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A B S T R A C T

Identifying the severity of dysarthria is considered a diagnostic step in monitoring the patient’s progress and a
beneficial step in the transcription of dysarthric speech. In this paper, the effectiveness of using the multi-head
attention mechanism (MHA) and the multi-task learning approach is explored for automated dysarthria severity
level classification. Dysarthric speech utterances are represented by mel spectrograms and fed to a residual
convolutional neural network for effective feature learning. Then the MHA module is added to identify the
salient severity-highlighting periods. At the classification end, gender, age, and disorder-type identifications
are employed as auxiliary tasks to share mutual information and leverage the severity classification. The
performance of the proposed method is evaluated on the Universal Access Speech database. By giving a gain
of 11.51% classification accuracy over the baseline system under the speaker-dependent scenario and 11.58%
under the speaker-independent scenario, the proposed system demonstrates its potential for the dysarthria
severity classification.
1. Introduction

Dysarthria is a motor speech disorder that is either acquired due
to a neurological injury such as cerebral palsy (CP), or developed
as a symptom of any neuro-degenerative diseases such as Parkinson’s
disease (PD) and amyotrophic lateral sclerosis (ALS) (Rudzicz, 2010).
The motor speech sub-systems get impaired or are weakly coordinated,
resulting in improper speech production. This causes slurred speech,
variable speaking rates, and irregular phoneme articulations, which
in turn deteriorate the speech quality. It can greatly hinder people
from effectively communicating with others, as the speech intelligibility
would be reduced partially or completely (Kent et al., 1999). Also, other
perceptual attributes of speech vary with the dysarthria severity. Severe
dysarthrics would have shorter tone units and higher mean fundamen-
tal frequencies than mild dysarthrics, whose speech would be more
‘monotonous’ (Schlenck et al., 1993). Progressive dysarthria as seen in
PD patients can lead to progressive decline in muscle functioning over
time (Qualls and Battle, 2012). Therefore it is important to monitor the
progression of dysarthria, based on which the medication and speech
therapy sessions are chosen. There are standard methods to assess
dysarthria severity level such as, the dysarthria profile (Robertson,
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1982), the Frenchay dysarthria assessment (FDA) (Enderby, 1980) and
the dysarthria examination battery (DEB) (Drummond, 1993). Intelligi-
bility rate is one of the factors in these methods, and it evidently shows
the severity level.

A perceptual evaluation of speech intelligibility is usually done by
a trained speech-language pathologist (SLP) using methods such as
the percentage of consonants correct, which is defined as the ratio
of the number of correctly uttered consonants to the number of total
consonants in words or sentences (Shriberg and Kwiatkowski, 1982).
This assessment would be inconsistent due to the familiarity of the
SLP with the patient and would vary across clinicians with experience
and listening skills. This demands the need for an automatic dysarthria
severity level classification system. Such a system would be economical,
consistent, and can be used for remote patient rehabilitation. Dysarthric
patients have physical incapacities such as trembling hands, due to the
weak coordination of muscles, which make the use of a keyboard or
a joystick-based interactive application less useful for their communi-
cation purposes. Speech recognisers specifically designed for them can
potentially be benefited from an effective automatic dysarthria severity
level classification approach.
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1.1. Objective intelligibility assessment of dysarthria

For implementing a reliable objective assessment method, proper
acoustic features have to be selected to capture the discriminative
intelligibility characteristics. The type and severity of dysarthria can
also be identified from acoustic features. Intelligibility rate is one of the
factors in these methods, and it evidently shows the severity level. In
the literature, pathological speech intelligibility assessment in general,
and detection and severity identification of dysarthria in specific are
done using different approaches.

In Kadi et al. (2013) prosodic features like mean pitch, jitter, shim-
mer, articulation rate, the proportion of the vocalic duration, harmonics
to noise ratio, and degree of voiced breaks are selected by linear dis-
criminant analysis (LDA) and classification of dysarthria severity levels
is performed by two approaches, namely a Gaussian mixture model
(GMM) and a support vector machine (SVM). The same authors have
proposed computational models to represent the auditory perceptual
knowledge in Kadi et al. (2016) by simulating the external, middle and
inner parts of the ear. The obtained auditory-based cues were combined
with the mel frequency cepstral coefficients (MFCC) and fed to GMM,
SVM, hybrid GMM/SVM classifiers for dysarthric speaker identification
and severity assessment. Another feature selection technique using
a genetic algorithm, from speech disorder-specific prosodic features
like spectral moments, formants, skewness and MFCCs is proposed
in Vyas et al. (2016). Detection and severity classification of dysarthria
is done here by an SVM classifier. Other complex features are also
explored in literature such as, the breathiness indices in Chandrashekar
et al. (2019a) and glottal parameters along with the openSMILE-based
acoustic features in Prabhakera and Alku (2018). These works also
used an SVM classifier. Audio descriptors extracted using multi-tapered
spectral estimation technique are employed in Bhat et al. (2017) with
an artificial neural network (ANN) at the classifier side. Perceptual
linear prediction (PLP) features along with the energy component and
moments are used in Martínez et al. (2015) to investigate the i-vector
subspace modelling for intelligibility assessment of dysarthric speech. A
linear predictor and a support vector regression predictor are compared
at the predictor side. Perceptually enhanced single frequency filtering
based cepstral coefficients (PE-SFCC) are proposed in Gurugubelli and
Vuppala (2019) for severity classification. This employed the concept of
single frequency filtering (SFF) for feature extraction, and the i-vector
subspace modelling with the probabilistic linear discriminant analysis
(PLDA) for classification.

While the above-mentioned works used machine learning classi-
fiers, more recent works concentrate on improving the performance
of deep learning models at the classification side too. MFCCs and log
filter banks are compared against i-vectors in Bhat and Strik (2020)
with a bidirectional long short-term memory (BLSTM) network clas-
sifier for identifying the dysarthric utterances from the healthy ones.
Transfer learning was explored in this regard to improve the sys-
tem performance. An attention-based LSTM model has been proposed
in Millet and Zeghidour (2019) for the same task. Here the neural
network jointly learns a filterbank, a normalisation factor and a com-
pression power from the raw speech waveforms, together with the
model architecture. Severity assessment of dysarthria has been done
using basic acoustic features such as MFCCs along with their statistical
moments in Joshy and Rajan (2021). Deep neural network (DNN),
convolutional neural network (CNN) and LSTM-based recurrent neural
networks (RNNs) are analysed at the classifier side against SVM. The
impact of speech-disorder specific features and i-vectors are studied
for the same task in Joshy and Rajan (2022). These works prove the
efficacy of the deep learning models against the machine learning
classifier. Two different novel strategies have been adopted in Tripathi
et al. (2020a,b), to implement speaker independent (SID) intelligibility
classification and dysarthria severity assessment systems using the
features obtained from DeepSpeech, an end-to-end deep learning-based
2

speech-to-text engine.
When the above-mentioned works used acoustic features at the
input side, there are works using time–frequency representations as
well. Log mel spectrograms have been used for the classification of
speech into ALS, PD or healthy, and further for the specific severity clas-
sification of ALS and PD in Suhas et al. (2020). They have highlighted
the fact that spectrograms work better than MFCCs on CNN models for
the proposed task. Mel scale spectrograms along with their deltas are
used with time-CNN and frequency-CNN models to capture temporal
and spectral variations separately for the early detection of ALS in An
et al. (2018). In contrast to this, joint spectro-temporal features from
mel scale spectrogram are used in Chandrashekar et al. (2019b) for
dysarthric speech intelligibility assessment. Two-dimensional discrete
cosine transform (2D-DCT) coefficients extracted from mel scale spec-
trogram were used with ANN, and spectrograms in different forms were
fed to CNN classifiers. This study analysed the performance of a time–
frequency CNN architecture against a time-CNN and a frequency CNN.
Their results revealed that the joint modelling of spectral and temporal
information by the former model works better than the latter models
which capture only one among these.

The authors have done another detailed investigation on the dif-
ferent time–frequency representations (TFRs) in Chandrashekar et al.
(2020). TFRs like short-time Fourier transform (STFT) and SFF, with
and without mel scale warping followed by perceptual enhancement
were studied. The resulting spectrograms were compared with constant-
Q transform (CQT) spectrograms and it was reported that the latter is
better among all the spectrograms studied, at the cost of computational
time. These works use light CNN architectures, and they have proved
to be better classifiers than ANNs due to their representation learning
capabilities. Spectrograms of short speech segments have been used
with residual neural networks (ResNet), recently in Gupta et al. (2021),
and has shown to be outperforming CNNs. A different approach is
presented in Tong et al. (2020) using an audio–video cross-modal deep
learning framework using both audio and video inputs. MFCCs and
the corresponding deltas of the audio files and pre-processed frames
of the video files are passed through independent CNN models to give
feature cubes, which are then passed to a fully connected network
for classification. Thus the advanced deep learning strategies raise
the possibility of improving the efficient understanding of the spectral
representation of speech.

1.2. Multi-head attention (MHA) mechanism and multi-task learning
(MTL) approach

Introduced in Vaswani et al. (2017) for machine translation tasks,
a ‘transformer’ is the transduction model that relies solely on the self-
attention mechanism, without involving any recurrent or convolution
operations. The self-attention or the intra-attention mechanism presents
a weighted average of different feature representations, where the
weights correspond to the relations between these representations.
The MHA mechanism introduces parallel computations inside the self-
attention. It has several attention layers running in parallel, which
allows the model to jointly attend to information from different rep-
resentation subspaces at different positions (Vaswani et al., 2017).
They have proven to be efficient in the domain of natural language
processing (NLP). When the MHA module provides cues to the main
words in a sentence in NLP, it provides the main regions or important
portions in an image to look at for interpretation. It is an idea rather
than a module, to focus on areas containing key information. It can
be interpreted as a vector of weights that give importance to different
elements and indicates their correlation. It has been successfully used
in image captioning (Xu et al., 2015), image classification (Dosovitskiy
et al., 2020), speaker recognition (India et al., 2019) and speaker
verification (India et al., 2021) tasks.

MTL is a training paradigm that works on the idea that, the machine
learning models may benefit from information shared between different

correlated tasks, when solved on the same data (Luu et al., 2020). MTL
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is based on the learning process of human beings by which, they can
execute multiple tasks accurately, with the integration of knowledge
acquired on doing several tasks. This integration allows humans to
rapidly learn with few examples, by learning concepts that are gen-
eralisable across multiple settings (Crawshaw, 2020). MTL allows the
deep learning models to share common feature representations learned
from multiple related tasks. This joint representation learning would
improve data efficiency and can lead to faster learning for related
tasks under data stringent conditions. Thus the high training data
requirement and computational demands imposed by deep learning
can be alleviated by MTL. On building deep learning models, this
is typically implemented by sharing the initial layers while solving
different tasks, and making the latter layers task-specific. Thus when
the initial layers capture task-specific representation of the input data,
this shared information is processed by the latter layers. MTL is actively
used for computer vision (Liu et al., 2019), as well as for speech
processing applications (Koizumi et al., 2020; Li et al., 2019; Tang
et al., 2016).

1.3. Motivation

The dysarthric utterances have characteristics embedded in short
segments like the bursts at the beginning and slurring periods or
long silence regions in between, depending on their severity. Hence,
we are motivated to use the attention mechanism to identify these
salience periods from the spectrograms. Unlike natural images dealt
with in computer vision domain, spectrograms are almost similar in
appearance. When normal people find them totally similar, a trained
speech specialist or a therapist can read from spectrograms with their
‘experience’. This would help them to infer details present in the speech
utterances represented by these spectrograms. This is because they
know ‘what’ to look for, and ‘where’ to look at. Thus the underlying
pathology or the severity characteristics can be intuitively identified
by a deep learning model with the concept of attention. Attention
mechanism has been able to improve the performance of a basic CNN
network for thorax disease classification in Guan et al. (2018). The
chest X-ray images where processed by the attention-guided CNN model
to give the salient lesion regions to ‘look at’ for the classification
procedure. We hypothesise that the attention mechanism could locate
the salience periods from the spectrograms and could leverage the
dysarthria severity recognition task.

The performance of automatic dysarthria severity assessment sys-
tems is strongly hindered due to the unavailability of large databases
and the high intra-class variability. The former is due to the strain
imposed on dysarthric patients for long recordings, and the latter is due
to the differences in the type of dysarthria and associated health im-
pairments of the patients within a particular class. MTL has leveraged
the performance of speaker verification and diarization systems in Luu
et al. (2020) by adding age and nationality as additional information.
Nativity and gender information have similarly added advantages to
speaker recognition in Montalvo et al. (2020). We hypothesise that
the inherent differences in gender, age and the type of dysarthria can
be learned jointly through MTL, and can mitigate the high intra-class
variability in dysarthria severity estimation. Hence an MTL approach
with these three auxiliary tasks is adopted. In literature, attention
and MTL have been jointly implemented for various problems like
speech enhancement (Koizumi et al., 2020), speech recognition (Qin
et al., 2019), and speech emotion recognition (Li et al., 2019). When
used in conjunction, they have shown to be efficient for these tasks,
compared to the baseline works. Inspired by these results, we aim to do
similarly using a CNN classifier with the spectrograms of the dysarthric
utterances as input.
3

1.4. Contributions of the work

This work aims to use the time–frequency representation of
dysarthric utterances via mel spectrograms with the advanced deep
learning techniques introduced in the domain of computer vision. The
major contributions of this work can be summed up as,

• Introduction of the MHA mechanism and the MTL approach for
dysarthria severity level classification.

• Ablation study of the network to individually analysis the two
methodologies.

• Analysis of the effectiveness of gender, age and disorder type
identification as auxiliary tasks.

• Comprehensive evaluation on the Universal Access dysarthric
speech corpus (UA-Speech) database, which allows comparison
with the pioneer works in literature.

2. System description

The proposed framework for automated dysarthria severity clas-
sification is depicted in Fig. 1. The dysarthric utterances from the
database are presented to the system in the form of mel spectrograms.
The feature encoding power of CNN networks for image classification
is exploited at the front-end. A ResCNN network is adopted for this,
and it is appended with an MHA-based transformer block. At the final
stage, the different auxiliary tasks are implemented to enable sharing of
mutual information for conceptualising MTL. The system components
are described in detail in the following subsections.

2.1. Front-end feature extraction

In this work, log mel spectrograms are used as the input features
to represent the dysarthric utterances. The mel spectrograms mimic
the human auditory system by smoothing the spectrograms to give
high precision in the low frequencies and low precision in the high
frequencies (O’shaughnessy, 1987). Thus it models the SLP’s hearing
perception to differentiate the dysarthria severity levels. Dysarthrics
are found to have reduced vocal loudness, breathy/hoarse/harsh voice
quality, reduced voice pitch inflections or monotone voice, and im-
precise articulation (Dias et al., 2016). These varied auditory percep-
tual attributes are embedded in these spectrograms, and point to the
underlying pathophysiology.

The UA-Speech database has utterances of duration varying between
one second to 10 seconds in general. The vocal strain involved during
speech production by the dysarthrics, and the pauses or breaks in
speech segments result in longer duration of dysarthric utterances
compared to their healthy counterparts. To preserve these relevant
features, the variable length audio files are not clipped to constant
duration, as in many of the previous works done in literature, but
trimmed on both sides to remove the silence regions. Silence trimming
is done using an energy-based voice activity detection at the beginning
and end of the utterances alone, thus the pauses occurring in the
voice segments are kept unchanged. Then overlapping triangular mel-
scaled filters are employed to extract the log mel spectrograms. These
spectrograms are preferred over the STFT-based spectrograms by the
statistical classifiers (Chandrashekar et al., 2019b), and hence used
here.

Fig. 2 shows the resized mel spectrograms of the word ‘PSYCHO-
LOGICAL’ corresponding to the utterances by speakers F03 (a ‘HIGH’
dysarthric) and F05 (a ‘VERY LOW’ dysarthric). The figures evidently
show the reduction in the strength of formants and harmonics in
the spectrogram of the ‘HIGH’ dysarthric, as shown by the second
spectrogram, when compared to that of the ‘VERY LOW’ dysarthric. The
poor articulation characteristics shown in the severe dysarthric utter-
ance have led to reduced sharpness of the corresponding spectrogram.
Thus, we can notice the efficiency of spectrograms in highlighting the
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Fig. 1. Block diagram of the proposed system.
Fig. 2. Spectrograms of the utterance ‘PSYCHOLOGICAL’ spoken by the ‘very low’ dysarthric F05 (left) and the ‘high’ dysarthric F03 (middle); the ResBLock structure as reproduced
from Li et al. (2017) showing the identity connection (right).
paralinguistic aspects through the spectro-temporal variations of the
utterances. They are more intuitive in nature, compared to the one-
dimensional speech characteristics. Hence, they prove to be capable of
being discriminative features to be used with the deep learning classi-
fiers. These spectrograms are then resized to 64 × 64 dimension. This is
done because the CNN classifiers require fixed-size images for the input
layer. The low dimension of 64 × 64 allows fast implementation, and
can be altered in future studies.

2.2. Feature encoding

The mel spectrograms are fed to a CNN encoder which efficiently
encodes the salient features. The encoder extracts the low-dimensional
features from the spectrograms and efficiently represents the spatio-
temporal information in the speech signals. The CNN feature extractor
used is an adapted version of the ResCNN-based Deep Speaker ar-
chitecture proposed for generating speaker embeddings in Li et al.
(2017). Since dysarthria severity classification can be considered a
speaker-group classification problem, we hypothesise that this model
could be adapted suitably. The distinctive characteristics found in
the spectrograms can be extracted by the ResCNN to distinguish the
dysarthria severity levels. Fig. 2 shows the ResBLock structure at the
right. The residual connections perform identity mapping with no
additional parameters, and enable deeper networks to learn with-
out over-fitting. It eases optimisation and introduces no additional
computational complexity.

As in Li et al. (2017), the classifier has stacked up 2D convolutional
(conv2D) layers of filter size 5 × 5 and stride 2 × 2, with the number
of filters increasing from 32, in powers of 2. Each of these layers is
followed by three ResBlocks, the number of filters in them being equal
4

to the preceding conv2D layer. Deep Speaker was built for four conv2D-
ResBlock structures, and was trained using triplet loss. However, our
classifier is trained end-to-end by stochastic gradient descent (SGD)
approach with back-propagation, and has only two blocks. Thus the
number of blocks in the CNN feature map output is 16 × 16 and the
number of feature maps at the end is 64.

2.3. MHA module

The attention mechanism was introduced in Bahdanau et al. (2014)
for neural machine translation implemented using RNN-based encoder–
decoder architectures. It tackled the bottleneck problem arising from
the usage of fixed-length encoding vectors. This was done by bringing
in the concept of using the most relevant portions of the input for
decision-making. This flexible focusing is done using three attributes,
namely query, values, and keys. The query is matched against a set
of keys using a dot-product operation to generate a score value. These
scores become the weights when passed through the softmax function.
The value vectors corresponding to the keys are then weighed and
summed to generate the ‘attention’. The scaled dot-product attention
and the MHA module comprising multiple parallel scaled dot-product
attentions were proposed in Vaswani et al. (2017). From Vaswani
et al. (2017), we have reproduced the visual representation of these
modules in Fig. 3, where Q, V, and K represent matrices stacking the
vectors query, values, and keys respectively. The query and key vectors
are of size dK and WQ, WK and WV are the projection matrices used
in generating the ℎ different subspace representations of the query,
key and value matrices. The assignment of the weight to each value
is via a compatibility function of the query with the corresponding
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Fig. 3. Scaled dot-product attention (left) and multi-head attention (right).
Source: Reproduced from Vaswani et al. (2017).

key (Vaswani et al., 2017). The matrices Q, K and V are then given
to generate the output of the attention function as,

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐺𝑉 𝑇
√

𝑑K
)𝑉 (1)

Instead of performing a single attention function, MHA linearly projects
the queries, keys, and values ℎ times. The number of heads, ℎ refers
to the different learned projections. Upon each of these projections, a
single attention mechanism is applied in parallel. These outputs are
then concatenated and projected again to produce the final output.
Thus information from different representation subspaces is obtained.
MHA output can be obtained using the projection matrix WO as,

𝑀𝐻𝐴(𝑄,𝐾, 𝑉 ) = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑h)𝑊 𝑂 (2)

where, each attention head is then computed as,

ℎ𝑒𝑎𝑑i = 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊 i
𝑄, 𝐾𝑊 i

𝐾 , 𝑉 𝑊 i
𝑉 ) (3)

The attention mechanism can identify the different regions of interest
from the encoded spectrograms. MHA is expected to capture different
aspects from the same input, that can efficiently discriminate the
severity levels. These can relate to the monotonicity, slurring effects,
and long pauses found in the dysarthric utterances. It is observed that
the utterances of the ‘high’ dysarthrics are of longer duration than
that of ‘low’ dysarthrics, due to these pauses and nasal irregularities
involved during the speech production, and the shivering and breaks
in the voice segments. Identification of these features is relevant to the
severity identification, and the objective function of the MHA module
ensures that each head captures some dissimilar information.

Dimension of the linear space the input is to be projected after
temporal summarisation is 64∕ℎ. The output dimension of the MHA
module after query-key vector multiplications and weighing of the
value vectors is chosen to be 256. Thus we get a concatenation of the
feature vectors generated by all the heads, and the network can extract
different kinds of information from the different feature subspaces.
This is followed by a normalisation layer for faster training and better
convergence, and two fully connected dense layers of 256 and 128 units
each. A batch normalisation layer and a 0.1 dropout layer are added in
between these dense layers to improve the generalisation capability of
the system. Output layers of the auxiliary tasks take the output of the
dense layer with 256 units as input, whereas the main task takes the
final dense layer output of 128 dimension.

2.4. MTL and classifier end

The UA-Speech database (Kim et al., 2008) used for evaluating
the system has utterances from patients suffering from CP. These may
5

Table 1
Dysarthric speaker description of the UA-Speech database.
Severity List of speakers Age Type

HIGH M01, M04 < 30 Spastic
M12 < 30 Mixed
F03 >= 30 Spastic

MEDIUM F02, M07, M16 >= 30 Spastic

LOW F04 < 30 Athetoid
M05 < 30 Spastic
M11 >= 30 Athetoid

VERY LOW F05, M08, M09 < 30 Spastic
M10 < 30 Mixed
M14 >= 30 Spastic

exhibit characteristics such as slurred, slow, and less-intelligible speech
with hoarse or breathy voice quality, depending on the severity and
type of the disease. Based on the primary motor deficit, CP is neuro-
logically classified as spastic, hypotonic, athetoid (dyskinetic), ataxic
and mixed. Since the underlying pathomechanisms are different, there
would be equivalent differences in the way the speech motor con-
trol is influenced, resulting in perceptually distinct dysarthria syn-
dromes (Theresa Schölderle and Staiger, 2013). There are patients
within the age group 18 to 58, and of both genders. Since age and gen-
der are indexical variables in human speech, they introduce different
linguistic patterns to the speech. Thus it is reasonable to check if there
is any beneficial factor in these parameters for improving the dysarthria
severity level estimation.

These auxiliary tasks are implemented by adding extra three dense
layers at the end to generate the probability distributions over these
tasks. The activation function of the output layer corresponding to age
and gender is sigmoid, as they are binary classification problems, and
thus the number of output nodes in these layers is two. The output
layers corresponding to disorder type and severity level have three and
four nodes, respectively, and are using softmax activation function. A
sample output probability generation is depicted in the system block
diagram in Fig. 1. The model is jointly optimised using the objective
function:

𝐿 = 𝛼𝐿𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 + 𝛽𝐿𝑡𝑦𝑝𝑒 + 𝛾𝐿𝑎𝑔𝑒 + 𝜃𝐿𝑔𝑒𝑛𝑑𝑒𝑟 (4)

where 𝐿𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦, 𝐿𝑡𝑦𝑝𝑒, 𝐿𝑎𝑔𝑒 and 𝐿𝑔𝑒𝑛𝑑𝑒𝑟 are the losses for the classification
tasks on dysarthria severity level, the disorder type, the speaker age,
and the gender, respectively. 𝛼, 𝛽, 𝛾 and 𝜃 are their respective loss
weights. The value of 𝛼 always remains one, while the other weights
are varied between 0.25 and 1 to analyse the impact of the auxiliary
tasks on the severity classification. The classification of speakers based
on the above-mentioned auxiliary tasks can be viewed in the different
columns of Table 1.

3. Database

The UA-Speech database (Kim et al., 2008) is used for evaluating
the proposed system. It has utterances from 13 healthy speakers and 19
dysarthrics diagnosed with CP. However, the data of only 15 patients
are available, as given in Table 1. The severity levels are assigned as
— very low, low, medium and high, based on the intelligibility ratings
by five naive listeners, as follows: (0–25)%-high, (25–50)%-medium,
(50–75)%-low and (75–100)%-very low. The first letter of the speaker’s
name ‘F’ or ‘M’ indicates the gender, and thus there are four female
speakers and 11 male speakers. The speakers are categorised based
on their age into two groups: aged 30 and above, or aged below 30.
They are also differentiated based on their disorder type as indicated
in Table 1. The number of speakers per class would seem to be small.
But the UA-Speech database is the latest and the largest of the available
dysarthric speech databases with speakers from all four severity levels.
The 15 dysarthric subjects evaluated contribute to about 17 hours of
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speech. This is because speaking is a tiring task for the dysarthrics and
their physical fatigue and frustration hinder long recordings.

The utterances present in the database correspond to three repeti-
tions of the 10 English digits, 19 computer commands, 26 international
radio alphabets, 100 common words in the Brown corpus and 300
distinct uncommon words, totalling 765 word utterances per speaker.
We used the common words alone for training, and the uncommon
words for testing, which means that the network is evaluated on unseen
words, which measures its robustness. Thus we get 465 words per
speaker for training and 300 per speaker for testing. The audio files
are sampled at 𝑓 s = 16 kHz and is recorded through an 8-microphone
rray, as well as with a digital video camera (Kim et al., 2008). The
ixth channel in the array had the highest signal-to-noise ratio, and
ence those audio files are used in the work.

. Experimental framework

.1. Baseline system

Being the recent work reporting high accuracy for the proposed
ask, we adopt the best method of Chandrashekar et al. (2020) as the
aseline system. CQT spectrograms are used with a time–frequency
NN model for the classification of the dysarthria severity levels. The
uthors had analysed the effect of varying minimum frequency (𝑓𝑚𝑖𝑛)
nd the number of bins per octave (𝑏). They have concluded that 60 Hz
nd 120 Hz work best as 𝑓𝑚𝑖𝑛 for male and female speakers respectively,
s the fundamental frequency is lesser for the male speakers compared
o the female speakers. 𝑏 was set to 12, and increased in steps of 12 to
8. It was observed that the frequency resolution improved with such
n increase, while the temporal resolution decreased. We used 24 as 𝑏,
s it had the best accuracy. Thus, the CQT spectrograms are extracted
ith these parameters and the maximum frequency (𝑓𝑚𝑎𝑥 = 𝑓𝑠∕2) as
kHz.

The time–frequency CNN architecture employed in the work had
ne input layer, three hidden layers, and a fully connected layer of
oftmax activation with hidden units equal to the number of classes. We
ave built the CNN classifier with the same specification: convolution
ayer followed by max-pooling in the first two hidden layers, and a
onvolutional layer alone in the third one. All the layers have 32 filters
f kernel size 3 × 3. They have no padding, a stride of 2 and ReLu
ctivation. The input dimension is 100 × 100 × 3. The model was
rained and validated for five epochs. Each epoch had 17 iterations and
he learning rate was chosen to be 0.001.

.2. Feature design and model evaluation

After silence trimming at both ends, the variable length log mel
pectrograms are extracted using 128 overlapping triangular mel scaled
ilters, for a frame size of 25 ms and frame shift of 5 ms. These are then
esized to 64 × 64 dimension. The models are evaluated by training
hem for 60 epochs, with early stopping applied after a patience of 30
pochs. 10% of the training data is used for validation. The batch-size is
hosen to be 128 (best among 32, 64 and 128) and the learning rate to
e 0.001 (best among 0.01, 0.001 and 0.0001), after hyper-parameter
uning on the validation data. Categorical cross entropy and softmax
ct as the loss function and activation function respectively for 𝐿𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦

and 𝐿𝑡𝑦𝑝𝑒, while binary cross entropy and sigmoid function act alike
for 𝐿𝑎𝑔𝑒 and 𝐿𝑔𝑒𝑛𝑑𝑒𝑟. As mentioned, SGD is the optimiser used with a

omentum of 0.9 (best among SGD, Adam and adaptive delta).

. Results and analysis

Performance analysis of the proposed system against the baseline
ystem, and the detailed study on varying the number of attention
6

eads and loss weights are explained below.
Table 2
Variation of the severity classification accuracy (%) with the number of attention heads
and loss weights of the auxiliary tasks (the best result in bold).

Method Parameter Accuracy

MHA Heads 1 2 4 8
ℎ 82.67 84.27 87.49 86.15

MTL Loss weights 0.25 0.5 0.75 1
𝛽 59.42 91.20 90.69 89.28
𝛾 63.55 47.89 67.55 33.33
𝜃 89.31 89.31 90.09 90.75

5.1. Impact of number of attention heads

MHA is more expressive than vanilla attention models, and the
system performance is influenced by the number of parallel attention
layers, or heads (ℎ). With the increasing number of heads, the accuracy
is likely to improve. It is a hyper-parameter to be looked at for improv-
ing the system performance. It is varied between 1 to 8, and the results
are shown in the first row of Table 2. This reports the performance of
the ResCNN+MHA system, without including the MTL approach. The
best accuracy is found at ℎ = 4, and as expected the accuracy drops
off with too many heads (Vaswani et al., 2017). With the increasing
number of heads, the number of trainable parameters increases. Also,
since the heads within a layer are independent, in some cases, some of
the heads may be capturing irrelevant or less useful data. It has also
been shown in Michel et al. (2019) that, many of the attention heads
can be removed at test time without significantly impacting the system
performance. Thus the number of heads considered in our study is not
further increased.

5.2. Impact of loss weights

The MTL approach was incorporated by adding extra dense layers
at the end for the auxiliary task classification. By this concept of ‘hard
parameter sharing’, the model would be less prone to over-fitting. But
to identify the impact of each of the adopted auxiliary tasks, the loss
weights are tuned. The effect of varying the loss weights of the auxiliary
tasks is shown in the latter rows of Table 2, on the ResCNN+MTL
system, without MHA module. The weights of the different tasks are
changed from 0.25 to 1 to study their individual contribution to the
main task. This was done by taking each task alone as an auxiliary
task to the severity identification. Hence, the ResCNN+MTL system
has two softmax dense layers at the end, one for the main dysarthria
classification, and another for the auxiliary task whose weight is being
tuned. The best value of 𝜃 being one indicates that, incorporating
gender identification is really beneficial to the severity classification.
It has mitigated the confusion differentiating the male and female
dysarthric speech and improved the baseline model accuracy by over
4%. However, the best accuracy on using type identification alone as
the auxiliary task was obtained for 𝛽 = 0.5, and a further increase
led to deterioration. This shows that overweighing the auxiliary task
will lead to insignificant feature learning for the severity identification,
at the gain of improved disorder-type classification accuracy. Thus, a
proper choice of loss weights is important in MTL. Considering the age
group classification alone as an auxiliary task has led to a reduction
in the accuracy of the model for all values of 𝛾. This demonstrates the
phenomenon of negative transfer or destructive interference, wherein
the performance of the main task decreases as the model focuses more
on improving the results of the auxiliary task. The features shared
would not be beneficial and thus a proper choice of the auxiliary task
is also very important in MTL.
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Fig. 4. t-SNE plots of the baseline model (left), ResCNN model (middle) and the proposed model (right).
Fig. 5. Confusion matrix given by the baseline model (left), ResCNN model (middle) and the proposed model (right).
Table 3
Severity classification accuracy of the different classifiers (%) (the best
result in bold).

SI no. Classifier Accuracy

1 CQT-CNN (Chandrashekar et al., 2020) 84.24
2 ResCNN 87.14
3 ResCNN + MHA 87.49
4 ResCNN + MTL 91.11
5 ResCNN + MTL2 92.02
6 ResCNN + MHA + MTL2 95.75

5.3. Ablation study

Table 3 shows the performance of the various systems against the
baseline system. For the independent implementation of the ResCNN
model, after the conv2D-ResBlocks, the affine and normalisation layers
are added. For the ResCNN+MHA system, the MHA module follows
the ResCNN encoding block, and the ResCNN+MTL system has four
dense layers instead of one, with the best-chosen loss weight val-
ues, namely, 𝛽 = 0.5, 𝛾 = 0.75 and 𝜃 = 1. To mitigate the effect
of negative transfer, MTL was performed excluding age identifica-
tion, giving the ResCNN+MTL2 model. A better result was obtained
and this means that, there is no significant difference in the severity
characteristics with the patient’s age, and adding age-related features
would lead to misclassifications of the severity level. Hence, the final
model is implemented using the same strategy and is referred to as
ResCNN+MHA+MTL2.

An accuracy of 92.76% was initially obtained under this setting,
but to get a better-refined model, a grid search was done for different
values of 𝛽 and 𝜃 on this final model. Thus on the ResCNN model with
the MHA module, a final round of hyper-parameter tuning was done
with respect to 𝛽 and 𝜃, which correspond to the advantageous auxiliary
tasks of disorder-type and gender identifications. The best classification
accuracy of 95.75% was obtained for 𝛽 = 0.75 and 𝜃 = 1. Hence, these
loss weights are chosen for the proposed model.
7

In general, the more the number of related tasks the model learns
simultaneously, the less its chance of overfitting. This is because, by
learning multiple tasks, it identifies a representation capturing the
important factors contributing to all of the tasks and hence, less prone
to overfitting on the main task. But the ablation study demonstrates the
need to properly identify the auxiliary tasks and their corresponding
loss weights, so as to boost the model’s performance on the main task.

It can be observed that the proposed system leads the baseline
system by over 11%, and the ResCNN model by over 8%, which sug-
gests that both MHA and MTL substantially contribute to the severity
classification accuracy. This is again validated by the t-distributed
stochastic neighbour embedding (t-SNE) (Van der Maaten and Hinton,
2008) plots drawn from the output vectors produced by the snippets
from the last dense layer of the trained models in Fig. 4. Good clustering
is exhibited by the proposed model, in contrast to that shown by the
baseline models. Thus the severity levels are well differentiated by the
proposed system. The normalised confusion matrices of the baseline
models and the proposed system are shown in Fig. 5. It can be observed
that, a minimum of 93% accuracy is guaranteed in the identification of
all the four severity levels by the proposed system, in contrast to the
baseline systems which work poorly on the border class ‘very low’.

5.4. Statistical analysis

The proposed model was evaluated by testing on ‘uncommon words’
of the UA-Speech database, after being trained on all the other ut-
terances. This train–test partition is the widely used data handling
strategy on the UA-Speech database by almost all the pioneer works
in literature, some of them being Gurugubelli and Vuppala (2019),
Tripathi et al. (2020b,a), Chandrashekar et al. (2019b), Joshy and
Rajan (2021, 2022). But since the available training data is limited,
and the results are not reported using any cross-validation strategy, the
improvement of 11.51% obtained over the baseline may be doubted to
be unreal, as a result of any statistical fluke. To reaffirm the impor-
tance of the proposed approach, the classifiers are compared using the
widely used statistical test, namely, McNemar’s statistical hypothesis
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Fig. 6. Contingency tables given by the proposed model against the CQT-CNN model (left) and the ResCNN model (right).
test (Everitt, 1992). This test was adopted as per the findings of
Dietterich in Dietterich (1998) since our test data is fixed, comprising
of the uncommon words of every speaker, and repeated test cases
are hence not needed. This is different to the random/fixed subsets
used in repeated evaluations as in the ensemble/k-fold cross-validation
methods using any resampling technique. Hence, the data variability
issue occurring due to the selection of train–test split in the McNemar
test results is guaranteed to be absent in our test case.

The skill measure adopted for comparing the models is the classi-
fication accuracy. The contingency table is constructed based on the
success(1)/failure(0) measure of the two models being compared. It is
of the form,

[

𝑛11 𝑛01
𝑛10 𝑛00

]

where, 𝑛11 indicates the count of the dysarthric utterances that were
correctly classified by both the models, and 𝑛10 indicates the count
of the utterances correctly classified by model 1 but misclassified by
model 2. Similarly the other two counts 𝑛01 and 𝑛00 are defined.
Thus the total number of samples in the test set would be the sum
of these, as 𝑛 = 𝑛00 + 𝑛01 + 𝑛10 + 𝑛11. When doing the statistical
hypothesis test, the null hypothesis (𝐻0) is defined as the condition
𝑛01 = 𝑛10, that is the two models have the same error rate or the
same proportion of misclassifications. The McNemar’s test checks for
the marginal homogeneity in the contingency table by testing if there
is a significant difference between the counts 𝑛01 and 𝑛10. This is
done using the test statistic 𝑡, defined in Everitt (1992) to include the
continuity correction term −1 in the numerator as,

𝑡 =
(|𝑛01 − 𝑛10| − 1)2

(𝑛01 + 𝑛10)
(5)

This test statistic (𝑡 statistic) has a Chi-Squared distribution with 1
degree of freedom, and if 𝐻0 is accepted, then the probability that
𝑡 > 𝜒2

1,0.95 = 3.841459 is less than 𝛼 = 0.05. This test is implemented
in Python using the mcnemar() function of the Statsmodels module.

The 𝑝-value calculated from 𝑡 statistics is compared with an alpha
value to make the final decision as

• 𝑝 > 𝛼: fail to reject 𝐻0, both models have a similar proportion of
errors on the test dataset.

• 𝑝 ≤ 𝛼: reject 𝐻0, there is a significant difference in the proportion
of errors, indicating one is better than the other.

The contingency tables obtained from the McNemar test done on
the proposed ResCNN+MHA+MTL2 model against the baseline CQT-
CNN model and the basic ResCNN model are shown in the left and
right figures in Fig. 6 respectively. We can find the difference in the
proportions of the errors by looking at the values corresponding to
𝑛01 and 𝑛10. A large difference is clearly visible, which indicates the
effectiveness of using the proposed model against the baseline systems.
On calculating the test statistics, 𝑡 = 323.21 and 𝑡 = 252.02 were
obtained respectively, which both resulted in 0.00 p-values. Hence
𝐻0 is rejected in both cases on taking 𝛼 = 0.05, which proves that
8

the margins of accuracy score gained by the proposed system are
statistically significant.

Further analysis was done using the precision (P), recall (R), F1
score, and the area under the ROC curve (AUC) measures, to compare
the proposed model against the baseline systems. These measures are
significant since the dataset studied is of limited size and is unbalanced
in the number of speakers within the four severity levels. Table 4 gives
the results. We find that when the ResCNN model was capable of lifting
the performance of the baseline CQT-CNN model in terms of almost
all measures, it could not improve the recall rate and F1 scores of
the ‘very low’ class significantly. However, the proposed model was
capable of this. Also, we find a large difference in the P(0.67 to 0.95
by CQT-CNN and 0.72–0.98 by ResCNN) and R(0.72 to 0.93 by CQT-
CNN and 0.72–0.97 by ResCNN) values among the different classes for
the two baseline models compared to the almost uniform performance
over various classes given by the proposed model (0.93 to 0.99 for P
and 0.93 to 0.98 for R).

5.5. Speaker-dependency check

To evaluate the efficacy of the proposed system on unseen speakers,
a comprehensive round-robin leave-one-speaker-out (LOSO) experi-
ment is performed. This is the most applied approach for analysing
the system’s performance under the SID scenario in the pioneer works
on dysarthric severity classification such as Gurugubelli and Vuppala
(2019), Tripathi et al. (2020b), Chandrashekar et al. (2019b), Joshy
and Rajan (2022). Since there are 15 speakers in the UA-Speech
database, 15 rounds of experimentation are required, whose average
is taken. This means that, in each round, data from 14 speakers would
be taken for training, and the data of the left-out speaker is taken for
testing. The test is done using the seen (465 words used in training)
and unseen (300 uncommon words preserved for testing) words. These
are referred to as ‘Test 1’ and ‘Test 2’ respectively. Thus when Test 1
measures the system robustness against a new dysarthric speaker, Test
2 checks for its robustness against new vocabulary as well. These are
important in understanding the system’s applicability in evaluating a
new dysarthric speaker.

Table 5 gives the results of the LOSO cross-validation experiment
on the proposed model and the baseline classifiers. We find that there
is a good margin of improvement in terms of the average classification
accuracy over the baseline classifiers by the proposed model on both
tests. All the classifiers give acceptable results on the border classes
‘very low’ and ‘high’ under the SID scenario but very poor results on
the intermediate classes ‘low’ and ‘medium’. This is in agreement with
the findings reported in Tripathi et al. (2020b), Joshy and Rajan (2022)
and occurs due to the unbalanced nature of the UA-Speech database.
The baseline CQT-CNN classifier has almost 0% accuracy in dealing
with these classes, as they were mapped to the nearby border classes
comprising more speakers during training.

When the proposed model was implemented with the best perform-
ing loss weights in the SD scenario, namely 𝛽 = 0.75 and 𝜃 = 1, the
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Table 4
Precision (P), recall (R), F1 score and area under the ROC curve (AUC) measures of the different classifiers.

Severity level CQT-CNN ResCNN Proposed model

P R F1 AUC P R F1 AUC P R F1 AUC

Very low 0.95 0.72 0.82 0.85 0.98 0.72 0.83 0.86 0.99 0.93 0.95 0.96
Low 0.91 0.93 0.91 0.95 0.88 0.95 0.91 0.96 0.96 0.97 0.97 0.98
Medium 0.67 0.91 0.77 0.90 0.72 0.97 0.83 0.94 0.96 0.97 0.96 0.98
High 0.91 0.93 0.91 0.95 0.92 0.94 0.93 0.95 0.93 0.98 0.95 0.97
Table 5
Average LOSO cross-validation accuracy (in %) for the classifiers using known words (Test 1) and unknown words (Test 2)
for testing.

Severity level Test 1 Test 2

CQT-CNN ResCNN Proposed model CQT-CNN ResCNN Proposed model

Very low 52.13 51.01 64.52 53.80 36.53 47.80
Low 1.22 6.67 16.27 0.33 7.77 15.55
Medium 0.51 10.03 11.90 0.88 16.22 21.22
High 20.59 42.47 42.42 21.99 41.83 46.25

Total 23.21 31.67 38.45 24.04 28.13 35.62
average accuracy was only 34.69% for Test 1 and 30.31% for Test
2. We investigated if the conflicting gradients of the different tasks
prevented the trunk (lower-level layers with shared representations)
from fully utilising the different task-specific information to improve
the dysarthria severity classification. So, the weights of the auxiliary
tasks were tuned again with smaller values [0.15, 0.25, 0.35, 0.5],
and the best performing classifier was found to be using 𝛽 = 0.25 and
𝜃 = 0.35. The results of this model are reported in Table 5, and an
appreciable gain over the baseline classifiers can be observed in all
the severity levels. As expected, the accuracy of correctly identifying
the dysarthric severity level of a new speaker from the words seen
during training (Test 1) is higher than the accuracy observed on using
unseen words (Test 2). This again points to the fact that the speech
deficits common to the speakers of each severity level are visibly seen
in their utterances of the same word, such as a pause in between, or a
missed/repeated phoneme.

The proposed model gave an accuracy of 35.62% on testing with
uncommon words, against the best accuracy of 54% reported in the
literature Tripathi et al. (2020b) under the SID scenario with a sim-
ilar testing strategy. But it is important to note that this gain was
obtained by using the posteriors of the DeepSpeech-1 ASR model that
used 1000 hours of data during training, and the system was specif-
ically built for the SID setting. In this work, we aimed to investigate
if the chosen auxiliary tasks synergise to understand the underlying
dysarthric characteristics to properly identify the severity levels, under
the stringent data conditions. It was found from the SID results that,
even in the intermediate classes the proposed approach could uplift the
performance of the baseline ResCNN system. This insight can be further
developed to build a reliable dysarthria severity assessment system.
Improvement can be further obtained using advanced loss weighting
strategies such as dynamic weight average and uncertainty weighting.

5.6. Discussion

To the best of our knowledge, this is the first detailed investigation
on MHA and MTL for dysarthria severity classification. We obtained a
classification accuracy of 95.75%, at a gain of 11.51% over the baseline
system, which is a good margin. This throws light on using MHA
and MTL for improving the performance of the proposed task. It was
found that the age of the dysarthric patient does not correlate with the
severity characteristics, and hence cannot map to the correct severity
level of the patient. Thus the study also brings out the fact that proper
auxiliary tasks have to be chosen for implementing MTL. In comparison
with the pioneer works in literature, we found that the obtained result
is appreciable. The results of Chandrashekar et al. (2019b, 2020) a
nd Gupta et al. (2021) are reported on subsets of the UA-Speech
9

database and hence not comparable. Tripathi et al. (2020b) reports an
accuracy of 97.40% using SID textual-derived features extracted using
a pre-trained Deep Speech-1 ASR model, trained with 1000 hours of
data. However, our result was obtained on approximately 17 hours of
dysarthric speech, and highlights the efficacy of MHA and MTL ap-
proaches for the proposed task even with limited data. An improvement
is surely expected with the availability of larger data. However, the
difficulty in speaking faced by the dysarthrics leads to difficulty in
data collection, resulting in the low resource of dysarthric speech data.
This is the main reason for the low accuracy obtained under the SID
scenario. Even then, the model proved to be more efficient than the
baseline system by giving a margin of 11.58%.

Further improvement in the proposed system performance can po-
tentially be achieved by using a better time–frequency representation,
and an advanced fine-tuned feature encoder at the front end. We
would like to explore the potency of Gabor spectrograms at the feature-
end as future work. The residual network can possibly be improved
by using the squeeze-excitation (SE) mechanism or the more recent
competitive SE mechanism with inner-imaging. This would reweight
the channel-wise responses and model their inter-dependencies using
the self-attention mechanism. Also, an analysis of building architectures
for the task-specific branches across the three different tasks can be
done on the improved shared trunk. Data augmentation also can be
experimented as future work, with a deep convolutional generative
adversarial network (DCGAN) or a wave generative adversarial network
(WaveGAN). DCGAN can generate additional mel spectrograms for the
training procedure, whereas WaveGAN can generate audio files, which
can be listened for manual inspection. Again, the data scarcity would
pose a challenge to such a system.

6. Conclusion

Automated assessment of the dysarthria severity level can help
clinicians for easy diagnosis of the progression of the disease. This
work analysed the effect of incorporating an MHA module and adopting
the MTL approach at the classifier end for dysarthria severity level
classification. Joint learning of the different subspace representations
by the former mechanism, and shared feature descriptions about the
gender and disorder type by the latter were found to be beneficial in
correctly detecting the severity level. This novel approach promises an
enhancement in the performance of an automated dysarthria severity

classification system under data-stringent conditions.
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