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A B S T R A C T

The automatic diagnosis method based on speech signal analysis is able to realize the detection and classifica-
tion of pathological voices. It plays an important role in the early diagnosis and auxiliary treatment of voice
pathology, which effectively relief the discomfort of patients and reduce the workload of doctors. Therefore,
the automatic diagnosis method based on speech signal analysis is of great research value. Meanwhile, high
accuracy, high precision and stability are the pursuit goals. In this paper, a novel computer-aided assessment
based on speech signal analysis for pathological voice classification (CS-PVC) system is proposed. This model
focuses on the areas with large differences between different pathological voices and healthy voices, while
ignore the negative impact of insignificant information on the performance of the model. Two databases were
used in the experiments, one is the Saarbruecken Voice database (SVD), and the other is the self-built Shenzhen
People’s Hospital voice database (SZUPD). The pathological voice detection accuracy of the proposed system on
the above two databases are 81.6% and 82.2% respectively. The experimental results show that the proposed
framework is not data-dependence. In other words, it has the potential to be universally applicable in medical
framework in the future.
1. Introduction

With the change of living habits and the increase of human com-
munication, voice pathology has become a global health problem. The
incidence of voice pathology is high, covering a wide range of ages.
According to the literature [1,2], it is estimated that 17.9 million U.S.
adults aged 18 or older (7.6% of the population) have voice problems
in the past 12 months. Nearly 1 in 12 (7.7%) U.S. children aged 3–17
has had a disorder related to voice, speech, language, or swallowing in
the past 12 months [3]. Voice pathology causes inconvenience in daily
life, resulting in severe social problems. For example, voice pathology
may lead to serious mental problems, depression and other related
diseases [4].

Currently, voice pathology includes vocal cysts, vocal cord nodules,
dysphonia, laryngitis, etc. It is usually accompanied by abnormal-
ties in vocal cord closure, flexibility or symmetry, which cause the
voice hoarseness, harshness and weakness [5]. Thus, the voice quality
is significantly worse than normal people. From the technical point
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of view, the recorded audio signals are able to capture the above
differences for pathological voice analysis. On the other hand, clin-
ical pathological voice classification approaches are mainly divided
into two broad categories, subjective evaluation and objective evalua-
tion [6]. Subjective evaluation is mainly carried out by medical staff
or other professionals for visual assessment and auditory–perceptual
assessment. However, the penetrating electronic laryngoscope, which is
used frequently in visual assessment [7–9], is prone to cause discomfort
to the patient, including a sense of foreign invasion, pain, etc. In
auditory–perceptual assessment, professionals perform comprehensive
scoring by listening to a patient’s specified voice and using the patient’s
pre-defined scoring criteria such as G(overall grade of hoarseness); R
(roughness); B(breathiness); A (asthenic) and S (strained quality) of
the voice (GRBAS) [10] and consensus auditory–perceptual evaluation
of voice (CAPE-V) [11]. The scoring results usually vary from doctor
to doctor [12]. In contrast, objective evaluation is able to provide
objective quantitative evaluation indicators for doctors to refer to and
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make effective and reliable judgments. It is essential in clinical prac-
tice. The computer-aided assessment based on speech signal analysis
for pathological voice classification (CS-PVC) provides a convenient
non-invasive objective diagnosis scheme, which effectively alleviate
the discomfort of patients and reduce the difficulty of operation for
doctors in diagnosis. It also utilizes the powerful computing power
of computers to achieve rapid diagnosis and consequently reduce the
workload of doctors. Therefore, CS-PVC system is worth studying.

CS-PVC system usually consists of two parts, i.e. feature extraction
and classification [13–15]. Common clinically interpretable acoustic
features include multidimensional voice program (MDVP) [16,17], pa-
rameters based on wavelet transform (WT) [18], mel-frequency cepstral
coefficients (MFCC) [19] and linear prediction cepstrum coefficient
(LPCC) [20]. With the extracted features, a classifier is usually applied
to predict the type of voice pathology. Many classifiers have been
used for pathological voice detection such as Gaussian mixture model
(GMM) [21,21], hidden Markov model (HMM) [22], support vector
machines (SVM) [17,23], random forests (RF) [24]. These methods are
usually used for small data sets, and thus have a strong dependence on
the data set. Their robustness and generalization are poor [25]. With
the fast development of machine learning, deep learning methods have
been successfully applied in many areas, e.g. speech recognition [26,
27], image segmentation [28,29] and object detection [30], etc. It has
also been applied in pathological voice detection and has achieved
good performance [14]. In addition,several large scale voice pathology
databases have been released for relevant research, e.g. Saarbruecken
Voice database (SVD) [dataset] [31], Massachusetts Eye and Ear In-
firmary database (MEEI) [dataset] [32] and Arabic Voice Pathology
database (AVPD) [33].

In this paper, a novel CS-PVC system is proposed, which can auto-
matically detect pathological voices. Fig. 1 shows the diagram of the
proposed system. Firstly, the feature extraction is applied. Log mel-
frequency spectral coefficients (MFSC) together with its first-order and
second-order derivatives are used as acoustic features. The extracted
features are then used to train the proposed network. A novel Residual
structure-based Deep connected attention model (DCA-ResNet) is pro-
posed. The novel connected attention mechanism enables the model
to focus on the differences between different pathological and healthy
voices, while ignoring the impact of insignificant information on the
model performance. The healthy voice and the pathological voice
will be predicted first. Following that, the pathological voice will be
further classifier to obtain laryngitis, rekurrensparse, dysphonia and
hyperfunktionelle dysphonia. Two datasets are utilized for verification
tests, i.e. SVD database and the self-built SZUPD database.

The rest of this paper is arranged as follows. Section 2 will briefly
review the related work. Detailed introduction of the proposed system
will be given in Section 3. The details of the experiment will be given
in Section 4. Section 5 will discuss the experimental results, followed
by the conclusion in Section 6.

2. Related work

Pathological voice detection can be formulated as a classification
problem, which utilizes acoustic signals as input. Acoustic signals are
usually transformed into different kinds of feature embeddings for eas-
ier processing. Pathologically, various disease cause functional changes
to the larynx, which leads to a wide range of measurable changes to
the acoustic signal, such as jitter, shimmer, pitch, etc [37]. Related
research in recent years is listed in Table 1. Hemmerling et al. made
use of heuristic statistical metrics to measure the above-mentioned
changes and obtained very promising results [24]. Then, a complete
and convenient voice analysis software MDVP appeared, which not
only integrated the above features, but also expanded it [16]. Thirty-
three different long-term acoustic parameters with their definitions in
MDVP are listed in Arjmandi et al. [38]. Al-nasheri et al. also achieved
good results using the multi-dimensional voice features extracted by
2

MDVP [17]. Although hand crafted features lead to decent results, its
performance is inherently limited by the quality of the designed fea-
tures. Motivated by the success of cepstrum in speech signal processing,
a number of research proposed to use LPCC [20,39] and MFCC [19,21,
25,34] as features. In addition, there is also a lot of studies based on
spectrum analysis [35,36], which reduces the steps of discrete cosine
transform (DCT) compared with cepstrum. After DCT, the energy is
concentrated in the low frequency part. However, there are many high-
frequency components in pathological voices that are beneficial to
detection, so the time spectrum is more suitable for pathological voice
analysis than cepstrum [40,41] (see Table 1).

In 2017, Ail et al. combined MFCC with GMM. However, it has to
be noted that the inter-database results are significantly worse than the
intra-database results, which indicates poor generalization issue [21].
In [24], Hermmerling et al. proposed a multistep approach. Separate
RF models are trained for different gender groups. Hammami et al.
adopted feature based on discrete wavelet transformation (DWT) and
coupled with SVM and finally achieved 93.10% accuracy [23]. Harar
et al. proposed to use XGboost with MFCC features. The models are
trained on multiple datasets to improve robustness [25].

With the recent advances in deep learning, it has managed to
achieve better-than-human performance on a number of tasks. Deep
learning is particularly good at handling classification problems. It can
be naturally extended to pathological voice detection. Fang et al. used
MEEI to analyze the vowel /a/. Their experiments proved the advan-
tage of deep learning methods over the classical methods, e.g. GMM,
SVM, etc [34]. In [35,36], different architectures of convolutional
neural network (CNN) are studied and compared on the SVD dataset.
Motivated by the previous success of deep CNN, we propose to im-
prove the system by CS-PVC. In addition, the system has also inno-
vatively proposed an attention mechanism. The attention mechanism
can effectively extract key information while ignoring irrelevant in-
formation [42–44]. The attention mechanism has been widely used in
classification tasks, and in these tasks both have achieved satisfactory
results [45,46].

3. Method

The proposed CS-PVC system is described in two parts, namely the
feature extraction and the network structure.

3.1. Feature extraction

Fig. 2(a) and (b) shows the log mel-frequency spectrogram and
MFCC of pathological voice and healthy voice for the vowel /a/.
It clearly shows that the frequency change of pathological voice is
more unstable than that of healthy voice. Therefore, log mel-frequency
spectrogram is used as the input feature of the classification network
in order to express the difference between healthy and pathological
voices. In addition, because of the DCT used by MFCC, the features are
decorrelated and compressed, and the main information is concentrated
in the first few vectors. MFSC is smoother in time and frequency domain
than MFCC. The MFSC feature make it easier for CNN to discover linear
relationships as well as high-order causes of the input data, resulting in
a better overall system performance [40]. Therefore, MFSC is used as
the input feature of the network in this study. Fig. 3 shows the process
of feature extraction. The length of the voice data is between 0 and 3 s.
In order to ensure that the voice data is as complete as possible, the
amount of calculation is kept small, and CNN needs to have a unified
input size. The voice signal is first reframed into 1s long. When the
signal is longer than 1s, it needs to be truncated to 1s. When the signal
is shorter than 1s, it needs to be filled to 1s by reflection padding. Next,
the signal is divided into 40 ms per frame by the Hann window, and
there is a 50% overlap between each frame. The time domain signal is
converted into a time–frequency domain signal by short-time Fourier
transform (STFT), and the spectral coefficients are then sent to the
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Fig. 1. The diagram of the proposed CS-PVC system.
Table 1
Comparison of related work on pathological speech detection in terms of features, classifiers, accuracy and database.

First author Feature Classifier Database Accuracy (%)

Classical Methods

Hemmerling [24] 28-parameters RF SVD SVD:100
Ali [21] MFCC GMM MEEI, SVD, AVPD MEEI:94.60/SVD:80.20/AVPD:83.65
Al-nasheri [17] MVPD SVM MEEI, reSVD, AVPD MEEI:88.21/SVD:99.68/AVPD:72.53
Hammami [23] DWT-feature SVM SVD SVD:93.10
Harar [25] MFCC XGBoost AVPD, MEEI, PDA, SVD AVPD+MEEI+PDA+SVD:73.30

Deep Learning
Fang [34] MFCC DNN MEEI MEEI:99.32
Wu [35] Spectrogram CNN SVD SVD:71.00
Muhammad [36] Spectrogram CNN SVD SVD:93.50
Fig. 2. (a) Log mel-frequency spectrogram of a pathological voice sample for the vowel /a/. (b) Log mel-frequency spectrogram of a healthy voice sample for the vowel /a/. (c)
MFCC of a pathological voice sample for the vowel /a/. (d) MFCC of a healthy voice sample for the vowel /a/.
Mel filter bank. The reason for this process is that the frequency scale

of the filter bank conforms to the characteristics of human hearing
3

perception. The frequency relationship can be approximated by the
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Fig. 3. The flow chart of feature extraction.
Fig. 4. An overview of DCA-ResNet.
following formula:

𝑚𝑒𝑙(𝑓 ) = 2595 lg(1 + 𝑓∕700) (1)

where 𝑓 represents the actual frequency of the voice signal, and the
unit is Hz. The mel filter bank is represented by the following formula:

𝐻𝑚(𝑘) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑘 < 𝑓 (𝑚 − 1)
𝑘 − 𝑓 (𝑚 − 1)∕𝑓 (𝑚) − 𝑓 (𝑚 − 1), 𝑓 (𝑚 − 1) ≤ 𝑘 ≤ 𝑓 (𝑚)
𝑓 (𝑚 + 1) − 𝑘∕𝑓 (𝑚 + 1) − 𝑓 (𝑚), 𝑓 (𝑚) < 𝑘 ≤ 𝑓 (𝑚 + 1)
0, 𝑘 > 𝑓 (𝑚 + 1)

(2)

where the center frequency of 𝑚th filter is 𝑓 (𝑚), and the response at
the center frequency is 𝐻𝑚(𝑘). The filter frequency linearly decreases
toward 0 on both sides until it reaches the center frequency of two
adjacent filters and the interval between 𝑓 (𝑚) widens as the value of 𝑚
increases.

The logarithmic operation is applied on mel-spectrogram to get the
log mel-spectrogram, and its first-order time derivatives and second-
order time derivatives can also be obtained accordingly. The above
features express the dynamic relationship of the voice. The first-order
time derivatives, 𝑑𝑡, at time 𝑡 is expressed by the following formula:

𝑑𝑡 =

⎧

⎪

⎨

⎪

⎩

𝐶𝑡+1 − 𝐶𝑡, 𝑡 < 𝑘
∑𝑘

𝑘=1(𝐶𝑡+1 − 𝐶𝑡−1)∕2
∑𝑘

𝑘=1 𝑘
2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐶𝑡 − 𝐶𝑡−1, 𝑡 ≥ 𝑄 − 𝑘

(3)

where 𝑘 is the difference in time and it take 1 in this paper. 𝐶𝑡 is
the MFSC coefficient at time 𝑡. 𝑄 is the maximum number of MFSC
coefficients, which is 128 in this paper. After getting the first-order time
derivatives from this formula, these results are used as the input and
then be processed by the above formula again to get the second-order
time derivatives.

In order to match the CNN input size, the MFSC and its first- and
second-order time derivatives are adjusted to a size of 224 × 224 by
zero-padding, respectively. These three feature images will serve as the
input to the three channels of the classification network.

3.2. Network structure

In the paper, the ResNet is used as the backbone network, and the
DCA module is integrated on the basis of this backbone network. There-
fore, the network is named DCA-ResNet. Its overall network structure is
shown in Fig. 4. Each part of the network will be introduced in detail,
namely the backbone network and the DCA module.
4

3.2.1. Backbone network
The feature maps extracted by CNN from MFSC are abstract and

complex advanced features and the secondary feature extraction of
MFSC is automatically completed. It simplifies the entire CS-PVC sys-
tem. Since the performance of ResNet is very outstanding in many
classification tasks, our study selects ResNet as the backbone network.
The core idea of ResNet is to introduce a shortcut connection resid-
ual block. This structure solves the problems of gradient vanishing
and exploding in the neural network, and reduces the loss error of
deep network. At the same time, it can also simplify the optimization
process and make the training process fast without adding additional
parameters or computational complexity. The residual block structure
is shown in Fig. 5, where the weight layer represents a different
number convolutional layers. The output and input of residual blocks
are denoted by 𝑦 and 𝑥, respectively, and the relationship between 𝑥
and 𝑦 is expressed as:

𝑦 = 𝑓 (𝑥) +𝑊3𝑥 (4)

where 𝑊3 is the weight of the convolution which makes the input 𝑥
and 𝑓 (𝑥) the same number of channels, and 𝑓 (𝑥) is the output of the
second weight layer defined as:

𝑓 (𝑥) = 𝑊2𝜎
(

𝑊1𝑥
)

(5)

where 𝑊1 and 𝑊2 represent the weights of the first and second weight
layers in Fig. 4, and 𝜎 represents the rectified linear unit (ReLu) func-
tion. ResNet has different network layers, and commonly used layers
are ResNet18, ResNet34, and ResNet50. They are all implemented by
stacking the above residual blocks together [47].

3.2.2. DCA module
In this study, a novel residual attention block is proposed. The im-

portance of each feature channel is automatically obtained by learning.
Then according to the importance, the feature enhanced or suppressed
to well complete the task. It corresponds to the attention in Fig. 4. The
residual attention block is shown in the red dashed box in Fig. 6. First,
the features of each channel are compressed into real numbers by global
average pooling (GAP). It is defined as:

𝐺𝑖 =
𝐻
∑

𝑖=1

𝑊
∑

𝑗=1
𝑢𝑐 (𝑖, 𝑗), 𝐺𝑖 ∈ 𝑅𝑐 (6)

where 𝐻 , 𝑊 represent the length and width of the input, and 𝑢𝑐
represents the 𝑐th convolution kernel. The correlation between the
channels is established by two fully connected (FC) layers, and the
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Fig. 5. The structure of the residual block.

normalized weight is obtained by a Sigmoid function. The output of
the 𝑖th 𝑇 in Fig. 6 is defined as:

𝑇𝑖 = 𝜎(𝑊2𝑅𝑒𝐿𝑈 (𝑊1𝐺𝑖)) (7)

where 𝜎 represents the sigmoid function, and 𝑊1, 𝑊2 represent the
parameters that the network can learn. Finally, the above weights are
weighted on the feature map of each channel.

In addition, Fig. 6 shows the connection between the two resid-
ual attention blocks. This connection mechanism enables informa-
tion to flow between attention modules. It effectively avoids frequent
changes of information between attention modules, thereby improving
the learning ability of attention modules. The connection function is
expressed as:

𝑓 (𝛼𝐺𝑖, 𝛽𝑇𝑖−1) = 𝛼𝐺𝑖 + 𝛽𝑇𝑖−1 (8)

where 𝛼 and 𝛽 are learnable parameters, 𝑇𝑖−1 represents the output
of the previous sigmoid function and 𝐺𝑖 represents the output of the
current GAP process. This designed connection ensures that the current
residual attention block is able to learn the information of the previous
residual attention block.

4. Experiment

In this section, detailed information of the experimental setup will
be introduced, including the dataset, evaluation metrics and implemen-
tation details.

4.1. Database

4.1.1. SVD database
Saarbruecken voice database (SVD) was recorded by Institute of

Phonetics of Saarland University in Germany. It collected voice record-
ing and electroglottography (EGG) signals from 2041 speakers, which
contains 687 healthy persons (428 females and 259 males) and 1356
patients (727 females and 629 males) with 71 different voice patholo-
gies. Each speaker was recorded with the following pronunciations: (1)
sustained vowels /a, i, u/ produced at normal, high, low, low–high–low
pitch; (2) The German sentence ‘‘Guten Morgen, wie geht es Ihnen?’’
(‘‘Good morning, how are you?’’). All the recordings are sampled at
50 kHz sampling rate with 16-bit resolution. In this paper, damaged and
unclear samples are removed. Thus, 1685 sustained normal pitch vow-
els /a/ were used in our experiment, including 595 healthy recordings
and 1090 pathological recordings.
5

4.1.2. Self-built database
We have established the voice pathology database in cooperation

with Shenzhen People’s Hospital. This voice database is named SZUPD
which is also used in the experiment. It contains recordings of the
vowels /a/ of 40 healthy persons and 67 patients with different voice
pathologies. All recordings are sampled at 22 kHz sampling rate. Cur-
rently, the SZUPD database is still expanding.

4.2. Evaluation metrics

The proposed method is evaluated in terms of accuracy, precision,
recall and F1 score. They are respectively defined by the following
formula:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑡𝑝 + 𝑡𝑛∕𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛 (9)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝∕𝑡𝑝 + 𝑓𝑝 (10)

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑝∕𝑡𝑝 + 𝑓𝑛 (11)

𝐹1 = 2 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙∕𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (12)

where 𝑡𝑝, 𝑓𝑝, 𝑡𝑛 and 𝑓𝑛 denote the number of true positives, false
positives, true negatives and false negatives, respectively. In this study,
pathological samples are the main focus. Therefore, pathological sam-
ples are set as positive and healthy samples are set as negative. Ac-
curacy indicates the number of correct samples in the total samples,
and can measure the overall performance of the model. Precision
indicates the proportion of predicted pathological samples to all patho-
logical samples. It measures the ability of the model to correctly detect
pathological sample. Recall indicates the proportion of the predicted
pathological samples in the total samples, which measures the model’s
ability to fully retrieve pathological voices. F1 score is described as the
harmonic average of the precision and the recall. The range of the four
indicator values is 0 to 1. The larger the index value, the better the
detection performance.

4.3. Implementation details

In order to train and verify the model, the dataset is divided into
disjoint training set and test set, and the ratio is 8:2. During model
training, the training set is divided into 10 equally subsets and 10-
fold cross-validation is used to adjust the hyperparameters. The test
set is used to evaluate the final performance of the model. Then,
the stochastic gradient descent (SGD) is used to optimize the cross-
entropy loss function with a batch size of 64 samples. The training
parameters of this model are set as follows: the learning rate is 0.005,
the momentum is 0.9, and the weight decay is 0.0005. The proposed
method is implemented on an Ubuntu server equipped with three GPUs
(NVIDIA Titan XP) and the PyTorch is used to build the proposed
network with CUDA9.0. The parameters of the network are initialized
by default method in PyTorch. In order to compare the performance of
different models fairly, they are trained without pre-training.

5. Result and discussion

5.1. Evaluation of MFSC and MFCC

According to the evaluation indicators described in Section 4.2,
four evaluation metrics, namely accuracy, precision, recall and F1
score are used to obtain the evaluation results. Different input fea-
tures, including MFSC and MFCC, and different networks, including
ResNet18, ResNet34, and ResNet50, are evaluated. The evaluation
results are shown in Table 2. When MFSC is used as the input feature
and Resnet18 is used as the network, the index result of recall does
not achieve the highest performance. The decrease in recall is probably

caused by the increase in precision. This phenomenon is very common
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Fig. 6. The structure of the proposed DCA module.
Table 2
Evaluation results using different input features, including MFSC and MFCC, and different depth of the ResNet networks.

Methods MFSC MFCC

accuracy precision recall F1 score accuracy precision recall F1 score

ResNet18 0.786 0.838 0.830 0.834 0.751 0.768 0.881 0.821
ResNet34 0.766 0.806 0.839 0.822 0.762 0.811 0.826 0.818
ResNet50 0.763 0.792 0.858 0.824 0.745 0.777 0.849 0.811
in classification tasks [48]. However, the F1 score is the harmonic
average of precision and recall. It is able to represent the overall
performance of these two evaluation indicators, and MFSC combined
with ResNet18 has achieved the best F1 results. Therefore, the best
overall performance is obtained by MFSC Combined with ResNet18,
where the accuracy, precision and F1 score are 0.786, 0.838 and 0.834,
respectively.

In the case of the same network depth, the overall performance
of MFSC is better than MFCC. The possible reason is that the MFSC
features make it easier for CNN to discover linear relations as well as
higher order causes of the input data, leading to a better overall system
performance [40]. In addition, the Overall performance decreases when
ResNet goes deeper. The possible reason is that the original input data
size is small and the resolution decreases after resizing. Following that,
as the network deepens, some details information may be lost.

5.2. Evaluation of DCA-ResNet

According to the results shown in Table 2, the combination of MFSC
and ResNet18 achieves the best performance. Therefore, in order to
make a fair comparison, in this part, all models are tested on the basis of
using MFSC as the input feature. Five different classification models are
trained for comparison to show the performances of different models,
namely AlexNet [49], VGG16 [50], ResNet [47], DA-ResNet and DCA-
ResNet. Table 3 shows the evaluation results of the above five models
in terms of accuracy, precision, recall and F1 score. In this table,
the performances of the ResNet-based models are better than AlexNet
and VGG16. Compared with the simple ResNet model, the accuracy,
precision and F1 score of DA-ResNet are improved by 1.8%, 2.4% and
1.2%, respectively. This outstanding contribution mainly comes from
the unique attention module in DA-ResNet. Among all the models,
DCA-ResNet achieved the highest results in accuracy, precision, recall
and F1 among all models which are 0.816, 0.875, 0.835 and 0.855,
respectively. In addition, the region of convergence (ROC) curves are
plotted in Fig. 7, where AUC is defined as the area under the ROC. The
larger the AUC value, the better the model classification performance.
As shown in Fig. 7, the DCA-ResNet achieves the highest AUC value,
which is 0.881. This result demonstrates that the DCA module greatly
improves the overall performance.

In this experiment, the situation that the proposed DCA-ResNet al-
gorithm cannot predict correctly usually occurs when the distinguished
6

Fig. 7. ROC curves of different models.

samples are from mild voice diseases. The spectrogram example of
a mild voice disease incorrectly judged by the proposed algorithm is
shown in Fig. 8(b). In this example, the patient has mild laryngitis,
and the frequency spectrum is relatively stable in the time–frequency
domain. As a comparison, the voice disease spectrum that can usually
be correctly predicted is shown in Fig. 8(a). It can be seen that the
energy is obviously unstable or jitter in the time–frequency domain,
which usually reflects the presence of disconnected pronunciation or
hoarseness from the patient. Therefore, the more severe the symptoms,
the easier it is to be detected correctly.

5.3. Evaluation of model generalization performance

In this part, two databases, SVD and SZUPD, are used to verify the
generalization of the proposed DCA-ResNet. Two sets of experiments
are conducted: (1) SVD was used for training while SZUPD was used
for testing; (2) SVD was used both for training and testing. Since the
sample size of SZUPD is too small (round 107 cases), it is not suitable
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Fig. 8. (a) Log mel-frequency spectrogram of correctly detected voice sample. (b) Log mel-frequency spectrogram of falsely detected voice sample.
Table 3
The comparison of evaluation results using different models.

Meathod Accuracy Precision Recall F1 score

AlexNet [49][51] 0.721 0.772 0.807 0.789
VGG16 [36][50] 0.766 0.814 0.826 0.820
ResNet [47] 0.786 0.838 0.830 0.834
DA-ResNet 0.804 0.862 0.830 0.846
DCA-ResNet 0.816 0.875 0.835 0.855

Table 4
The comparison of evaluation results using different database.

Accuracy Precision Recall F1 score

Train:SVD Test:SZUPD 0.822 0.980 0.731 0.837
Train:SVD Test:SVD 0.816 0.875 0.835 0.855

Table 5
The number of samples selected from SVD database.

Laryngitis Rekurrensparse Dysphonia H.F. Dysphonia

male 50 127 42 37
female 33 70 29 115

for the training set. The results in Table 4 show that the proposed
DCA-ResNet also achieves good performance on SZUPD. This finding
shows that the proposed DCA-ResNet is not data dependent and has
good generalization.

5.4. Evaluation of pathological voice classification

After detecting the disease voices, this study further classifies the
types of diseases. Several disease types with a large number of samples
in the SVD database are considered, and samples with multiple diseases
at the same time are excluded. The considered types of diseases are
laryngitis, rekurrensparse, dysphonia and hyperfunktionelle dysphonia.
Table 5 shows the details of the selected samples. Among them, 70% of
the data is randomly selected as the training set, and the remaining 30%
is used as the test set. In this part, MFSC is used as the input feature,
DCA-ResNet is used as the network, and the confusion matrix (CR) is
used to evaluate the test results.

Table 6 is the CR results of four pathological classifications. The
rows of the table represent true subjects, and the columns represent
prediction subjects. Table 6 shows that rekurrensparse has the highest
7

classification accuracy, reaching 0.627. The classification accuracy of
laryngitis, dysphonia and hyperfunktionelle dysphonia is relatively low,
and these diseases are all easily misidentified as rekurrensparse. The
possible reason is that the effects of the above-mentioned different
diseases on the voice are very close, so it is easy to form misjudgment.
At the same time, due to the relatively large number of samples of
rekurrensparse, the model may be biased toward it. Therefore, other
diseases are easily misjudged as rekurrensparse. Finally, the average
prediction accuracy of all diseases is 0.470.

6. Conclusion

In this paper, a novel system CS-PVC is proposed for pathologi-
cal voice detection and classification. Firstly, the MFSC features are
extracted from the original voice signals, and then they are passed
into the DCA-ResNet to predict the voice pathologies. The attention
modules in DCA-ResNet enhances the useful features according to
the weights changes in the learning process. In addition, all the at-
tention modules are connected, the attention modules are thus able
to exchange information with each other. The experimental results
show that DCA-ResNet achieves the best performance in all the com-
pared networks, which proves that the connection mechanism improves
the ability of the attention module. In addition, a self-built database
(SZUPD) is established to verify the generalization of the proposed
model. In the case of using SVD as the training set, the accuracy
tested on the SVD database is 0.810, and the accuracy tested on the
SZUPD database is 0.822. The above results prove that the system
proposed in this paper has good performance and strong generalization
in pathological voice detection. After the pathological voice detection,
this paper classifies the types of disease, including laryngitis, rekur-
rensparse, dysphonia and hyperfunktionelle dysphonia. In experiments
to classify rekurrensparse the above four types of voice pathologies,
rekurrensparse achieves the highest classification accuracy of 0.627,
followed by hyperfunktionelle dysphonic, laryngitis and dysphonia. It
shows that the proposed system CS-PVC has application potential and
room for improvement in pathological voice classification.

The future work is to propose and test some new acoustic features,
so that the pathological voices and healthy voices can be distinguished
accurately, and the differences between different pathological voices
can be effectively amplified. Secondly, this study used the vowel /a/
only for detection and classification. Many voice diseases are not
obvious in the pronunciation of a single vowel, but may have obvious
Table 6
The CR results of four pathological classifications.
𝑇 𝑟𝑢𝑒 𝑃 𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

Laryngitis Rekurrensparse Dysphonia H.F. Dysphonia Class accuracy

Laryngitis 7 14 1 3 0.280
Rekurrensparse 3 37 11 8 0.627
Dysphonia 0 11 8 2 0.381
H.F. Dysphonia 4 17 6 19 0.413
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characteristics in continuous speech. Therefore, we will try to analyze
continuous speech in future work. Finally, the proposed network struc-
ture is relatively complicated which requires high computational cost.
In response to this problem, we will optimize the network structure to
achieve fast calculation speed and good performance, laying the foun-
dation for the proposed system to be used in actual clinical applications
in the future.
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