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ABSTRACT

Automatic assessment of dysarthric speech is essential for
sustained treatments and rehabilitation. However, obtaining
atypical speech is challenging, often leading to data scarcity
issues. To tackle the problem, we propose a novel automatic
severity assessment method for dysarthric speech, using the
self-supervised model in conjunction with multi-task learn-
ing. Wav2vec 2.0 XLS-R is jointly trained for two different
tasks: severity classification and auxiliary automatic speech
recognition (ASR). For the baseline experiments, we employ
hand-crafted acoustic features and machine learning classi-
fiers such as SVM, MLP, and XGBoost. Explored on the
Korean dysarthric speech QoLT database, our model out-
performs the traditional baseline methods, with a relative
percentage increase of 1.25% for F1-score. In addition, the
proposed model surpasses the model trained without ASR
head, achieving 10.61% relative percentage improvements.
Furthermore, we present how multi-task learning affects the
severity classification performance by analyzing the latent
representations and regularization effect.

Index Terms— dysarthric speech, automatic assessment,
self-supervised learning, multi-task learning

1. INTRODUCTION

Dysarthria is a group of motor speech disorders resulting
from neuromuscular control disturbances, which affects di-
verse speech dimensions such as respiration, phonation, res-
onance, articulation, and prosody [1]. Accordingly, people
with dysarthria often suffer from degraded speech intelligi-
bility, repeated communication failures, and, consequently,
poor quality of life. Hence, accurate and reliable speech as-
sessment is essential in the clinical field, as it helps track the
condition of patients and the effectiveness of treatments.

The most common way of assessing severity levels of
dysarthria is by conducting standardized tests such as Fren-
chay Dysarthria Assessment (FDA) [2]. However, these tests
heavily rely on human perceptual evaluations, which can be
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subjective and laborious. Therefore, automatic assessments
that are highly consistent with the experts will have great po-
tential for assisting clinicians in diagnosis and therapy.

Research on automatic assessment of dysarthria can be
grouped into two approaches. The first is to investigate a
novel feature set. For instance, paralinguistic features such
as eGeMAPS were explored on their usability for atypical
speech analysis [3]. On the other hand, common symptoms
of dysarthric speech provided insights into new feature sets -
glottal [4], resonance [5], pronunciation [6, 7], and prosody
features [8, 9]. Furthermore, representations extracted from
deep neural networks were also examined, such as spectro-
temporal subspace [10], i-vectors [11], and deepspeech pos-
teriors [12]. While this approach can provide intuitive de-
scriptions of the acoustic cues used in assessments, it has the
drawback of losing the information that may be valuable to
the task.

The second approach is to explore the network architec-
tures which take raw waveforms as input. Networks include
but are not limited to distance-based neural networks [13],
LSTM-based models [14, 15] and CNN-RNN hybrid models
[16, 17]. As neural networks are often data-hungry, many
researchers suffer from the data scarcity of atypical speech.
Consequently, research has often been limited to dysarthria
detection, which is a binary classification task. However,
multi-class classification should also be considered for more
detailed diagnoses. Recently, self-supervised representation
learning has arisen to alleviate such problems, presenting
successes in various downstream tasks with a small amount
of data [18, 19]. Promising results were also reported for dif-
ferent tasks for atypical speech, including automatic speech
recognition (ASR) [20, 21] and assessments [22, 23, 24].
However, limited explorations were performed on the sever-
ity assessment of dysarthric speech.

This paper proposes a novel automatic severity classifi-
cation method for dysarthric speech using a self-supervised
learning model fine-tuned with multi-task learning (MTL).
The model handles 1) a five-way multi-class classification of
dysarthria severity levels as the main task and 2) automatic
speech recognition as the auxiliary task. We expect MTL toIC
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Fig. 1: Illustration of our proposed method.

have two advantages for the automatic severity classification
of dysarthria. First, the model is enforced to learn both acous-
tic and phonetic/pronunciation features for severity classifica-
tion. We hypothesize using these two complementary infor-
mation can boost classification results. Second, the auxiliary
ASR task can act as a regularizer, as the model is trained to
focus on two different tasks. This can prevent overfitting to
small data and yield better classification performances.

The rest of the paper is organized as follows: Section 2
introduces the proposed method, which consists of a self-
supervised pre-trained model and fine-tuning with MTL. Sec-
tion 3 describes the overall experimental settings and classifi-
cation results. Then, Section 4 conducts further examinations,
explaining how MTL can be so powerful. Finally, Section 5
is followed with a conclusion.

2. METHOD

This section demonstrates our automatic severity classifica-
tion method for dysarthric speech. The overview of the pro-
posed method can be found at Figure 1. First, we briefly in-
troduce the self-supervised pre-trained wav2vec-based mod-
els. Then, we describe the architectural modifications on the
pre-trained model for multi-task learning. The model is fine-
tuned on two tasks simultaneously: severity classification as
the main task and ASR as the auxiliary task. We release the
source codes of all the experiments for ease of reproduction1.

2.1. Self-supervised pre-trained model

The key idea of self-supervised learning (SSL) models is to
employ abundant unlabeled data to train a general speech
model, namely, a self-supervised pre-trained model. Lever-
aged by the learned representations, the models have demon-
strated promising results on downstream tasks by fine-tuning
with the limited size of datasets [18]. We expect the dysarthric
speech domain, which often suffers from data scarcity, can
also take advantage of this approach.

1https://github.com/juice500ml/dysarthria-mtl

2.2. Fine-tuning by multi-task learning

We are motivated by the fact that speech intelligibility de-
grades with worse severity. Therefore, making decisions
based on both acoustic and phonetic/pronunciation features
may boost classification results. To embody this domain
knowledge into the severity classifier, we simultaneously
trained the phoneme classifier as an auxiliary task. More-
over, multi-task learning is considered as a regularization
method that helps avoid overfitting. In this study, the most
simple variant of MTL is employed for the two classifiers:
hard parameter sharing with a linear combination of losses.
Concretely, the two classifiers share the self-supervised pre-
trained model, with separate linear heads for each task.

Firstly, the raw audio signal x ∈ [−1, 1]L with length L
is fed into the model to yield T latent speech representations
H = [h1h2 . . .hT ] ∈ RT×F of feature dimension F .

For the classification head, we average the latent repre-
sentations, which are then passed through the fully connected
layer to yield logits for five-way severity classification, fol-
lowing [23]:

h = E[ht] =
1
T

∑T
t=1 ht, (1)

pCE(y|x) = softmax(WCEh+ bCE), (2)

where h is the averaged representation, WCE ∈ R5×F and
bCE ∈ R5×1 is the learnable weights and biases of the fully
connected layer. Finally, we apply the cross-entropy loss LCE
on the classification predictions pCE.

As for the ASR head, following [18, 19], we pass each la-
tent representation ht at timestep t through the common fully
connected layer:

ptCTC = softmax(WCTCht + bCTC), (3)

where ptCTC is the ASR prediction at timestep t, WCTC ∈
RV×F and bCTC ∈ RV×1 each refers to the learnable weights
and biases of the fully connected layer, and V is the size of
the vocabulary. We apply the Connectionist Temporal Classi-
fication (CTC) loss LCTC on stepwise ASR predictions ptCTC.

The final loss L is designed as the linear combination of
two losses:

L = LCE + αLCTC, (4)

where α ∈ R is the hyperparameter that balances the influ-
ence between two tasks. As LCTC tends to be few magnitudes
larger than LCE, α ∈ (1.0, 0.1, 0.01, 0.001) are searched.

In addition, the convergence speed differs hugely between
LCTC and LCE. Concretely, LCE converges much quicker,
hence overfits before LCTC converges. To mitigate the prob-
lem, we use only LCTC in the initial e epochs of training.
We test e ∈ (0, 10, 20, 30, 40) out of 100 epochs. Experi-
ments regarding the effect of α and e are demonstrated in
Section 4.2.
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3. EXPERIMENTS

3.1. Dataset

Quality of Life Technology (QoLT) dataset [25] is a Ko-
rean dysarthric speech corpus. The corpus contains utter-
ances from 10 healthy speakers (5 males, 5 females) and
70 dysarthric speakers (45 males, 25 females), where five
speech pathologists conducted intelligibility assessments on
a 5-point Likert scale: healthy (0), mild (1), mild-to-moderate
(2), moderate-to-severe (3), and severe (4). Accordingly, we
use 25, 26, 12, 7 speakers for each severity level.

QoLT dataset contains isolated words and restricted sen-
tences, but only sentences are used for this study, similar to
[7, 9]. Hence, a total of 800 utterances are used, consisting of
five sentences recorded twice per speaker. For the experiment,
we conduct 5-way cross-validation in a speaker-independent
manner. The split is also stratified by gender.

3.2. Experimental details

Following the findings from [20], we choose XLS-R [19] with
300M parameters, which is the self-supervised model trained
with cross-lingual data, as the pre-trained model. We opti-
mize the batch size of 4 using the Adam optimizer for 100
epochs. Similar to [19], we use the Adam parameters with
learning rate γ = 2 × 10−5, β1 = 0.9, β2 = 0.98, and
ε = 10−8. Using the validation set, we keep the best model
with the final loss L. We report the best classification ac-
curacy achieved through grid-searching the hyperparameters,
with the optimal values being α = 0.1 and e = 30 in Table 1.

3.3. Baselines

For baseline features, we use (1) eGeMAPS features, (2)
hand-crafted features, and (3) their combination. First of all,
we extract eGeMAPS feature set with the openSMILE toolkit
[26]. Consisting of 25 low-level descriptors (LLDs) with 88
features, eGeMaps is a basic standard acoustic parameter
set designed to capture various aspects of speech, including
frequency-, energy-, spectral-, and temporal-related features.
We also extract hand-crafted features used from the previ-
ous studies [7, 27]. The feature list was proposed to capture
the common symptoms of dysarthria at different speech di-
mensions, such as voice quality, pronunciation (phoneme
correctness, vowel distortion), and prosody (speech rate,
pitch, loudness, rhythm). For the combined feature set, we
simply concatenate the two feature lists.

Regarding classification, we apply three classifiers that
showed successful results for dysarthria severity classification
[7, 9, 27]: support vector machine (SVM), multi-layer per-
ceptron (MLP), and XGBoost. The hyperparameters of the
classifiers are optimized using grid search on the validation
set. We optimize SVM with a radial basis kernel function in
terms of C and γ, by grid-searching both parameters between
10−4 and 104. As for MLP, the best number of hidden layers,

Table 1: Classification performance compared to the baselines.
Input Classifier Accuracy Precision Recall F1-score

eGeMAPS
SVM 55.01 53.89 53.27 52.28
MLP 50.79 44.46 48.60 46.58

XGBoost 52.20 55.07 50.85 50.61

Hand-crafted
features

SVM 61.02 64.19 63.19 62.41
MLP 55.74 60.06 60.34 58.85

XGBoost 55.72 61.14 56.21 56.16
eGeMaps

+ Hand-crafted
features

SVM 57.83 58.83 57.59 56.65
MLP 50.21 48.40 47.31 46.76

XGBoost 56.29 62.29 56.23 56.68

Raw audio STL 61.02 64.09 57.93 57.13
MTL 65.52 66.47 64.86 63.19

activation function, optimizer, and learning rate are searched.
The number of hidden layers is checked between 1 and 10,
activation function among tanh, relu, logistic, identity func-
tion, optimizer between Adam and SGD, and learning rate
between 10−4 and 10−1. For XGBoost, we tested maximum
depth between 3 and 5. To validate the effectiveness of multi-
task learning (proposed; MTL), we also conduct a single-task
learning (STL) experiment, where the self-supervised model
is fine-tuned without an auxiliary ASR task: hyperparameter
settings are the same as MTL, only different in setting α as 0,
to use only the classification loss LCE for training.

3.4. Results

Table 1 presents the performance of traditional baselines with
fine-tuned SSL models, by using classification accuracy, pre-
cision (macro), recall (macro), and F1-score (macro). The
best performance for each metric is indicated in bold.

First, comparisons within the traditional baseline exper-
iments demonstrate that using the hand-crafted feature set
achieves better performances than using eGeMAPS for all
classifiers. When the eGeMAPS and hand-crafted features
are combined, SVM and MLP give worse performances than
using hand-crafted features. This may be due to a large
feature vector, which causes overfitting and reduced perfor-
mance of the classifiers. On the other hand, XGBoost slightly
outperforms the hand-crafted features, where the algorithm is
less prone to overfitting. However, the performance does not
reach the SVM with hand-crafted features.

Second, we compare the performances of the SSL model
with single-task learning (STL) and the traditional baselines.
With 61.02% classification accuracy and 57.13% F1-score,
STL shows better performances than all baselines except for
the experiment using the hand-crafted feature set for SVM
classifier, which attains 61.02% classification accuracy and
62.41% F1-score.

Lastly, we analyze the performance of our proposed
method (MTL) in contrast to the baseline experiments. Ex-
perimental results demonstrates that MTL achieves the high-
est accuracy, precision, recall, and F1-score, with 65.52%,
66.47%, 64.86%, 63.19%, respectively. This is the relative
increase of 7.37%, 3.55%, 2.64%, 1.25% compared to the
best-performing baseline, SVM using the hand-crafted fea-
ture set.
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Fig. 2: Averaged representation h of the training set samples. 0 to 4
refers to severity levels, starting from healthy to severe. s in s1...s2
refers to sentences.

4. ANAYLSIS

4.1. Analysis on latent representations

Figure 2 visualizes the latent representations of the train-
ing set samples to observe how fine-tuning shapes the latent
representation space. For the analysis, we use the fully-
converged model instead of the best-kept model, to demon-
strate the representation space learned by the loss. Averaged
representations h are visualized by using UMAP [28].

As presented in Figure 2, the representations from the
STL model cannot be distinguished by different sentences,
while the representations are clustered in terms of both
sentences and severity levels for the MTL model. The
analysis indicates that the MTL model also encodes pho-
netic/pronunciation information. Note that unlike other
severity levels, different utterances from severe (4) dysarthric
speakers are strongly clustered. We assume this may be due
to significantly distorted speech, which makes it difficult for
the ASR head to separate their representations.

4.2. Analysis on the regularization effect

Figure 3 presents the effect of MTL over STL and the effi-
cacy of postponing the LCE optimization with the hyperpa-
rameter e. With joint optimization of CTC loss LCTC and CE
loss LCE, LCE overfits much slower than STL, which implies
MTL’s regularization effect. Moreover, stable optimization
and better performances are found on both classification and
ASR tasks with e set to nonzero.
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Fig. 3: Classification loss LCE and ASR loss LCTC on validation set.
α = 0 denotes the STL case when we use the LCE only.

Table 2: Ablation study on hyperparameters α and e.
Accuracy α = 1.0 α = 0.1 α = 0.01 α = 0.001
e = 0 60.51 60.69 56.21 54.94
e = 10 61.82 63.12 57.14 57.00
e = 20 54.77 64.69 59.84 61.27
e = 30 57.74 65.52 60.10 62.72
e = 40 55.47 60.11 62.00 57.96
PER α = 1.0 α = 0.1 α = 0.01 α = 0.001
e = 0 17.50 21.86 88.49 96.91
e = 10 14.83 22.37 82.59 96.49
e = 20 16.66 18.10 31.12 90.08
e = 30 15.87 17.72 23.10 74.54
e = 40 15.41 15.95 20.45 56.24

Table 2 further shows the effect the hyperparameters α
and e. Bigger the α and later the e, the phone error rate (PER)
consistently drops, since the emphasis on the LCTC increases.
With the best accuracy found in the mid-point of the hyper-
parameter grid, this validates the effectiveness of aligning the
convergence speed of the two losses. We suspect that prema-
ture training of LCE leads to the model being under-trained
with the ASR task, which fails to inject enough information,
resulting in worse classification performance.

5. CONCLUSION

This paper proposes a novel automatic dysarthria severity
classification method: a self-supervised model fine-tuned
with multi-task learning, jointly learning the five-way sever-
ity classification task and the ASR task. Our proposed model
outperforms the traditional baseline experiments, which em-
ploy eGeMaps, hand-crafted feature sets as input, and SVM,
MLP, and XGBoost as the classifier. Further analyses re-
garding the latent representations and regularization effect
provide explanations for how our proposed MTL method
could be effective. For future work, we plan to investi-
gate more complex MTL settings for further performance
improvements. Extending the applications of the proposed
method to different corpora and languages is also necessary.
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matic evaluation of articulatory disorders in parkinson’s
disease,” TASLP, 2014.

[7] EJ Yeo, S Kim, and M Chung, “Automatic severity clas-
sification of korean dysarthric speech using phoneme-
level pronunciation features.,” in Interspeech, 2021.

[8] KL Kadi, SA Selouani, B Boudraa, and M Boudraa,
“Discriminative prosodic features to assess the
dysarthria severity levels,” in World Congress on
Engineering, 2013.

[9] A Hernandez, S Kim, and M Chung, “Prosody-
based measures for automatic severity assessment of
dysarthric speech,” Applied Sciences, 2020.

[10] M Geng, S Liu, J Yu, X Xie, S Hu, and et al., “Spectro-
temporal deep features for disordered speech assessment
and recognition,” in Interspeech, 2021.

[11] AA Joshy and R Rajan, “Automated dysarthria sever-
ity classification: A study on acoustic features and deep
learning techniques,” IEEE Transactions on Neural Sys-
tems and Rehabilitation Engineering, 2022.

[12] A Tripathi, S Bhosale, and SK Kopparapu, “Improved
speaker independent dysarthria intelligibility classifica-
tion using deepspeech posteriors,” in ICASSP, 2020.

[13] P Janbakhshi, I Kodrasi, and H Bourlard, “Auto-
matic dysarthric speech detection exploiting pairwise
distance-based convolutional neural networks,” in
ICASSP, 2021.

[14] A Mayle, Z Mou, R C Bunescu, S Mirshekarian, L Xu,
and C Liu, “Diagnosing dysarthria with long short-term
memory networks.,” in Interspeech, 2019.

[15] C Bhat and H Strik, “Automatic assessment of sentence-
level dysarthria intelligibility using blstm,” IEEE J. Sel.
Top. Signal Process, 2020.

[16] D Shih, C Liao, T Wu, X Xu, and M Shih, “Dysarthria
speech detection using convolutional neural networks
with gated recurrent unit,” in Healthcare, 2022.

[17] W Ye, Z Jiang, Q Li, Y Liu, and Z Mou, “A hybrid
model for pathological voice recognition of post-stroke
dysarthria by using 1dcnn and double-lstm networks,”
Applied Acoustics, 2022.

[18] A Baevski, Y Zhou, A Mohamed, and M Auli,
“wav2vec 2.0: A framework for self-supervised learn-
ing of speech representations,” NeurIPS, 2020.

[19] A Babu, C Wang, A Tjandra, K Lakhotia, Q Xu, et al.,
“XLS-R: self-supervised cross-lingual speech represen-
tation learning at scale,” in Interspeech, 2022.
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