approach (cont.)

The approach can be extended to more general discrete-time optimal control problems

Simultaneous
approach .
min
TO,T1 5 TR
UQ, UL 5e s UK — 1

Sequential approach

subject to

K—1
E(zk)+ Y Li (zh, w)
k=0
Tpy1 — fr (@, up|0z) = 0, k=
by (zx, ur) <0,
K—1

Ri (zx) + Y 7k (ax,up) =0
k=0

hi (zx) <0

All problem functions are explicitly time-varying and we have also a terminal inequality

® Moreover, the boundary conditions are expressed in general form

By collecting all variables in the vector w, we have the complete Lagrangian function

L (w,\ 1) = f (w) +ATg (w) + p"h (w)



The sequential approach

Problem formulations
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P

o uff’dfr,ll.l’.i‘.?df{il B (zx) + I;::O L (a, uk)

Soaentinl appronch subject t0 Ts1 — f (o, upl0a) =0, k= 0,1,... K —1
h (zy, ug) <0, k=0,1,..., K —1
7 (z0,zn) =0

The sequential approach solves the same task, in a reduced space of decision variables

The idea is to eliminate all the state variables x1, z2, ..., 2x by a forward-simulation
o = 0o
z1 = f (20, uo0)
x2 = f (21, u1)
= f(f (20, u0) , u1)
= f (22, u2)
f(f(f(on uo) ,u1) , uz)

zx = f (f (f (20, u0) ,u1),u2),..., ux—1)

T (T0,U0,U1,U2,- -, UK 1)
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We can express the states as function of the initial condition and previous controls

o = T0
Simultaneou ~~
approach 50(10)

Sequential approach
z1 = f (20, u0)
—
1 (z0,u0)
z2 = f (21, 1)
:f(f (%51‘0)7“1)
—_—
T2 (20,u0,u1)
23 = f (22, u2)
= f (f (f (109 UO) ) ul) ) UQ)

T3 (0,u0,u1,u2)

More generally, the dependence is on all the control variables and the initial condition

To (To, Up, UL, - - -, UK —1)

=10
Try1 (20, w0, u1, ..., ug—1) = f (Te (20, w0, 1, ..., ug—1),ux), k=0,1,...,K—1
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Simultaneot

u K—-1
approach .
min E(x E L(zg,u
Sequential approach TQ LT yee ey TR ( K)+ ( k> k)
UQ, UL yee e UK — 1 k=0

subject to  xk41 —f(:lik,uk‘ez) =0, k=0,1,...,K—-1
h (zx, ug) <0, k=0,1,..., K —1
r(z0,7N) =0

We can re-write the general discrete-time optimal control problem in such reduced form

UQ UL 5eeey UK —1

K-1
IIJ?E(I)H E (EK (z0, w0, u1, .- -, uK,1)> + Z L (ik (z0, u0, u1,. .., uK—1), uk)
k=0

subject to h(Ek(m,u{),ul,...,u;(_l),uk) <0,k=0,1,..., K —1

Il
o

T (IOEK (20, u0, U1, . . ~,UK—1)>
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K—-1
Simultaneous Inw(l)l’l E (EK (1:07 UQ, Ul .- -, uK—l)) + Z L(Ek ($07 UQ, UL, - - -, uK—l) ) uk)
approach U, UL 5ee ey UK — 1 k=0
Sequential approach
subject to  h (Ty (20, uo, v1,...,ux—1),ux) <0,k=0,1,..., K —1
7 (20, TN (20, w0, U1, ..., ug—1)) =0

The objective function, sum of stage costs L (T, ug) and a terminal cost E (Tg)

K-1

> L@k, wm)+ E (k)

k=0

f(w)erR
That is,
L(w0,u0) + L(T1,w1) + -+ L(Tk-1,ux—-1) + B (Tk)

Stage cost is a (potentially nonlinear and time-varying) function of state and controls
The decision variables, K X N, control and N; state variables

(20) U (uo, w1, ..., ux—1)

weERK X Nu+Ng
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Simultaneous

approach

K—1
o pe— n;(i)n E (Tk (zo,uo,u1,...,ux—1)) + Z L (ZTk (20, uo, Ul ..., UK —1), Uk)
UQ,UL 5oy UK —1 k=0
subject to  h (Ty (70, uo, u1, ..., ux—1),ux) <0,k=0,1,..., K — 1
7 (20, TN (70, U0, U1, -+, UK 1)) =0

The equality constraints, the N, boundary conditions

r(20,Tg) =0

g(w)G'RNg

The inequality constraints

h(fk,uk)go (kZO,l,...,K—l)

h(w)ERNL
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K-1
i e min E (T (20, w0, u1,- . uk 1)) + > L(T (20,0, w1, ., ux 1), up)
Sequential approach UQsUL 5 UK —1 k=0
subject to  h (Tg (20, uo, u1,...,ux—1),ux) <0,k=0,1,..., K — 1
(20, TN (70, U0, U1, ..., ux—1)) =0

The Lagrangian function of the problem,

L(w,\p) = f(w) +A"g (w) + p"h(w)

The Karush-Kuhn-Tucker conditions,

Vf (w*) = Vg (w*)A" = Vh (w")u* =0
g(w™) =
h(w*) >0
w20
By by, (W) =0, mp =1,..., Ny
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Simultaneous

approach

Sequential approach

Problem formulations | Sequential approach (cont.)

u [N]

SQP lter: 0 4
1
20 T 0,
o
10 A 0
o o5 1 15 o o5 1 15
0 5 5
5
-10) . A
i 6°
20 5
0 e (5] s I TR 15 % o5 1 s
1me s Time [s] Time [s]
SQP lter: 1 4\/\
’ j
20 z \/\ 6 >
0 k)
10 4 0
o 05 1 15 o 05 1 15
o |
5 5
-10 1. : o)
%\/\// p 0\/\/,
20 5 ;
0 i (5] 8 2 % 05 1 5 % o5 1 15
me |s Time [s] Time [s]
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Simultaneous

approach

Sequential approach

Problem formulations | Sequential approach (cont.)

SQP lter: 16 4
1
20 x 0,
0 D
10 1 4 0 3
— o 05 1 15 2 o o5 1 15 2
7.
[ 1 5
= 5 5
10 g . A
Zg N0 Ow\
20 -5
0 * i 5] 8 2 o5 i s 2 % o5 1 15 2
me |s Time [s] Time [s]

For computational efficiency, it is preferable to use specific structure-exploiting solvers

® Such solvers recognise the sparsity properties of this class of problems
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