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Abstract
Hypokinetic and hyperkinetic dysarthria are motor speech dis-
orders that appear in patients with Parkinson’s and Huntington’s
disease, respectively. They are caused due to progressive le-
sions or alterations in the basal ganglia. In particular, Hunting-
ton’s disease (HD) is known to be more invasive and difficult
to treat than Parkinson’s disease (PD), producing more aggres-
sive motor and cognitive alterations. Since speech production
requires the movement and control of many different muscles
and limbs, it constitutes a highly complex motor activity that
may reflect relevant aspects of the patient’s health state. This
paper proposes the discrimination between patients with PD,
HD, and healthy controls (HC) based on different speech di-
mensions. Speaker models based on Gaussian-mixture model
supervectors are created with the features extracted from each
speech dimension. The results suggest that it is possible to dis-
tinguish between PD and HD patients using the supervectors-
based approach.
Index Terms: Parkinson’s disease, Huntington’s disease,
Pathological speech, Articulation, Phonation, Prosody.

1. Introduction
Parkinson’s and Huntington’s diseases have captured the atten-
tion of the research community since many years ago. Both dis-
eases cause different motor and non-motor impairments, con-
tributing to a significant decrease in the quality of life of pa-
tients [1]. On the one hand, Parkinson’s disease (PD) is charac-
terized by symptoms such as resting tremor, bradykinesia, rigid-
ity and freezing of gait [2]. Most of PD patients develop sev-
eral speech deficits which are grouped and called hypokinetic
dysarthria. Dysarthric speech appears as the result of losing the
control of the muscles and limbs involved in the speech produc-
tion process. Typical characteristics of hypokinetic dysarthria
include monoloudness, reduced voice quality, monotonicity,
imprecise pronunciation of consonants and vowels, lack of flu-
ency, voice tremor, and other characteristics [3, 4]. On the other
hand, Huntington’s disease (HD) produces involuntary move-
ments or chorea, cognitive deficits, dystonia, and rigidity that
appear even in patients in early stages of the disease [5]. HD
patients develop hyperkinetic dysarthria, which appears primar-
ily as a consequence of chorea. The most relevant deficits in
speech include phonatory dysfunction, unpredictable interrup-
tions of articulation, and abnormal prosody [6].

Therefore, PD and HD could provide a theoretical model
for the evaluation of speech patterns connected with hypoki-
netic and hyperkinetic dysarthria, which are often counterac-
tive. This might be helpful in situations like estimation of effect
of levodopa-induced dyskinesia that may lead to hyperkinetic
speech patterns in PD [7] as well as effect of pallidal deep brain

stimulation on speech in patients with dystonia that may both
improve hyperkinetic but aggravate hypokinetic speech aspects
as a negative side-effect of stimulation [8]. However, the sci-
entific community has lees explored the classification between
hypokinetic and hyperkinetic dysarthrias. For example, in [9],
the authors analyzed the effect of both diseases in the initiation,
planning, and production of speech. 12 PD patients, 12 HD
patients, and 12 HC subjects were evaluated. The authors ex-
tracted different prosody features and concluded that the most
discriminating ones for HD are the ones that model changes in
syllable duration, and the duration of pauses in the sentences.
For PD patients, only the duration of the sentences was altered.
Prosody impairments were also studied in [10], where the au-
thors considered a set with 7 PD patients, 5 HD patients, and 12
HC subjects. Several acoustic features were extracted includ-
ing duration, intensity, and durational accent. The authors con-
cluded that HD patients presented a reduction in the duration,
tone, and volume of their voice, while for PD patients there was
a slight decrease in the duration. The authors in [11] introduced
an automated method for the analysis of vocal tremor in multi-
ple neurological diseases. The authors included 240 participants
divided into 9 groups of pathologies among which there were 40
PD and 20 HD patients. The authors observed that 65% of the
HD patients showed abnormal vocal tremor while only 20% of
the PD patients showed the pattern. Finally, in [12] the authors
proposed guidelines for speech recording and acoustic analyses
in dysarthrias. They analyzed data from 50 HC subjects, 30 PD
patients, and 30 HD patients. The authors demonstrated that the
hyperkinetic dysarthria group had more affected speech dimen-
sions compared with the HCs than the hypokinetic speakers.

In this work, we studied hypokinetic and hyperkinetic
dysarthria in native Czech patients with PD and HD. Three dif-
ferent speech dimensions were evaluated: articulation, phona-
tion, and prosody. The analyses are based on Gaussian mix-
ture model GMM [13] supervectors, which are created for
each speech dimension. Different Universal Background Model
(UBM) were generated using German and Spanish corpora. Fi-
nally, each supervector and their combination were used for
two classification scenarios: PD vs. HD, and PD vs. HD vs.
HC. We also tried to associate the abnormal patterns observed
in the speech of each subject’s group with different types of
dysarthria. As far as we know, this is one of the first studies that
addresses the topic of classifying between PD and HD subjects
considering different speech dimensions.

2. Data
2.1. Recordings considered to train the UBM

Two Parkinson’s databases were considered. The first one is
PC-GITA [14] which contains recordings of 50 PD patients and
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Figure 1: General methodology addressed in this study to model the speech of patients with neurodegenerative disorders using GMM
supervectors created with information extracted from articulation (Art.), phonation (Phon.), and prosody (Pros.) features. Fusion:
Fusion of supervectors from articulation, phonation, and prosody. PCA.: Principal component analysis computed from the fusion
supervector. PD: Parkinson’s disease. HD: Huntington’s disease. HC: Healthy controls. MAP: Maximum a posteriori.

50 HC subjects, all of them native speaker of Colombian Span-
ish. The corpus is balanced in age, gender, and education level.
The second corpus is composed with recordings of 88 PD pa-
tients and 88 HC subjects balanced in gender. All speakers in
this dataset were German native speakers [15]. Besides the
Parkinson’s databases, two more corpora with a large number
of utterances were considered for UBM training. These cor-
pora are mainly used for the training of speech recognition sys-
tems. The first database is called CIEMPIESS and consists of
17 hours of FM podcasts in Mexican Spanish [16]. The data
contain 16717 audio files recorded at a sampling frequency of
16 kHz. The second database was the Verbmobil corpus [17],
which consists of speech recordings from 586 German native
speakers with a total of 29 hours of dialogues. The data contain
11714 audio files recorded at a sampling frequency of 16 kHz.

2.2. Recordings considered to create the GMM supervec-
tors

Two different corpora were used in this study to evaluate the
proposed approach. Both consist of recordings of Czech speak-
ers. One includes 50 PD patients and 50 HC subjects [18].
Each patient used to create the supervectors were evaluated by
a neurologist expert according to the third section of the Uni-
fied Parkinson’s Disease Rating Scale (UPDRS-III). The other
corpus includes recordings of 40 HD patients and 40 HC sub-
jects [19], the Huntington’s patients were evaluated accord-
ing to the Unified Huntington’s Disease Rating Scale (UH-
DRS) [20]. Both corpora were collected in a quiet room with
using a head-mounted condenser microphone (Beyerdynamic
Opus 55) placed approximately 5 cm from the corner of the
subject’s mouth. None of the healthy participants had a his-
tory of neurological or communication disorders. Two speech
tasks were considered for this study: the rapid repetition of the
syllables /pa-ta-ka/ and a monologue (the participants were re-
quested to talk about their daily routines). Each signal was
down-sampled to 16kHz. Table 1 summarizes the demographic
information about the speakers.

3. Methods
The methodology addressed in this work consists of four main
stages: (1) the training of the UBM from the Spanish and Ger-

Table 1: Demographic information of the speakers. [F/M]: Fe-
male/Male. Time since diagnosis and age are given in years.
Values reported in terms of mean ± standard deviation.

Patients HC subjects PD/HD vs. HC
PD Czech

Gender [F/M] 20/30 20/30 ∗p=0.94
Age [F/M] 60.1±9/65.3±10 63.5±11/60.3±12 ∗∗p=0.32
Range of age [F/M] 41–72/43–82 40–79/41–77
Time since diagnosis [F/M] 6.8±5/6.7±5
UPDRS-III [F/M] 18.1±10/21.4±12
Speech item (UPDRS-III) [F/M] 0.7±0.6/0.9±0.5

HD Czech
Gender [F/M] 20/20 20/20 ∗p=1.00
Age [F/M] 49.5±14.1/47.7±12.2 50.1±13.9/48.3±12.3 ∗∗p=0.43
Range of age [F/M] 27–69/23–67 27–69/26–70
UHDRS [F/M] 27.1±10.7/26.8±12.7
Speech item (UHDRS) [F/M] 0.7±0.5/0.9±0.3

∗p–value calculated through Chi–square test.
∗∗p–value calculated through Mann-Whitney U test.

man databases using dynamic features of articulation, phona-
tion and prosody. (2) Adaptation of each speaker with PD, HD,
and HC in Czech using MAP adaptation. (3) New represen-
tations called supervectors are built using the vector of means
and the diagonal of covariance. (4) Classification of the Czech
subjects is performed using a support vector machine (SVM)
classifier. Two classification scenarios are considered: PD vs.
HD, and PD vs. HD vs. HC. This methodology is summarized
in Figure 1. Details of each method are presented below.

3.1. Feature extraction

Articulation, phonation, and prosody features were extracted to
model different deficits that appear in the speech of subjects suf-
fering from motor speech disorders like those derived from PD
or HD. The features are extracted using the DisVoice toolkit1.
Details of each feature set are presented below.

Articulation: This speech dimension evaluates the ability
of a speaker to control the movement of the articulators to a
correct position, at the correct time, and with the appropriate
duration and energy while producing speech. In this work, the
transition from unvoiced to voiced segments (onset) was con-
sidered as the way to evaluate the difficulties of the speaker to
start the vibration of the vocal folds [21]. Onset segments were
detected based on the presence of the fundamental frequency
(F0). After onset detection, 40 ms were taken to the left and to

1https://disvoice.readthedocs.io/en/latest/

2369



the right of the border, forming segments with 80 ms length. A
total of 58 features were extracted from the transition segments
including the energy content in 22 critical bands distributed ac-
cording to the Bark scale, and 12 MFCCs with their first and
second derivatives [22].

Phonation: This speech dimension aims to model the abil-
ity of a speaker to produce air in the lungs to produce voiced
or unvoiced sounds. We focused mainly on the production of
voiced sounds with the aim to model the capability of the sub-
jects to control the vocal fold vibration. The phonation feature
set was formed with seven measures computed over voiced seg-
ments of the speech signal: (1-2) the first and second F0 deriva-
tive, (3) shimmer, (4) jitter, (5-6) amplitude and pitch perturba-
tion quotients, namely APQ and PPQ, respectively, and (7) log
energy per frame as a measure of loudness. Additional informa-
tion about the computation of phonation features is presented
in [23]

Prosody: These measures intend to model changes in in-
tonation, timing, and loudness. A total of 13 prosody features
was extracted upon each voiced segment including the duration
of the segment, the coefficients of a 5-degree polynomial that
models the F0 contour and also the coefficients of a 5-degree
Lagrange polynomial that models the energy contour. Addi-
tional information can be found at [24].

3.2. Gaussian Mixture Models - Universal Background
Models

The dynamics of the features described in the previous sub-
sections was modeled by following the GMM-UBM frame-
work. GMMs are probability models representing a popula-
tion from a combination of Gaussian probability distributions.
For a D-dimensional feature vector x, the mixture density
used for the likelihood function for M Gaussian is defined as
p(x|λ) = ∑M

i=1 wipi(x), where pi(x) corresponds to a Gaus-
sian density weighted by wi such that it satisfies the constraint∑M

i=1 wi = 1. In addition, each pi distribution is composed
of a mean vector [µi]D×1 and a covariance matrix [Σi]D×D .
The set of parameters for the density model are denoted as
λ = {wi,µi,Σi}, where i = 1, ...,M .

EM algorithm: The parameter set λ of the maximum like-
lihood function can be estimated using the Expectation Maxi-
mization (EM) algorithm [25] which iteratively re-defines the
parameters and increases the likelihood of the estimated model
for the observed feature vectors; that is, for iterations k and
k + 1, p(X|λ(k+1)) > p(X|λ(k)), where X is a matrix with
the group of features x extracted from each participant in the
database [13].

Maximum A-posteriori Adaptation: The parameters that
model each speaker were derived from an adaptation process
denoted as maximum a-posteriori (MAP) [26]. Unlike using
only GMM and the EM algorithm, the main idea of the MAP
adaptation is to derive parameter updates from the UBM which
is considered as a robust and well-trained basis. This provides
a closer coupling between each model and the UBM [13].

Supervectors: A GMM supervector can be considered as
a representation in smaller-dimensional vectors after adaptation
from the UBM, this allows mapping from a dynamic representa-
tion for each utterance to a global static representation. For this
work, the GMM supervector is created by stacking the means
µ′

i and the diagonal of the covariance matrix Σ′
i of the mixture

components.

4. Experiments and results
For the classification stage, we used an SVM to discrimi-
nate the different groups of subjects. The parameter was var-
ied as C ∈ {0.001, 0.005, 0.01, · · · , 100, 500, 1000}. Sim-
ilarly, the bandwidth of the kernel (γk) was varied as γk ∈
{0.0001, 0.001, · · · , 1000}. Each experiment was trained and
evaluated following a stratified k-fold cross-validation strategy
with 10 folds. The process was repeated 10 times for a better
generalization of the results. In addition, the optimization of
the number of Gaussian components M in the UBM was based
on the accuracy in test where M ∈ {2, 4, 8, 16, 32, 64, 128},
resulting in supervectors of size M × 2× (58 + 7 + 13).

Two different experiments were performed for this study,
all of them considering only Czech speakers. A bi-class prob-
lem (PD vs. HD) and one tri-class problem (PD vs. HD vs.
HC) were included. The speaker adaptation was based per
speaker on the UBMs created with the recordings of the Colom-
bian (Spanish) and German speakers. UBMs created with only
samples of HC subjects and also with the combination of PD
patients and HC were considered. In addition, we considered
creating another 3 UBM models with a large number of record-
ings in Spanish and German, namely CIEMPIESS and Verb-
mobil, respectively. Finally, different GMM supervectors are
obtained from each UBM including those based on articulation,
phonation, and prosody features separately. Additionally, two
other schemes were evaluated: the fusion of the 3 speech di-
mensions and dimensionality reduction of the fusion using a
principal component analysis (PCA) with 90% of the cumula-
tive variance.

4.1. Bi-class classification (PD vs. HD)

Table 2 shows the overall results of the classification between
PD vs. HD patients. Accuracies are reported in terms of the
unweighted average recall (UAR). The best result was obtained
for the monologue with an UAR of 86.2% and its adaptation was
obtained using an UBM trained with the full German database
(including patients and controls). For the /pa-ta-ka/ task, the
best result was obtained with the UBM trained with the com-
plete Spanish database with an UAR of 81.6%. From this re-
sult, we can conclude that it is possible to differentiate between
these two diseases due to two main reasons: in the case of HD,
there are involuntary and rapid movements, while in PD, there is
rigidity in the muscles which causes a reduction in voice quality.
Previous studies such as [27, 28] have shown that the phonatory
ability of patients with PD and HD is largely impaired as the
neurodegenerative disease progresses. It was possible to ver-
ify that this dimension is fundamental for the discrimination of
these diseases, specifically when continuous speech tasks are
evaluated. The highest UAR obtained with the /pa-ta-ka/ task
was 81.6% when the three speech dimensions are combined,
indicating that the three of them are relevant and actually they
are complementary.

4.2. Multi-class classification (PD vs. HD vs. HC)

For this experiment, controls from the 2 Czech databases were
merged to be evaluated with respect to the PD and HD patients
(a Kruskal-Wallis test between the two subgroups with HC sub-
jects was performed to discard any possible bias due to acoustic
conditions). A one-vs-rest SVM was used in this case to per-
form the tri-class classification. Table 3 shows the results ob-
tained in this experiment. It is possible to observe that, as in the
previous experiments, the best results were obtained with the
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Table 2: Classification of PD vs. HD with each speech dimension and their fusion. UAR: Unweighted Average Recall, M: Number of
Gaussian components. Values reported in terms of mean ± standard deviation.

UBM
Monologue Pataka

Articulation Phonation Prosody Fusion PCA Articulation Phonation Prosody Fusion PCA
M UAR (%) M UAR (%) M UAR (%) UAR (%) UAR (%) M UAR (%) M UAR (%) M UAR (%) UAR (%) UAR (%)

German (HC) 4 77.9±2.4 64 83.2±2.9 2 72.1±1.6 81.8±2.4 61.8±3.0 2 68.6±2.9 32 71.4±2.0 2 74.9±3.6 75.2±2.9 57.9±3.0
Spanish (HC) 4 75.9±2.3 64 82.8±1.8 2 69.1±3.3 79.9±3.2 48.1±4.8 4 73.1±2.2 16 68.1±3.4 2 69.7±2.2 78.2±2.2 54.7±2.8
German-Spanish (HC) 4 75.7±2.5 64 83.1±1.6 4 71.1±2.5 81.2±3.0 56.3±3.4 2 68.8±4.0 8 67.1±2.8 2 68.4±1.8 77.7±2.8 52.0±3.3
German (HC+PD) 4 74.8±3.0 128 86.2±1.8 4 73.9±2.0 84.1±1.7 65.2±1.8 2 66.6±2.3 16 69.3±4.3 2 68.1±3.7 75.2±1.5 47.2±3.9
Spanish (HC+PD) 4 75.2±1.9 64 83.7±2.1 2 69.1±2.0 83.2±2.2 67.9±2.9 4 70.6±2.7 32 73.2±2.0 2 67.0±3.4 81.6±1.3 66.7±2.2
German-Spanish (HC+PD) 4 77.7±1.7 64 83.6±1.8 2 70.4±2.3 82.2±1.7 62.1±2.5 4 70.9±2.0 16 69.4±3.3 2 75.4±2.2 78.2±2.5 59.4±3.6
CIEMPIESS 2 73.0±3.8 32 81.8±2.9 2 71.1±1.6 81.8±2.0 54.4±3.0 – – – – – – – –
Verbmobil 4 75.4±2.9 64 82.8±2.1 4 72.1±1.7 82.8±1.1 63.9±3.1 – – – – – – – –
CIEMPIESS+Verbmobil 4 74.8±2.5 64 79.9±3.8 2 71.2±2.1 80.0±2.9 63.0±1.4 – – – – – – – –
Average – 75.6±2.6 – 83.0±2.3 – 71.1±2.1 81.9±2.2 60.3±2.9 – 69.8±2.7 – 69.8±3.0 – 70.6±2.8 77.7±2.2 56.3±3.1

Table 3: Classification of PD vs. HD vs. HC with each speech dimension and their fusion. UAR: Unweighted Average Recall, M:
Number of Gaussian components. Values reported in terms of mean ± standard deviation.

UBM
Monologue Pataka

Articulation Phonation Prosody Fusion PCA Articulation Phonation Prosody Fusion PCA
M UAR (%) M UAR (%) M UAR (%) UAR (%) UAR (%) M UAR (%) M UAR (%) M UAR (%) UAR (%) UAR (%)

German (HC) 4 67.1±1.5 64 63.7±2.6 2 60.9±1.8 71.0±1.4 48.2±2.3 2 52.5±2.2 32 61.9±2.2 2 54.3±1.8 61.0±2.1 41.5±1.4
Spanish (HC) 4 65.0±2.4 64 62.8±2.2 4 61.2±3.2 67.9±1.6 35.1±2.3 2 56.7±1.3 8 58.7±1.0 2 59.4±2.5 64.0±1.6 43.3±1.5
German-Spanish (HC) 2 63.0±3.0 64 64.1±0.2 4 58.5±1.3 67.1±2.6 38.9±2.4 2 55.9±2.0 8 58.3±2.7 2 57.3±3.1 64.6±1.5 40.0±1.6
German (HC+PD) 4 65.1±1.6 128 64.9±1.7 2 57.7±2.2 67.7±2.6 49.7±2.9 2 52.9±1.2 16 61.1±2.2 2 55.0±1.7 59.6±2.1 39.8±1.5
Spanish (HC+PD) 4 66.3±2.2 128 68.1±1.9 4 56.2±2.4 70.0±1.4 47.6±2.2 2 57.8±1.4 8 60.3±1.8 2 55.6±2.6 63.0±1.4 45.7±1.1
German-Spanish (HC+PD) 4 67.6±1.1 32 66.0±1.2 4 58.3±2.4 70.4±1.9 37.3±5.6 2 55.6±1.3 8 60.2±1.8 2 55.2±4.2 62.4±2.4 44.2±1.9
CIEMPIESS 2 61.0±1.2 32 64.9±2.6 4 57.6±2.4 67.1±1.8 33.5±0.9 – – – – – – – –
Verbmobil 4 62.7±1.6 64 62.5±1.3 2 57.3±2.0 71.0±2.6 43.7±3.1 – – – – – – – –
CIEMPIESS+Verbmobil 2 60.9±3.2 32 67.9±1.3 2 61.0±2.6 70.1±1.0 37.2±4.5 – – – – – – – –
Average – 64.3±2.0 – 65.0±1.7 – 58.7±2.3 69.2±1.9 41.2±2.9 – 55.2±1.6 – 60.1±2.0 – 56.1±2.7 62.4±1.9 42.4±1.5

fusion of the three speech dimensions. The highest UAR for the
monologue was 71% with the UBM built with the HC subjects
of the German database. The same result was obtained with the
UBM based on the Verbmobil database (one of the few cases
in which the use of larger UBM resulted in high UAR). For the
/pa-ta-ka/ task, the best result was also obtained with the com-
bination of the three dimensions with an UAR of 64.6%. There-
fore, it is possible to conclude that these speech dimensions are
complementary, so it is necessary to include all of them to ob-
tain higher classification accuracies when discriminating both
pathologies from the healthy population. When we analyzed
each speech dimension, we could observe that the phonation
is the most discriminative one with average UARs of 65% and
60.1% for monologue and /pa-ta-ka/ task, respectively. This is
consistent with the above mentioned where it was pointed out
that the phonatory ability of patients is largely impaired as the
neurodegenerative disease progresses.

Monologue Pataka

Figure 2: Visualization of the samples after applying LDA.

Figure 2 shows a representation of each group (only the
best results of Table 3 are considered) created by concatenating
the 3 supervectors of articulation, phonation, and prosody, and
performing a Linear Discriminant Analysis (LDA) to reduce
the dimension of the resulting matrix to 2 dimensions (LDA1
- LDA2). Notice that there are three clusters clearly distin-
guishable in both figures. Kruskal-Wallis tests over the 2 final

dimensions showed that exists a significant difference between
the medians of each population. Notice also that the confusion
between the HD and the other speakers is minimal, while there
is more overlap between the HC subjects and PD patients, this
is likely due to the fact that most PD patients who participated
in this study were in an early stage of the disease.

5. Conclusions
In this paper, we created GMM-Supervectors with features ex-
tracted from three speech dimensions (articulation, phonation,
and prosody) and their fusion to perform two classification sce-
narios: PD vs. HD; and PD vs. HD vs. HC. In this work, it was
possible to observe and associate that the phonation dimension
is fundamental for the discrimination between both pathologies,
especially in continuous speech. For other scenarios, such as
rapid /pa-ta-ka/ repetition, we observed that the fusion of the
three dimensions obtained the best results, both in the bi-class
and multi-class classification. This allows concluding that the
three dimensions are relevant and actually they are complemen-
tary. Another interesting pattern observed in the experiments
presented in this study is that the use of larger datasets to create
the UBMs does not result in better results. No clear patterns
were observed regarding using different languages in the UBM
to create the GMM-Supervectors. We consider that the paper
has some limitations, such as data privacy and using other clas-
sifiers to evaluate both pathologies. However, we believe that
since this study is a good baseline for other methodologies like
those based on deep neural networks. In this regard, our future
research will include the use of convolutional neural networks
and transfer learning between languages and pathologies.
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