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ABSTRACT

Poor coordination of the speech production subsystems due to
any neurological injury or a neuro-degenerative disease leads
to dysarthria, a neuro-motor speech disorder. Dysarthric
speech impairments can be mapped to the deficits caused
in phonation, articulation, prosody, and glottal functioning.
With the aim of reducing the subjectivity in clinical evalua-
tions, many automated systems are proposed in the literature
to assess the dysarthria severity level using these features.
This work aims to analyse the suitability of these features
in determining the severity level. A detailed investigation is
done to rank these features for their efficacy in modelling the
pathological aspects of dysarthric speech, using the technique
of paraconsistent feature engineering. The study used two
dysarthric speech databases, UA-Speech and TORGO. It puts
light into the fact that both the prosody and articulation fea-
tures are best useful for dysarthria severity estimation, which
was supported by the classification accuracies obtained on
using different machine learning classifiers.

Index Terms— dysarthria severity estimation, paracon-
sistent feature engineering, statistical analysis

1. INTRODUCTION

The speech disorder arising from poor coordination of the
speech production subsystems is referred to as dysarthria.
The speech impairments exhibited by dysarthric patients are
defined in different dimensions such as articulation, phona-
tion, prosody, nasality and intelligibility in literature. Impre-
cise articulations due to the retardation of lip, jaw and tongue
movements, and irregular glottal closure patterns resulting
in breathy voice are top among the most evident dysarthria
symptoms [1], [2]. Phonation features can define the mono-
tonicity and tempo perturbations exhibited by the dysarthric
patients [3]. Dysarthric speech is often emotionless and lacks
rhythm due to the abnormal speech rate and irregular loud-
ness, and the prosodic measures can characterise them [3].
When associated with any degenerative disorders of the cen-
tral nervous system and/or hereditary conditions, dysarthria
can be progressive in nature. This demands the need for fre-

quent monitoring of the severity level for proper medication
and voice treatment during rehabilitation. However, subjec-
tive evaluation of the same by speech-language pathologists
(SLP) would be biased, time-consuming, and expensive. Dif-
ferent approaches for automating this severity estimation are
adopted in the literature. While the earlier works concen-
trated on feature selection [4], [5] and handcrafted feature
generation [6], [7], more recent works focus on building end-
to-end systems or sophisticated deep learning models with
basic acoustic features [8], [9], [10], [11]. However, training
deep learning models is prone to overfitting as the amount of
dysarthric data available is limited. The physical fatigue and
vocal strain faced by the dysarthrics lead to this challenge of
data scarcity.

Our initial experiments using these speech disorder-
specific features on deep neural networks(DNN) [12] sug-
gested that a detailed statistical analysis is required to under-
stand the potential correlation within each class. This would
also enable a choice of the optimum feature descriptor that
could be used by a simple predictor for aiding SLPs. When
end-to-end systems aim to replace the need of an SLP, at
the cost of data gathering requirements and computational
costs, simple predictors such as a random forest(RF) classi-
fier can aid SLPs after selecting an optimum descriptor. We
implement the recently proposed technique of paraconsis-
tent feature engineering(PFE) [13] to picture the intra-class
similarities and the inter-class distinctions exhibited by these
features. PFE is not exactly a statistical tool, but a similar data
analysis tool that helps to draw meaningful conclusions from
the features representing raw data. The descriptive nature of
the statistical analysis is not shown by PFE as it does not un-
cover the structure behind the data. However, the exploratory
nature is present implicitly as it helps in understanding the
potential correlation among the features and the way they are
mapped to the correct severity level. PFE has been shown to
be efficient in feature ranking for applications such as replay
attack detection [14] and speaker verification [15].

The proposed approach is explained in Section 2, fol-
lowed by Section 3 describing the databases. The experimen-
tal framework and result analysis are given in Sections 4 and
5 respectively. Finally, the paper is concluded in Section 6.
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2. SYSTEM DESCRIPTION

With the aim of analysing the potential of prosody, articula-
tion, phonation and glottal-based features in recognising the
paralinguistic aspects from the dysarthric utterances, we ex-
tract them and do the PFE analysis to rank their efficacy. De-
tails of this are given below.

2.1. Disvoice feature set

Prosodic information is important in dysarthric characteri-
sation as it can highlight the abnormalities in the intonation
(pitch alterations) and voicing style (irregular phoneme and
syllable durations). As explained in [1], 103 features based
on duration, pitch and energy contour statistics are calculated.
These include the linear estimation of the fundamental fre-
quency(F0) and energy contour(cont.) over all segments, and
calculation at the first(FO-F) and last(FO-L) voiced segments,
duration analysis of voiced/unvoiced/pause segments, and
their ratios. These can depict the level of monotonicity and
the maximum frequency attainable by the patient [1].

Articulatory deficits are exhibited when there is a diffi-
culty in changing the position/shape of the organs/tissues/limbs
involved in the speech production [1]. The stress involved
during the articulatory control and the resulting impairments
can be understood by studying the onset(ON) and offset(OFF)
transitions. Analysing the frequency content in these transi-
tions can effectively model their difficulty in controlling the
vocal fold vibrations [1]. Hence, Bark-band energies(BBE),
the first two vocal formants(F1 and F2) and mel-frequency
cepstral coefficients(tMFCCs), along with their derivatives
are extracted to account for 122 descriptors. To obtain a dy-
namic representation, the four statistical functionals, namely,
mean(y), standard deviation(o), kurtosis(x), and skewness(7y)
are calculated on each feature per recording, thus giving the
488-dimensioned articulatory feature set.

Abnormalities in the phonation due to irregular glottal
closure patterns give an impression of breathy voice to the
speech [16] of people affected by hypokinetic dysarthria,
as in the case of Parkinson’s disease(PD). The glottal flow
patterns are estimated using the glottal inverse filtering(GIF)
technique called the iterative and/or adaptive inverse filter-
ing(IAIF) as described in [2]. The time variability between
consecutive glottal closure instants(GCI), the average and
variability of features namely, the open quotient(OQ), the
amplitude quotient(AQ), the normalized AQ with respect to
glottal period(NAQ), the difference of the first two harmonics
of the glottal flow signal(H1H2), and the harmonic richness
factor(HRF) are calculated. Then the statistical measures are
estimated, resulting in 36 features per utterance.

The phonatory measures could define the irregularities in
the stability and periodicity of the vocal fold vibrations shown
by the dysarthrics [17]. The long—term variabilities in the
peak-to-peak amplitude and pitch(perceived F0) are measured
in terms of perturbation measures such as jitter, shimmer,

amplitude perturbation quotient(APQ), and pitch perturbation
quotient(PPQ). The first and second derivatives of F0O, and
the logarithmic energy are also calculated to understand the
spread of FO, which would indicate the measure to which the
tongue and velum can be controlled [1]. The statistical func-
tionals when applied to these seven features give the 28 di-
mensional phonation feature set.

2.2. Paraconsistent feature engineering(PFE)

To quantitatively compare the utility of the four feature sets,
we adopt the PFE framework [13] for statistical analysis. As
the first step, whole of the available X number of feature vec-
tors are L2-normalised to the range [0, 1]. Then the intra-
class similarities and the inter-class dissimilarities are anal-
ysed using the parameters, «, the level of faith and £, the level
of discredit respectively. Consider a 1-D feature representa-
tion with the difference between the maximum possible value
and the minimum value within a specific class being A. Ad-
vantageous intra-class similarity occurs when A is small, or
Y =1— Aislarge for each class. Thus, Y = 0 indicates low
intra-class similarity and Y = 1 means high similarity. When
the feature vector dimension is D and it is a N-class prob-
lem, the intra-class similarity can be quantified as the mean
of Y calculated over each dimension. Then, the parameter o
accommodates the worst-case scenario by selecting the mini-
mum. These are computed as [13],

_ 1 &
Yy = 5> un(i) ¢!
=1

Y} 2)

Next, the inter-class distinction is quantified using two range
vectors for each class, containing the minimum and maximum
values shown in each dimension over the entire dataset. Thus
it gives the possible range of values within which the feature
value is expected to lie for a given class. Now, the number of
overlaps, Z is calculated as the count of features in one class
lying within the range vector of all the other classes. This
overlap is to be minimised and hence ( is computed to be,

a=min {Y1,Ys, ...

A
b= 3)

where, F' represents the maximum possible number of over-
laps, which is N.(N — 1).X.D and 0 < «,8 < 1. The
final measures of the degree of certainty GG1, and the degree
of contradiction G2 are calculated respectively as,

Gl=a-0,G2=a+-1;, —1<G1,G2<1 4

They define a new two-dimensional paraconsistent plane [13],
where the ideal case of linearly separable features lies at the
the corner (1, 0). Hence, the distance D between the point
P = (G1,G2) for each feature set to the ideal point (1, 0)
can be calculated using the Euclidean distance to quantify its
suitability for the chosen classification problem.
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Fig. 1: Plots of different feature points in the paraconsistent plane (a) UA-Speech (b) TORGO

3. DATABASES

The English dysarthric speech databases, namely UA-Speech
[18] and TORGO [19] are used for the analysis. Dysarthric
speech of 15 patients from the former and eight patients from
the latter is used. For training the machine learning(ML)
classifiers, UA-Speech utterances corresponding to the 10
digits, 19 computer commands, 26 radio alphabets and 100
common words, all repeated thrice, are used. This sums to
465 recordings per speaker. The testing data has 300 distinct
uncommon words per speaker. The severity of the disease
(HIGH/MEDIUM/LOW/VERY LOW) is determined based
on the intelligibility assessment by five listeners. For the
evaluation of TORGO database, the short word utterances
are used. There are 2227 such utterances, and a 80%-20%
train-test split is adopted. The severity of the speakers was
assessed according to the standardized Frenchay dysarthria
assessment. Detailed description is given in Table 1.

Table 1: Class-wise patient description

Severity UA-Speech TORGO
VERY LOW | F05, M08, M09, M10, M14 | F03, F04, M03
LOW F04, M05, M11 F01,M05
MEDIUM F02, M07, M16 MO1, M02, M04

HIGH F03, MO1, M04, M12 -

4. EXPERIMENTAL FRAMEWORK

The DisVoice ! library and the KALDI toolkit are used for
computing the features. Only the utterance level features are
computed, and the PRAAT algorithm was employed for FO
calculation. Experimental analysis is done using PFE and
the ML classifiers, namely support vector machine(SVM),
Naive Bayes(NB), k-nearest neighbour(kNN) and RF classi-
fiers. Tuning of the SVM model was done initially for linear
and rbf kernels. Best among them was found to be linear, and
hence further tuning was done with respect to the regularisa-
tion parameter c=1 to 10. RF and kNN were tuned for number
of trees=10 to 200, and number of neighbours=10 to 100 re-
spectively. Since, our aim is to do an analysis on the feature
side and not to find the best classifier setting, we have not
used a separate validation set during this tuning. Hence, val-
ues reported correspond to the best testing accuracy obtained.

"https://github.com/jcvasquezc/DisVoice

5. RESULTS AND ANALYSIS

The results obtained and inferences learned from the paracon-
sistent analysis of the Disvoice feature sets are briefed below.

5.1. PFE Analysis

PFE analysis of the different features on whole of the UA-
Speech and TORGO databases resulted in the plots shown in
Fig. 1(a) and Fig. 1(b) respectively. It can be found that the
prosody feature set has the critical point P lying closest to
the ideal point (1,0), followed in Euclidean distance by the
articulation feature set for both the databases. The «, 5 and
the distance D obtained for each of the feature set is tabulated
in Table 2. We find that for both the databases, the articula-

Table 2: Paraconsistent framework on features (best values in bold)

- UA-Speech TORGO
Feature set «a 5 D @ 53 D
Prosody 0.83 | 0.49 | 0.73 | 0.81 | 0.53 | 0.79
Articulation | 0.97 | 0.74 | 1.05 | 0.97 | 0.78 | 1.11
Glottal 0.73 | 0.75 | 1.12 | 0.86 | 0.79 | 1.14
Phonation | 0.49 | 0.75 | 1.27 | 0.45 | 0.79 | 1.36

tion feature set gives the highest o value indicating that these
feature vectors have high similarity within each severity level.
But, on comparing the 5 and D values, the prosody ranks first
indicating that their inter-class dissimilarity is the greatest and
hence, can discriminate the dysarthria severity levels well.
This suggests the usage of any simple easy-to-perform clas-
sifiers to be used on them for severity estimation. Whereas,
if the phonation features are to be used, a strong/advanced
classifier has to be used to effectively mitigate the misclassi-
fications due to overlap of the inter-class feature vectors and
scattering of the intra-class feature vectors.

5.2. Classifier analysis

In adherence to our findings reported in [12], the articula-
tion feature set performed the best on most of the classifiers,
as seen in Table 3. The efficacy of the articulation features
over the rest has also been proved in the diagnosis of PD
patients in [3] and [20]. However, it was found from the PFE
analysis that they have lower inter-class dissimilarity than
prosody. Dysarthria under progressive cases shows varying
severity with time, but with varying patterns exhibited by
speakers based on their underlying neurological cause. Thus
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Fig. 2: Feature importance graph using permutation on the UA-Speech database(X-axis shows important features from each set)

the dysarthric speech is highly complex. Hence, the high
intra-class similarity would have reduced the misclassifica-
tions considerably when the ML classifiers were used with
the articulatory features.

When PFE claimed that prosody features require a rela-
tively low-complex classifier in Table 2, it is found from Ta-
ble 3 that, on TORGO database, these features work poorly
on NB classifier compared to the rest. But the best accu-
racy given by the NB classifier using phonation features is
just 54.29%, which does not guarantee an acceptable per-
formance for real-time implementation. On the UA-Speech
database, which is larger in terms of the number of speakers
and total audio duration, articulation leads the rest, followed
by prosody, but again with 54.02% accuracy only. This is
due to the high variability of the dysarthric speech that cannot
be modeled by the simple NB classifier. The zero frequency
problem and the assumption of independence in the NB im-
plementation led to its poor performance on all the features.

Table 3: Classification accuracy (%) obtained on different classifiers
(best values in bold)

Database | Classifier | Phonation | Glottal Prosody | Articulation
TORGO SVM 62.88 55.60 60.18 83.18
RF 69.14 76.45 81.49 85.65
kNN 60.09 50.44 69.23 73.99
NB 54.29 44.84 39.90 45.74
UA-Speech SVM 60.81 55.91 61.68 77.98
RF 65.82 70.86 67.72 77.64
kNN 53.38 43.33 54.90 60.69
NB 46.12 43.40 46.89 54.02

We calculated the feature importance within each feature
set on the UA-Speech database (since it is the largest and has
all four severity levels). This was done by noticing the in-
crease or decrease in error when we permute the values of a
feature. This approach is model-agnostic and does not have
bias towards high cardinal features. The top 5 features in each
set are depicted in Fig. 2. The graph also shows the standard
deviation as error bars, whose length reveals the level of un-
certainty. Since we have obtained short bars, the values are
concentrated. The last plot gives the top 10 most important
features from the concatenated feature set (obtained on con-
catenating the four feature sets) with a dimension of 655. It
can be found that the most important features are from the ar-
ticulatory, followed by prosody and glottal feature sets. The

most discriminating feature is found to be the “skewness of
2nd BBE on offset transitions”, in the concatenated, as well
in the articulation set. It has been shown in [1] that the BBEs
are considerably reduced in dysarthics compared to healthy
speakers. Now by PFE, we prove them to be best useful in dif-
ferentiating the dysarthria severity levels as well. We find that
the top four features in the best performing articulatory fea-
ture set are the MFCCs, which affirms the results of [10]. The
change in Y axis values is due to the change in the fraction
of contribution of each feature with increasing dimensional-
ity. As reported in our earlier experiments [12] and supported
by the findings in [21], the classification accuracy does not
improve with the mere increment in feature dimension.

5.3. Discussion

To the best of our knowledge, this study is the first of its kind,
in analysing the different speech disorder specific acoustic
features for dysarthria severity classification using the PFE
framework. Results report the usefulness of prosody and ar-
ticulation features over the rest, and are supported by the clas-
sification accuracies obtained on using different ML classi-
fiers. In the present era of deep learning, this study is relevant
due to two reasons: (1) Taking into consideration the avail-
ability of low resource of impaired speech data, this analy-
sis proved to be useful in demonstrating the efficacy of the
different available features under data stringent conditions.
(2) The analysis can be extended to other speech disorders
like apraxia, and to specific cases of dysarthria like hypoki-
netic dysarthria exhibited by PD. The ranking of the features
would be helpful in implementing simple predictors without
the problem of over-fitting, to aid SLPs. Further, statistical
hypothesis testing can be done on the classifiers, to find the
optimum setup for dysarthria severity classification.

6. CONCLUSION

This paper presented a detailed analysis using paraconsis-
tent framework to draw inferences about the performance of
speech disorder specific features when used for classifying
dysarthria severity levels. The results put light into the fact
that a proper choice of features at the front-end by the PFE
framework would enable the usage of simple predictors under
the data stringent conditions.
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