$\begin{array}{c} \text{CHEM-E7225} \\ 2024 \end{array}$

Aalto University

Simultaneous approach Sequential approac

Discrete-time optimal control

CHEM-E7225 (was E7195), 2024

Francesco Corona (\neg_\neg)

Chemical and Metallurgical Engineering School of Chemical Engineering

Overview

Formulations Simultaneous approach Sequential approach

To formulate a general discrete-time optimal control problem, we combine the notions on dynamic systems and simulation with the notions on nonlinear programming

 We understand/treat general (discrete-time) optimal control problems as a special form of nonlinear programming and discuss its numerical solution

Formulations Simultaneous approach Sequential approach

Overview (cont.)

Consider a system f which maps an initial state vector x_k onto a final state vector x_{k+1}

• We also consider the presence of a control u_k that affects the transition

$$x_{k+1} = f(x_k, u_k | \theta_x), \quad (k = 0, 1, \dots, K - 1)$$

We consider transitions over an arbitrary time-horizon, from time k = 0 to time k = K

$$0 \cdots 1 \cdots (k-1) \cdots k \cdots (k+1) \cdots (K-1) \cdots K$$

Over said time-horizon, we have the following sequences of state and control variables

- \rightarrow For the controls, we have $\{u_k\}_{k=0}^{K-1}$ with $u_k \in \mathcal{R}^{N_u}$
- \longrightarrow For the states, we have $\{x_k\}_{k=0}^K$ with $x_k \in \mathcal{R}^{N_x}$

For notational simplicity, we used time-invariant dynamics f

• In general, we may have $x_{k+1} = f_k(x_k, u_k | \theta_x)$

Formulations

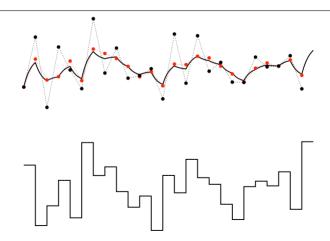
Sequential approx

Overview (cont.)

$$x_{k+1} = f(x_k, u_k | \theta_x), \quad (k = 0, 1, ..., K-1)$$

The dynamics f are often derived from the discretisation of a continuous-time system

• As result of a numerical integration schemes, under piecewise constant controls



2024

Overview (cont.)

$$x_{k+1} = f(x_k, u_k | \theta_x), \quad (k = 0, 1, \dots, K-1)$$

Given an initial state x_0 and some sequence of controls $\{u_k\}_{k=0}^{K-1}$, we know $\{x_k\}_{k=0}^{K}$

The forward-simulation function determines the sequence $\{x_k\}_{k=0}^K$ of visited states

$$f_{\text{sim}}: \mathcal{R}^{N_x + (K \times N_u)} \to \mathcal{R}^{(K+1)N_x}$$

: $(x_0, u_0, u_1, \dots, u_{K-1}) \mapsto (x_0, x_1, \dots, x_K)$

For systems with no special structure, the forward-simulation map is built recursively

$$x_{0} = x_{0}$$

$$x_{1} = f(x_{0}, u_{0} | \theta_{x})$$

$$x_{2} = f(x_{1}, u_{1} | \theta_{x})$$

$$= f(f(x_{0}, u_{0} | \theta_{x}), u_{1} | \theta_{x})$$

$$x_{3} = f(x_{2}, u_{2} | \theta_{x})$$

$$= f(f(f(x_{0}, u_{0} | \theta_{x}), u_{1} | \theta_{x}), u_{2} | \theta_{x})$$

$$\cdots = \cdots$$

Overview (cont.)

Formulations Simultaneous approach

$$x_{k+1} = f(x_k, u_k | \theta_x), \quad (k = 0, 1, \dots, K-1)$$

In optimal control, the dynamics can be used as equality constraints in optimisation

In this case, the initial state vector x_0 is not necessarily known, nor its is fixed

- Therefore, it can be one of the decision variables to be determined
- Moreover, certain additional constraints may be required to it

Similarly, also the final state x_K can be treated as decision variable in an optimisation

'ormulations

Simultaneous approach

Overview (cont.)

Initial and terminal state constraints

We express the constraints on initial and terminal states in terms of function $r(x_0, x_K)$

$$r: \mathcal{R}^{N_x + N_x} \to \mathcal{R}^{N_r}$$

We express the desire to reach certain initial and terminal states as equality constraints

$$r\left(x_{0},x_{K}\right)=0$$

For fixed initial state $x_0 = \overline{x}_0$, we have

$$r(x_0, x_K) = x_0 - \bar{x}_0$$

For fixed terminal state $x_K = \overline{x}_K$, we have

$$r(x_0, x_K) = x_K - \bar{x}_K$$

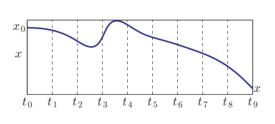
For fixed both initial and terminal states, $x_0 = \overline{x}_0$ and $x_K = \overline{x}_K$, we have

$$r\left(x_{0}, x_{K}\right) = \begin{bmatrix} x_{0} - \bar{x}_{0} \\ x_{K} - \bar{x}_{K} \end{bmatrix}$$

Overview (cont.)

Formulations

Simultaneous approach When both the initial and terminal states are fixed $(x_0 = \overline{x}_0 \text{ and } x_K = \overline{x}_K)$, we have



$$r\left(x_{0}, x_{K}\right) = \underbrace{\begin{bmatrix} x_{0}^{(1)} - \overline{x}_{0}^{(1)} \\ x_{0}^{(2)} - \overline{x}_{0}^{(2)} \\ \vdots \\ x_{0}^{(N_{x})} - \overline{x}_{0}^{(N_{x})} \\ \vdots \\ x_{K}^{(N_{x})} - \overline{x}_{K}^{(N_{x})} \\ \vdots \\ x_{K}^{(2)} - \overline{x}_{K}^{(2)} \\ \vdots \\ x_{K}^{(N_{x})} - \overline{x}_{K}^{(N_{x})} \end{bmatrix}}_{N_{X} \in \mathbb{N}}$$

Formulations Simultaneous approach Sequential approac

Overview (cont.)

Path constraints

We express certain constraints on state and control values x_k and u_k along their path

- These constraints often represent technological restrictions and/or desiderata
- \leadsto They are commonly expressed in terms of inequality constraints
- The main idea is to use them to prevent operational violations

$$h(x_k, u_k) \le 0, \quad k = 0, 1, \dots, K - 1$$

For notational simplicity, we used time-invariant inequality constraint functions h

For common upper and lower bounds on the controls, $u_{\min} \leq u_k \leq u_{\max}$, we have

$$h\left(x_{k}, u_{k}\right) = \begin{bmatrix} u_{k} - u_{\max} \\ u_{\min} - u_{k} \end{bmatrix}$$

For common upper and lower bounds on the states, $x_{\min} \leq x_k \leq x_{\max}$, we have

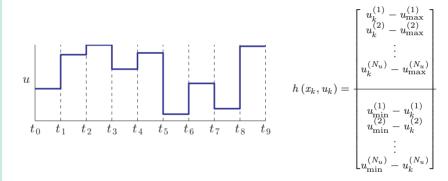
$$h\left(x_{k}, u_{k}\right) = \begin{bmatrix} x_{k} - x_{\max} \\ x_{\min} - x_{k} \end{bmatrix}$$

Overview (cont.)

Formulations

Simultaneous approach Sequential approach

For common upper and lower bounds on the controls, $u_{\min} \geq u_k \geq u_{\max}$, we have



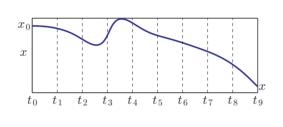
Overview (cont.)

Formulations

Simultaneou

Sequential appro

For common upper and lower bounds on the states, $x_{\min} \geq x_k \geq x_{\max}$, we have



$$h\left(x_{k}, u_{k}\right) = \begin{cases} x_{k}^{(\gamma)} - x_{\max}^{(\gamma)} \\ x_{k}^{(2)} - x_{\max}^{(2)} \\ \vdots \\ x_{k}^{(N)} - x_{\max}^{(N_{x})} \\ x_{\min}^{(1)} - x_{k}^{(1)} \\ x_{\min}^{(2)} - x_{k}^{(2)} \\ \vdots \\ x_{\min}^{(N_{x})} - x_{k}^{(N_{x})} \end{bmatrix}$$

 $\begin{array}{c} \mathrm{CHEM}\text{-}\mathrm{E7225} \\ 2024 \end{array}$

Formulations

approach Sequential approach

Problem formulations

Discrete-time optimal control

Problem formulations

Formulations

Sequential appro

We are given system dynamics and specifications on the state and control constraints

We use them to formulate the discrete-time optimal control problem

• It is a general constrained nonlinear program

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1} \\ \text{Decision variables}}} \underbrace{E\left(x_K\right) + \sum_{k=0}^{K-1} L\left(x_k, u_k\right)}_{\text{Objective function}}$$

$$\sup_{\substack{x_{k+1} - f\left(x_k, u_k \middle| \theta_x\right) = 0, \\ \text{Equality constraints}}} k = 0, 1, \dots, K-1$$

$$\lim_{\substack{x_{k+1} - f\left(x_k, u_k \middle| \theta_x\right) = 0, \\ \text{Equality constraints}}} k = 0, 1, \dots, K-1$$

$$\lim_{\substack{x_{k+1} - f\left(x_k, u_k \middle| \theta_x\right) = 0, \\ \text{Equality constraints}}} k = 0, 1, \dots, K-1$$

Formulations

approach Sequential approac

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$h(x_k, u_k) \le 0, \quad k = 0, 1, \dots, K-1$$

$$r(x_0, x_K) = 0$$

The objective function, in general two terms

$$\sum_{k=0}^{K-1} L(x_k, u_k) + E(x_K)$$

The decision variables, in general two sets

$$x_0, x_1, \dots, x_{K-1}, x_K$$

 u_0, u_1, \dots, u_{K-1}

The equality constraints, in general two sets

$$x_{k+1} - f(x_k, u_k | \theta_x) = 0 \quad (k = 0, ..., K - 1)$$

 $r(x_0, x_K) = 0$

The inequality constraints

$$h(x_k, u_k) \le 0 \quad (k = 0, 1, \dots, K - 1)$$

Problem formulations (cont.)

Formulations

approach Sequential approach

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$h(x_k, u_k) \le 0, \quad k = 0, 1, \dots, K-1$$

$$r(x_0, x_K) = 0$$

The objective function is the sum of all stage costs $L(x_k, u_k)$ and a terminal cost $E(x_K)$

$$\sum_{k=0}^{K-1} L(x_k, u_k) + E(x_K)$$

$$f(w) \in \mathcal{R}$$

That is,

$$L(x_0, u_0) + L(x_1, u_1) + \cdots + L(x_{K-1}, u_{K-1}) + E(x_K)$$

Stage cost is a (potentially nonlinear and time-varying) function of state and controls. The terminal cost is a (potentially nonlinear and time-varying) function of state

Problem formulations (cont.)

Formulations

Simultaneous approach Sequential approach

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$h(x_k, u_k) \le 0, \quad k = 0, 1, \dots, K-1$$

$$r(x_0, x_K) = 0$$

The decision variables are both the $K \times N_u$ controls and the $(K+1) \times N_x$ state variables

$$\underbrace{\frac{\left(x_0, x_1, \dots, x_{K-1}, x_K\right) \cup \left(u_0, u_1, \dots, u_{K-1}\right)}_{\text{State variables}} \cup \underbrace{\left(u_0, u_1, \dots, u_{K-1}\right)}_{\text{Control variables}}}_{w \in \mathcal{R}^{K \times N_u + (K+1) \times N_x}}$$

Problem formulations (cont.)

Formulations

Simultaneous approach Sequential approach

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$h(x_k, u_k) \le 0, \quad k = 0, 1, \dots, K-1$$

$$r(x_0, x_K) = 0$$

The equality constraints consist of the K dynamics and the N_r boundary conditions

$$\underbrace{x_{k+1} - f(x_k, u_k | \theta_x) = 0 \quad (k = 0, \dots, K - 1)}_{g(w) \in \mathcal{R}^{N_g}}$$

The inequality constraints

$$\underbrace{h\left(x_{k}, u_{k}\right) \leq 0 \quad \left(k = 0, 1, \dots, K - 1\right)}_{h\left(w\right) \in \mathcal{R}^{N_{h}}}$$

Problem formulations (cont.)

Formulations

Simultaneous approach Sequential approach

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$h(x_k, u_k) \le 0, \quad k = 0, 1, \dots, K-1$$

$$r(x_0, x_K) = 0$$

The discrete-time optimal control problem is a potentially very large nonlinear program

• In principle, its solution can be approached using any generic NLP solver

We introduce the two approaches used to solve discrete-time optimal control problems

- → The simultaneous approach
- → The sequential approach

 $\begin{array}{c} \mathrm{CHEM}\text{-}\mathrm{E7225} \\ 2024 \end{array}$

Formulations

Simultaneous approach

The simultaneous approach

Problem formulations

Formulations Simultaneous approach

Problem formulations | Simultaneous approach

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$h(x_k, u_k) \le 0, \quad k = 0, 1, \dots, K-1$$

$$r(x_0, x_K) = 0$$

The simultaneous approach solves the problem in the space of all the decision variables

$$w = (x_0, u_0, x_1, u_1, \dots, x_{K-1}, u_{K-1}, x_K)$$

Thus, there are $(K \times N_u) + ((K+1) \times N_x)$ decision variables

Problem formulations | Simultaneous approach

Formulations
Simultaneous

The Lagrangian function of the problem,

$$\mathcal{L}(w, \lambda, \mu) = f(w) + \lambda^{T} g(w) + \mu^{T} h(w)$$

The Karush-Kuhn-Tucker conditions,

$$\nabla f(w^*) + \nabla g(w^*)\lambda^* + \nabla h(w^*)\mu^* = 0$$

$$g(w^*) = 0$$

$$h(w^*) \le 0$$

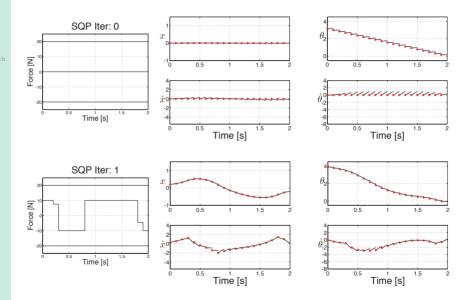
$$\mu^* \ge 0$$

$$\mu_{n_h}^* h_{n_h}(w^*) = 0, \quad n_h = 1, \dots, N_h$$

If point $w^* = (x_0^*, u_0^*, \dots, x_{K-1}^*, u_{K-1}^*, x_K^*)$ is a local minimiser of the nonlinear program and if LICQ holds at w^* , there there exist two vectors, the Lagrange multipliers $\lambda \in \mathcal{R}^{N_g}$ and $\mu \in \mathcal{R}^{N_h}$, such that the Karhush-Kuhn-Tucker conditions are verified

Problem formulations | Simultaneous approach (cont.)

Formulations
Simultaneous
approach
Sequential appro

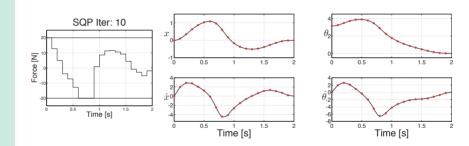


Problem formulations | Simultaneous approach (cont.)

Formulations

 $\begin{array}{c} {\rm Simultaneous} \\ {\rm approach} \end{array}$

Sequential appr



Problem formulations | Simultaneous approach (cont.)

Formulations
Simultaneous

Sequential appro

To understand more closely the structure and sparsity properties, consider an example

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$r(x_0, x_K) = 0$$

We consider a discrete-time optimal control problem with no inequality constraints

• (The inequality constraints are omitted for notational simplicity)

The objective function $f(w) = E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$ of the decision variables

$$w = \left(\underbrace{x_0, u_0}, \underbrace{x_1, u_1}, \dots, \underbrace{x_{K-1}, u_{K-1}}, \underbrace{x_K}\right)$$

Simultaneous approach

Problem formulations | Simultaneous approach (cont.)

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$\underbrace{x_{k+1} - f(x_k, u_k | \theta_x) = 0}_{T(x_0, x_K) = 0}, \quad k = 0, 1, \dots, K-1$$

We define the equality constraint function g(w) by joining all the equality constraints

$$g(w) = \begin{bmatrix} g_1(w) \\ g_2(w) \\ \vdots \\ g_{N_g}(w) \end{bmatrix}$$

$$= \begin{bmatrix} x_1 - f(x_0, u_0) \\ x_2 - f(x_1, u_1) \\ \vdots \\ x_K - f(x_{K-1}, u_{K-1}) \end{bmatrix}$$

$$r(x_0, x_K)$$

$$((K \times N_x) + N_r) \times 1$$

Formulations Simultaneous approach

Problem formulations | Simultaneous approach (cont.)

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}} } E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
 subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$r(x_0, x_K) = 0$$

We define the Lagrangian function (objective function and equality constraints, $\mathcal{L}(w,\lambda)$)

$$\mathcal{L}(w,\lambda) = f(w) + \lambda^{T} g(w)$$

The $N_g = (K \times N_x) + N_r$ equality multipliers can be any real numbers λ_{n_g}

$$\lambda = \left(\underbrace{\lambda_1, \lambda_2, \dots, \lambda_k, \dots, \lambda_K}_{\text{Dynamics}}, \underbrace{\lambda_{N_r}}_{\text{Boundaries}}\right)$$

First-order optimality is given by the KKT conditions

$$\nabla_{w} \mathcal{L}(w, \lambda) = 0$$
$$g(w) = 0$$

Problem formulations | Simultaneous approach (cont.)

Formulations
Simultaneous
approach
Sequential approach

$$\underbrace{ \begin{bmatrix} \lambda_{1} & \lambda_{2} & \cdots & \lambda_{k} & \cdots & \lambda_{K-1} & \lambda_{K} & | & \lambda_{N_{r}} \end{bmatrix} }_{\lambda^{T}} \underbrace{ \begin{bmatrix} x_{1} - f(x_{0}, u_{0}) \\ x_{2} - f(x_{1}, u_{1}) \\ \vdots \\ x_{k} - f(x_{k-1}, u_{k-1}) \\ \vdots \\ x_{K-1} - f(x_{K-2}, u_{K-2}) \\ x_{K} - f(x_{K-1}, u_{K-1}) \end{bmatrix} }_{g(w)}$$

After expanding the terms in the inner product, we re-write the Lagrangian function

$$\mathcal{L}(w,\lambda) = \underbrace{E(x_{K}) + \sum_{k=0}^{K-1} L(x_{k}, u_{k})}_{f(w)} + \underbrace{\left(\sum_{k=0}^{K-1} \lambda_{k+1}^{T} (f(x_{k}, u_{k}) - x_{k+1}) + \lambda_{N_{r}}^{T} r(x_{0}, x_{K})\right)}_{\lambda^{T} q(w)}$$

Problem formulations | Simultaneous approach (cont.)

Formulations
Simultaneous
approach

Consider one, at any time k = 1, 2, ..., K - 1, of the dynamic (equality) constraints

$$x_{k+1} - f\left(x_k, u_k\right) = 0$$

After expanding these equality constraints, more explicitly we have

$$\underbrace{ \begin{bmatrix} x_{k+1}^{(1)} - f_1\left(x_k, u_k\right) \\ x_{k+1}^{(2)} - f_2\left(x_k, u_k\right) \\ \vdots \\ x_{k+1}^{(n_x)} - f_{n_x}\left(x_k, u_k\right) \\ \vdots \\ x_{k+1}^{(N_x-1)} - f_{N_x-1}\left(x_k, u_k\right) \\ x_{k+1}^{(N_x)} - f_{N_x}\left(x_k, u_k\right) \end{bmatrix}}_{N_x \times 1} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

Formulations

approach Sequential appro

Problem formulations | Simultaneous approach (cont.)

Consider the associated inner product with the corresponding equality multiplier,

$$\underbrace{\lambda_{k+1}^{T}}_{1 \times N_x} \underbrace{\left(f\left(x_k, u_k\right) - x_{k+1}\right)}_{1 \times 1}$$

After expanding the inner product, more explicitly we have

$$\underbrace{\begin{bmatrix} \lambda_{k+1}^{(1)} & \lambda_{k+1}^{(2)} & \cdots & \lambda_{k+1}^{(n_x)} & \cdots & \lambda_{k+1}^{(N_x-1)} & \lambda_{k+1}^{(N_x)} \end{bmatrix}}_{1 \times N_x} = \underbrace{\begin{bmatrix} x_{k+1}^{(1)} - f_1(x_k, u_k) \\ x_{k+1}^{(2)} - f_2(x_k, u_k) \\ \vdots \\ x_{k+1}^{(n_x)} - f_{n_x}(x_k, u_k) \\ \vdots \\ x_{k+1}^{(N_x-1)} - f_{N_x}(x_k, u_k) \end{bmatrix}}_{N_x \times 1}$$

Formulations
Simultaneous

Sequential approx

Problem formulations | Simultaneous approach (cont.)

Similarly, consider the boundary constraint on the initial ad terminal state

$$r\left(x_0, x_K\right) = 0$$

After expanding also these equality constraints, more explicitly we have

$$r\left(x_{0}, x_{N}\right) = \underbrace{\begin{bmatrix} x_{0}^{(1)} - \overline{x}_{0}^{(1)} \\ x_{0}^{(2)} - \overline{x}_{0}^{(2)} \\ \vdots \\ x_{0}^{(N_{x})} - \overline{x}_{0}^{(N_{x})} \\ \\ x_{K}^{(1)} - \overline{x}_{K}^{(1)} \\ x_{K}^{(2)} - \overline{x}_{K}^{(2)} \\ \vdots \\ \vdots \\ x_{K}^{(N_{x})} - \overline{x}_{K}^{(N_{x})} \end{bmatrix}}_{N_{r} \times 1}$$

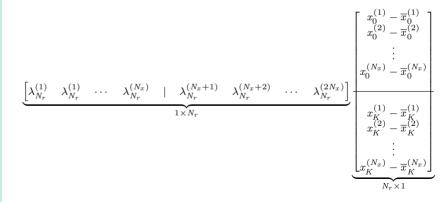
Formulations
Simultaneous
approach
Sequential appros

Problem formulations | Simultaneous approach (cont.)

Consider the inner product $\lambda_{N_r}^T r(x_0, x_K)$ with the corresponding equality multiplier,

$$\underbrace{\lambda_{N_r}^T}_{1 \times N_r} \underbrace{r(x_0, x_K)}_{N_r \times 1}$$

After expanding the inner product, we have



Problem formulations | Simultaneous approach (cont.)

Formulations
Simultaneous

Sequential appro

Putting things together, the Lagrangian function for equality constrained problems

$$\mathcal{L}(w,\lambda) = \underbrace{f(w)}_{1\times 1} + \underbrace{\begin{bmatrix} \lambda_{1} & \lambda_{2} & \dots & \lambda_{K} & \lambda_{N_{r}} \\ 1\times N_{x} & 1\times N_{x} & 1\times N_{r} \end{bmatrix}}_{1\times ((K\times N_{x})+N_{r})} \underbrace{\begin{bmatrix} \underbrace{x_{1}-f(x_{0},u_{0})}_{N_{x}\times 1} \\ \underbrace{x_{2}-f(x_{1},u_{1})}_{N_{x}\times 1} \\ \vdots \\ \underbrace{x_{K}-f(x_{K-1},u_{K-1})}_{N_{x}\times 1} \end{bmatrix}}_{g(w)}$$

Problem formulations | Simultaneous approach (cont.)

Formulations
Simultaneous
approach
Sequential approa

$$\nabla_{w} \mathcal{L}(w, \lambda) = 0$$
$$g(w) = 0$$

The first KKT condition regards the derivative of $\mathcal L$ with respect to the primal variables

$$w = (x_0, u_0, x_1, u_1, \dots, x_{K-1}, u_{K-1}, x_K)$$

The Lagrangian function $\mathcal{L}(w,\lambda)$ in structural (expanded) form,

$$\underbrace{E\left(x_{K}\right) + \sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right)}_{f\left(w\right)} + \underbrace{\left(\sum_{k=0}^{K-1} \lambda_{k+1}^{T}\left(f\left(x_{k}, u_{k}\right) - x_{k+1}\right) + \lambda_{N_{r}}^{T} r\left(x_{0}, x_{K}\right)\right)}_{\lambda^{T} g\left(w\right)}_{\mathcal{L}\left(w, \lambda\right)}$$

The second KKT condition collects all the equality constraints

$$x_{k+1} - f(x_k, u_k) = 0 \quad (k = 0, ..., K - 1)$$

 $r(x_0, x_K) = 0$

T 1.43

Sequential approx

Sequential appro

Problem formulations | Simultaneous approach (cont.)

$$g\left(w\right) = 0$$

For the second KKT condition, we have the equalities

$$x_{k+1} - f(x_k, u_k) = 0 \quad (k = 0, ..., K - 1)$$

 $r(x_0, x_K) = 0$

That is, in a slightly more expanded form

$$\begin{bmatrix}
\underbrace{x_{1} - f(x_{0}, u_{0})}_{N_{x} \times 1} \\
\underbrace{x_{2} - f(x_{1}, u_{1})}_{N_{x} \times 1} \\
\vdots \\
\underbrace{x_{K} - f(x_{K-1}, u_{K-1})}_{N_{x} \times 1}
\end{bmatrix} = \begin{bmatrix}
\underbrace{0}_{N_{x} \times 1} \\
\vdots \\
0}_{N_{x} \times 1} \\
\vdots \\
\underbrace{0}_{N_{x} \times 1}
\end{bmatrix}$$

Problem formulations | Simultaneous approach (cont.)

 $\nabla_{w} \mathcal{L}(w,\lambda) = 0$

Consider the gradient of the Lagrangian function with respect to the primal variables

$$w = (x_0, u_0, x_1, u_1, \dots, x_{K-1}, u_{K-1}, x_K)$$

It is a concatenation of gradients of $\mathcal{L}(w,\lambda)$, each with respect to a primal variable

$$\nabla_{w}\mathcal{L}(w,\lambda) = \begin{bmatrix} \nabla_{x_{0}}\mathcal{L}(w,\lambda) \\ \nabla_{x_{1}}\mathcal{L}(w,\lambda) \\ \vdots \\ \nabla_{x_{K}}\mathcal{L}(w,\lambda) \end{bmatrix}$$
$$\nabla_{w}\mathcal{L}(w,\lambda) = \begin{bmatrix} \nabla_{u_{0}}\mathcal{L}(w,\lambda) \\ \nabla_{u_{1}}\mathcal{L}(w,\lambda) \\ \vdots \\ \nabla_{u_{K-1}}\mathcal{L}(w,\lambda) \end{bmatrix}$$

For the first KKT conditions, it is necessary to determine/evaluate derivatives

Simultaneous

approach

Problem formulations | Simultaneous approach (cont.)

$$\underbrace{E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k) + \left(\sum_{k=0}^{K-1} \lambda_{k+1}^T (f(x_k, u_k) - x_{k+1}) + \lambda_{N_r}^T r(x_0, x_K)\right)}_{\mathcal{L}(w, \lambda)}$$

Consider the derivatives of the Lagrangian function with respect to state variables x_k

• For k = 0, we have

$$\nabla_{x_0} \mathcal{L}\left(w, \lambda\right) = \nabla_{x_0} L\left(x_0, u_0\right) + \frac{\partial f\left(x_0, u_0\right)^T}{\partial x_0} \lambda_1 + \frac{\partial r\left(x_0, x_K\right)^T}{\partial x_0} \lambda_{N_r}$$

• For any $k = 1, \ldots, K - 1$, we have

$$abla_{x_k} \mathcal{L}(w, \lambda) =
abla_{x_k} L(x_k, u_k) + \frac{\partial f(x_k, u_k)^T}{\partial x_k} \lambda_{k+1} - \lambda_k$$

• For k = K, we have

$$\nabla_{x_K} \mathcal{L}(w, \lambda) = \nabla_{x_K} E(x_K) - \lambda_K + \frac{\partial r(x_0, x_K)^T}{\partial x_K} \lambda_{N_r}$$

Problem formulations | Simultaneous approach (cont.)

Simultaneous approach

Consider the generic term $\nabla_{x_k} \mathcal{L}(w, \lambda) = \underbrace{\nabla_{x_k} L(x_k, u_k)} + \frac{\partial f(x_k, u_k)^T}{\partial x_k} \lambda_{k+1} - \lambda_k$, at k

After expanding the first expression, we have

$$\nabla_{x_{k}}\mathcal{L}\left(w,\lambda\right) = \underbrace{\begin{bmatrix} \frac{\partial\mathcal{L}\left(w,\lambda\right)}{\partial x_{k}^{(1)}} \\ \frac{\partial\mathcal{L}\left(w,\lambda\right)}{\partial x_{k}^{(2)}} \\ \vdots \\ \frac{\partial\mathcal{L}\left(w,\lambda\right)}{\partial x_{k}^{(N_{x})}} \end{bmatrix}}_{N_{x}\times1}$$

Simultaneous approach

Problem formulations | Simultaneous approach (cont.)

$$\nabla_{x_{k}} \mathcal{L}(w, \lambda) = \nabla_{x_{k}} L(x_{k}, u_{k}) + \underbrace{\frac{\partial f(x_{k}, u_{k})^{T}}{\partial x_{k}}}_{\lambda_{k+1} - \lambda_{k}}$$

Consider the derivative of the dynamics $f(x_k, u_k)$ with respect to state variables x_k ,

$$\frac{\partial f\left(x_k, u_k\right)}{\partial x_k}$$

Remember that for the dynamics $f(x_k, u_k)$, we have the component functions

$$f(x_k, u_k) = \begin{bmatrix} f_1\left(x_k^{(1)}, \dots, x_K^{(N_x)}, u_k\right) \\ \vdots \\ f_{n_x}\left(x_k^{(1)}, \dots, x_K^{(N_x)}, u_k\right) \\ \vdots \\ f_{N_x}\left(x_k^{(1)}, \dots, x_K^{(N_x)}, u_k\right) \end{bmatrix}$$

EM-E7225 2024

Problem formulations | Simultaneous approach (cont.)

Formulations
Simultaneous
approach
Sequential approach

$$f\left(x_{k}^{(1)}, \dots, x_{k}^{(N_{x})}, u_{k}\right) = \begin{bmatrix} f_{1}\left(x_{k}^{(1)}, \dots, x_{K}^{(N_{x})}, u_{k}\right) \\ \vdots \\ f_{n_{x}}\left(x_{k}^{(1)}, \dots, x_{K}^{(N_{x})}, u_{k}\right) \\ \vdots \\ f_{N_{x}}\left(x_{k}^{(1)}, \dots, x_{K}^{(N_{x})}, u_{k}\right) \end{bmatrix}$$

Thus, we have the corresponding component terms for the derivative of the dynamics

$$\frac{\partial f\left(x_{k}^{(1)},\ldots,x_{k}^{(N_{x})},u_{k}\right)}{\partial x_{k}} = \begin{bmatrix} \frac{\partial f_{1}\left(x_{k}^{(1)},\ldots,x_{k}^{(N_{x})},u_{k}\right)}{\partial x_{k}} \\ \vdots \\ \frac{\partial f_{n_{x}}\left(x_{k}^{(1)},\ldots,x_{k}^{(N_{x})},u_{k}\right)}{\partial x_{k}} \\ \vdots \\ \frac{\partial f_{N_{x}}\left(x_{k}^{(1)},\ldots,x_{k}^{(N_{x})},u_{k}\right)}{\partial x_{k}} \end{bmatrix}$$

Formulations
Simultaneous

approach Sequential app Problem formulations | Simultaneous approach (cont.)

After further expanding the expression to highlight all of its terms, we have

$$\frac{\partial f\left(x_{k},u_{k}\right)}{\partial x_{k}} = \underbrace{\begin{bmatrix} \frac{\partial f_{1}\left(x_{k},u_{k}\right)}{\partial x_{k}^{(1)}} & \frac{\partial f_{1}\left(x_{k},u_{k}\right)}{\partial x_{k}^{(2)}} & \cdots & \frac{\partial f_{1}\left(x_{k},u_{k}\right)}{\partial x_{k}^{(N_{x})}} \\ \frac{\partial f_{2}\left(x_{k},u_{k}\right)}{\partial x_{k}^{(1)}} & \frac{\partial f_{2}\left(x_{k},u_{k}\right)}{\partial x_{k}^{(2)}} & \cdots & \frac{\partial f_{2}\left(x_{k},u_{k}\right)}{\partial x_{k}^{(N_{x})}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{N_{x}}\left(x_{k},u_{k}\right)}{\partial x_{k}^{(1)}} & \frac{\partial f_{N_{x}}\left(x_{k},u_{k}\right)}{\partial x_{k}^{(2)}} & \cdots & \frac{\partial f_{N_{x}}\left(x_{k},u_{k}\right)}{\partial x_{k}^{(N_{x})}} \end{bmatrix}}_{N_{x} \times N_{x}}$$

For the inner product with the associated equality multiplier, we get

$$\underbrace{\frac{\partial f\left(x_{k}, u_{k}\right)^{T}}{\partial x_{k}}}_{N_{x} \times N_{x}} \underbrace{\lambda_{k+1}}_{N_{x} \times 1}$$

Problem formulations | Simultaneous approach (cont.)

Formulations
Simultaneous
approach
Sequential approach

$$\nabla_{x_{0}} \mathcal{L}\left(w,\lambda\right) = \nabla_{x_{0}} L\left(x_{0},u_{0}\right) + \frac{\partial f\left(x_{0},u_{0}\right)^{T}}{\partial x_{0}} \lambda_{1} + \underbrace{\frac{\partial r\left(x_{0},x_{K}\right)^{T}}{\partial x_{0}}}_{\lambda_{N_{r}}} \lambda_{N_{r}}$$

Consider the derivatives of the boundary conditions with respect to x_0

~~

$$\frac{\partial r\left(x_{0},x_{K}\right)}{\partial x_{0}}$$

$$\nabla_{x_{K}} \mathcal{L}(w, \lambda) = \nabla_{x_{K}} E(x_{K}) - \lambda_{K} + \frac{\partial r(x_{0}, x_{K})^{T}}{\partial x_{K}} \lambda_{N_{r}}$$

Consider the derivatives of the boundary conditions with respect to x_K

~→

$$\frac{\partial r\left(x_0, x_K\right)}{\partial x_K}$$

Formulations
Simultaneous

approach Sequential approa Remember that for the boundary constraints on the initial ad terminal state, we have

$$r\left(x_{0}, x_{K}\right) = \underbrace{\begin{bmatrix} x_{0}^{(1)} - \overline{x}_{0}^{(1)} \\ x_{0}^{(2)} - \overline{x}_{0}^{(2)} \\ \vdots \\ x_{0}^{(N_{x})} - \overline{x}_{0}^{(N_{x})} \\ \\ x_{0}^{(N_{x})} - \overline{x}_{0}^{(N_{x})} \end{bmatrix}}_{X_{K}^{(N_{x})} - \overline{x}_{K}^{(N_{x})}}$$

2024

Simultaneous approach

Problem formulations | Simultaneous approach (cont.)

For the derivative of the boundary constraints with respect to x_0 , we have

$$\frac{\partial r_1\left(x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(N_x)}, x_K\right)}{\partial x_0} = \begin{bmatrix} \frac{\partial r_1\left(x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(N_x)}, x_K\right)}{\partial x_0} \\ \frac{\partial r_2\left(x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(N_x)}, x_K\right)}{\partial x_0} \\ \vdots \\ \frac{\partial r_{N_x}\left(x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(N_x)}, x_K\right)}{\partial x_0} \\ \frac{\partial r_{N_x+1}\left(x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(N_x)}, x_K\right)}{\partial x_0} \\ \frac{\partial r_{N_x+2}\left(x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(N_x)}, x_K\right)}{\partial x_0} \\ \vdots \\ \frac{\partial r_{2N_x}\left(x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(N_x)}, x_K\right)}{\partial x_0} \end{bmatrix}$$

Simultaneous approach

Problem formulations | Simultaneous approach (cont.)

After further expanding the expression to highlight all of its terms, we have

$$\frac{\partial r\left(x_{0},x_{K}\right)}{\partial x_{0}} = \underbrace{\begin{bmatrix} \frac{\partial r_{1}\left(x_{0},x_{K}\right)}{\partial x_{0}^{(1)}} & \frac{\partial r_{1}\left(x_{0},x_{K}\right)}{\partial x_{0}^{(2)}} & \cdots & \frac{\partial r_{1}\left(x_{0},x_{K}\right)}{\partial x_{0}^{(N_{x})}} \\ \frac{\partial r_{2}\left(x_{0},x_{K}\right)}{\partial x_{0}^{(1)}} & \frac{\partial r_{2}\left(x_{0},x_{K}\right)}{\partial x_{0}^{(2)}} & \cdots & \frac{\partial r_{2}\left(x_{0},x_{K}\right)}{\partial x_{0}^{(N_{x})}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial r_{2N_{r}}\left(x_{0},x_{K}\right)}{\partial x_{0}^{(1)}} & \frac{\partial r_{2N_{r}}\left(x_{0},x_{K}\right)}{\partial x_{0}^{(2)}} & \cdots & \frac{\partial r_{2N_{r}}\left(x_{0},x_{K}\right)}{\partial x_{0}^{(N_{x})}} \end{bmatrix}}_{2N_{r}\times N_{x}}$$

For the inner product with the associated equality multiplier, we get

$$\underbrace{\frac{\partial r\left(x_{0}, x_{K}\right)^{T}}{\partial x_{0}}}_{N_{x} \times 2N_{r}} \underbrace{\frac{\lambda_{N_{r}}}{2N_{r} \times 1}}_{N_{r} \times 1}$$

Formulations Simultaneous approach

Sequential appr

Problem formulations | Simultaneous approach (cont.)

Similarly, for the derivative of the boundary constraints with respect to x_K , we get

$$\frac{\partial r\left(x_{0},x_{K}\right)}{\partial x_{K}} = \underbrace{\begin{bmatrix} \frac{\partial r_{1}\left(x_{0},x_{K}\right)}{\partial x_{K}^{(1)}} & \frac{\partial r_{1}\left(x_{0},x_{K}\right)}{\partial x_{K}^{(2)}} & \cdots & \frac{\partial r_{1}\left(x_{0},x_{K}\right)}{\partial x_{K}^{(N_{x})}} \\ \frac{\partial r_{2}\left(x_{0},x_{K}\right)}{\partial x_{K}^{(1)}} & \frac{\partial r_{2}\left(x_{0},x_{K}\right)}{\partial x_{K}^{(2)}} & \cdots & \frac{\partial r_{2}\left(x_{0},x_{K}\right)}{\partial x_{K}^{(N_{x})}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial r_{2N_{r}}\left(x_{0},x_{k}\right)}{\partial x_{K}^{(1)}} & \frac{\partial r_{2N_{r}}\left(x_{0},x_{K}\right)}{\partial x_{K}^{(2)}} & \cdots & \frac{\partial r_{2N_{r}}\left(x_{0},x_{K}\right)}{\partial x_{K}^{(N_{x})}} \\ \frac{\partial r_{2N_{r}}\left(x_{0},x_{K}\right)}{\partial x_{K}^{(1)}} & \frac{\partial r_{2N_{r}}\left(x_{0},x_{K}\right)}{\partial x_{K}^{(2)}} & \cdots & \frac{\partial r_{2N_{r}}\left(x_{0},x_{K}\right)}{\partial x_{K}^{(N_{x})}} \end{bmatrix}}$$

For the inner product with the associated equality multiplier, we get

$$\underbrace{\frac{\partial r\left(x_{0}, x_{K}\right)^{T}}{\partial x_{K}}}_{N_{x} \times 2N_{r}} \underbrace{\frac{\lambda_{N_{r}}}{2N_{r} \times 1}}_{2N_{r} \times 1}$$

Problem formulations | Simultaneous approach (cont.)

Formulations
Simultaneous
approach
Sequential approacl

$$\underbrace{E\left(x_{K}\right) + \sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) + \left(\sum_{k=0}^{K-1} \lambda_{k+1}^{T} \left(f\left(x_{k}, u_{k}\right) - x_{k+1}\right) + \lambda_{N_{r}}^{T} r\left(x_{0}, x_{K}\right)\right)}_{\mathcal{L}\left(w, \lambda\right)}$$

The derivatives of the Lagrangian function with respect to the control variables u_k

• For any $k = 0, \ldots, K - 1$, we have

$$\nabla_{u_k} \mathcal{L}(w, \lambda) = \nabla_{u_k} L(x_k, u_k) + \frac{\partial f(x_k, u_k)^T}{\partial u_k} \lambda_{k+1}$$

Problem formulations | Simultaneous approach (cont.)

Formulations
Simultaneous
approach
Sequential approacl

$$\nabla_{w} \mathcal{L}(w, \lambda) = 0$$
$$g(w) = 0$$

We can collect all the KKT conditions and solve them using a Newton-type method

• The approach solves the problem in the full space of the decision variables

Formulations

approach Sequential appro

Problem formulations | Simultaneous approach (cont.)

The approach can be extended to more general discrete-time optimal control problems

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L_k(x_k, u_k)$$
subject to
$$x_{k+1} - f_k(x_k, u_k | \theta_x) = 0, \qquad k = 0, 1, \dots, K-1$$

$$h_k(x_k, u_k) \le 0, \qquad k = 0, 1, \dots, K-1$$

$$R_K(x_K) + \sum_{k=0}^{K-1} r_k(x_k, u_k) = 0$$

$$h_K(x_K) \le 0$$

All problem functions are explicitly time-varying and we have also a terminal inequality

• Moreover, the boundary conditions are expressed in general form

By collecting all variables in the vector w, we have the complete Lagrangian function

$$\mathcal{L}(w, \lambda, \mu) = f(w) + \lambda^{T} g(w) + \mu^{T} h(w)$$

Formulations

approach
Sequential approach

The sequential approach

Problem formulations

Formulations Simultaneous approach Sequential approach

Problem formulations | Sequential approach

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$h(x_k, u_k) \le 0, \quad k = 0, 1, \dots, K-1$$

$$r(x_0, x_N) = 0$$

The sequential approach solves the same task, in a reduced space of decision variables

The idea is to eliminate all the state variables x_1, x_2, \ldots, x_K by a forward-simulation

$$x_{0} = x_{0}$$

$$x_{1} = f(x_{0}, u_{0})$$

$$x_{2} = f(x_{1}, u_{1})$$

$$= f(f(x_{0}, u_{0}), u_{1})$$

$$x_{3} = f(x_{2}, u_{2})$$

$$= f(f(f(x_{0}, u_{0}), u_{1}), u_{2})$$

$$\cdots = \cdots$$

$$x_{K} = \underbrace{f(f(f(x_{0}, u_{0}), u_{1}), u_{2}), \dots, u_{K-1})}_{\overline{x}_{K}(x_{0}, u_{0}, u_{1}), u_{2}, \dots, u_{K-1})}$$

Formulations
Simultaneous
approach
Sequential approach

Problem formulations | Sequential approach (cont.)

We can express the states as function of the initial condition and previous controls

$$x_{1} = \underbrace{f(x_{0}, u_{0})}_{\overline{x}_{1}(x_{0}, u_{0})}$$

$$x_{2} = f(x_{1}, u_{1})$$

$$= \underbrace{f(f(x_{0}, u_{0}), u_{1})}_{\overline{x}_{2}(x_{0}, u_{0}, u_{1})}$$

$$x_{3} = f(x_{2}, u_{2})$$

$$= \underbrace{f(f(f(x_{0}, u_{0}), u_{1}), u_{2})}_{\overline{x}_{3}(x_{0}, u_{0}, u_{1}, u_{2})}$$

$$\cdots = \cdots$$

More generally, the dependence is on all the control variables and the initial condition

$$\overline{x}_{0}(x_{o}, u_{0}, u_{1}, \dots, u_{K-1}) = x_{0}$$

$$\overline{x}_{k+1}(x_{0}, u_{0}, u_{1}, \dots, u_{K-1}) = f(\overline{x}_{k}(x_{0}, u_{0}, u_{1}, \dots, u_{K-1}), u_{k}), \quad k = 0, 1, \dots, K-1$$

Problem formulations | Sequential approach

Formulations
Simultaneous
approach
Sequential approach

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$h(x_k, u_k) \le 0, \quad k = 0, 1, \dots, K-1$$

$$r(x_0, x_N) = 0$$

We can re-write the general discrete-time optimal control problem in such reduced form

$$\min_{\substack{u_0, u_1, \dots, u_{K-1} \\ u_0, u_1, \dots, u_{K-1}}} E\left(\overline{x}_K\left(x_0, u_0, u_1, \dots, u_{K-1}\right)\right) + \sum_{k=0}^{K-1} L\left(\overline{x}_k\left(x_0, u_0, u_1, \dots, u_{K-1}\right), u_k\right)$$
subject to
$$h\left(\overline{x}_k\left(x_0, u_0, u_1, \dots, u_{K-1}\right), u_k\right) \le 0, k = 0, 1, \dots, K-1$$

$$r\left(x_0, \overline{x}_K\left(x_0, u_0, u_1, \dots, u_{K-1}\right)\right) = 0$$

Problem formulations | Sequential approach (cont.)

Formulations
Simultaneous
approach
Sequential approach

$$\min_{\substack{u_0,u_1,\dots,u_{K-1}\\ \text{subject to}}} E\left(\overline{x}_K\left(x_0,u_0,u_1,\dots,u_{K-1}\right)\right) + \sum_{k=0}^{K-1} L\left(\overline{x}_k\left(x_0,u_0,u_1,\dots,u_{K-1}\right),u_k\right)$$

$$\text{subject to} \quad h\left(\overline{x}_k\left(x_0,u_0,u_1,\dots,u_{K-1}\right),u_k\right) \leq 0, k = 0,1,\dots,K-1$$

$$r\left(x_0,\overline{x}_N\left(x_0,u_0,u_1,\dots,u_{K-1}\right)\right) = 0$$

The objective function, sum of stage costs $L(\overline{x}_k, u_k)$ and a terminal cost $E(\overline{x}_K)$

$$\underbrace{\sum_{k=0}^{K-1} L(\overline{x}_k, u_k) + E(\overline{x}_K)}_{f(w) \in \mathcal{R}}$$

That is,

$$L(x_0, u_0) + L(\overline{x}_1, u_1) + \cdots + L(\overline{x}_{K-1}, u_{K-1}) + E(\overline{x}_K)$$

Stage cost is a (potentially nonlinear and time-varying) function of state and controls

The decision variables, $K \times N_u$ control and N_x state variables

$$\underbrace{(x_0) \cup (u_0, u_1, \dots, u_{K-1})}_{w \in \mathcal{R}^K \times N_u + N_x}$$

Problem formulations | Sequential approach (cont.)

Formulations
Simultaneous
approach
Sequential approach

$$\min_{\substack{u_{0},u_{1},...,u_{K-1}\\ u_{0},u_{1},...,u_{K-1}} } E\left(\overline{x}_{K}\left(x_{0},u_{0},u_{1},...,u_{K-1}\right)\right) + \sum_{k=0}^{K-1} L\left(\overline{x}_{k}\left(x_{0},u_{0},u_{1},...,u_{K-1}\right),u_{k}\right)$$
 subject to
$$h\left(\overline{x}_{k}\left(x_{0},u_{0},u_{1},...,u_{K-1}\right),u_{k}\right) \leq 0, k = 0,1,...,K-1$$

$$r\left(x_{0},\overline{x}_{N}\left(x_{0},u_{0},u_{1},...,u_{K-1}\right)\right) = 0$$

The equality constraints, the N_r boundary conditions

$$\underbrace{r\left(x_0, \overline{x}_K\right) = 0}_{g(w) \in \mathcal{R}^{N_g}}$$

The inequality constraints

$$\underbrace{h\left(\overline{x}_k, u_k\right) \le 0 \quad (k = 0, 1, \dots, K - 1)}_{h(w) \in \mathcal{R}^{N_h}}$$

Problem formulations | Sequential approach (cont.)

Simultaneous approach Sequential approach

$$\min_{\substack{u_0, u_1, \dots, u_{K-1} \\ u_0, v_1, \dots, v_{K-1}}} E\left(\overline{x}_K\left(x_0, u_0, u_1, \dots, u_{K-1}\right)\right) + \sum_{k=0}^{K-1} L\left(\overline{x}_k\left(x_0, u_0, u_1, \dots, u_{K-1}\right), u_k\right) \\
\text{subject to} \quad h\left(\overline{x}_k\left(x_0, u_0, u_1, \dots, u_{K-1}\right), u_k\right) \le 0, k = 0, 1, \dots, K-1 \\
\quad r\left(x_0, \overline{x}_N\left(x_0, u_0, u_1, \dots, u_{K-1}\right)\right) = 0$$

The Lagrangian function of the problem,

$$\mathcal{L}(w, \lambda, \mu) = f(w) + \lambda^{T} g(w) + \mu^{T} h(w)$$

The Karush-Kuhn-Tucker conditions,

$$\nabla f(w^{*}) - \nabla g(w^{*})\lambda^{*} - \nabla h(w^{*})\mu^{*} = 0$$

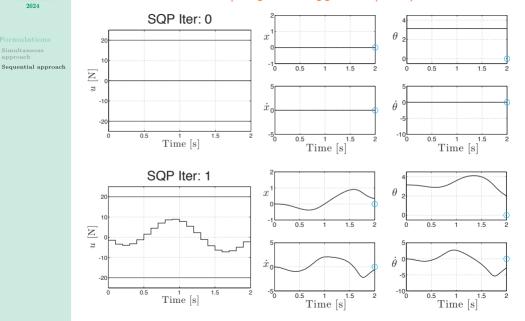
$$g(w^{*}) = 0$$

$$h(w^{*}) \ge 0$$

$$\mu^{*} \ge 0$$

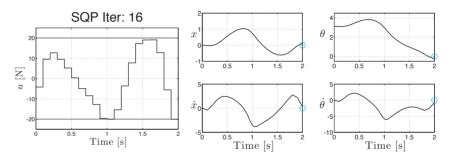
$$\mu_{n_{h}}^{*} h_{n_{h}}(w^{*}) = 0, \quad n_{h} = 1, \dots, N_{h}$$

Problem formulations | Sequential approach (cont.)



Problem formulations | Sequential approach (cont.)

Formulations
Simultaneous
approach
Sequential approach



For computational efficiency, it is preferable to use specific structure-exploiting solvers

• Such solvers recognise the sparsity properties of this class of problems