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Automated Dysarthria Severity Classification:
A Study on Acoustic Features and Deep

Learning Techniques
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Abstract— Assessing the severity level of dysarthria
can provide an insight into the patient’s improvement,
assist pathologists to plan therapy, and aid automatic
dysarthric speech recognition systems. In this article,
we present a comparative study on the classification
of dysarthria severity levels using different deep learn-
ing techniques and acoustic features. First, we evaluate
the basic architectural choices such as deep neural net-
work (DNN), convolutional neural network, gated recur-
rent units and long short-term memory network using
the basic speech features, namely, Mel-frequency cepstral
coefficients (MFCCs) and constant-Q cepstral coefficients.
Next, speech-disorder specific features computed from
prosody, articulation, phonation and glottal functioning are
evaluated on DNN models. Finally, we explore the util-
ity of low-dimensional feature representation using sub-
space modeling to give i-vectors, which are then classified
using DNN models. Evaluation is done using the standard
UA-Speech and TORGO databases.By giving an accuracy of
93.97% under the speaker-dependent scenario and 49.22%
under the speaker-independent scenario for the UA-Speech
database, the DNN classifier using MFCC-based i-vectors
outperforms other systems.

Index Terms— Deep learning, dysarthria, i-vectors, sever-
ity assessment.

I. INTRODUCTION

DYSARTHRIA is a motor speech disorder caused due
to the poor coordination, or malfunction of speech pro-

duction subsystems. It is either acquired from a neurological
injury such as cerebral palsy, or developed along with any
neuro-degenerative disease [1]. It leads to imprecise articu-
lation, low audibility, atypical prosody and variable speech
rate, which deteriorate the speech quality. The patients would
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have hyper-nasality, weak facial reflexes, harsh voice quality,
and increased fatigue on speaking. Thus, even though syntac-
tically correct sentences can be formulated, they cannot be
phonetically produced, or correctly pronounced by dysarthric
patients. This leads to incomprehensible speech and affects
their social life. Dysarthric patients have physical incapacities
such as trembling hands, due to the weak coordination of
muscles, which make the use of a keyboard or joystick-based
interactive applications less useful for their communication
purposes. Hence, automatic speech recognizer (ASR)-based
applications would be helpful to them. However, normal ASRs
designed for healthy speakers have high error rates when used
by dysarthric speakers, due to the poor articulations.

A. Motivation and Related Work
Dysarthria severity estimation is important in its diagnosis

to evaluate the progression of the disease, to identify proper
medication and to conduct required speech therapy sessions.
Severity assessment can be done using objective (acoustic and
physiological measures) and subjective (perceptual) measures
by a trained speech-language pathologist (SLP) [2]. Percep-
tual evaluation would be inconsistent due to the familiarity
with the patient and vary across clinicians with experience
and listening skills. Also, this could be time-consuming and
expensive, hence limited in remote rehabilitation. However,
it is important to keep track of the clients with dysarthria
during rehabilitation. This paves the way for the need for
an automatic dysarthria severity level classification system.
This classification can also improve the performance of ASR
systems built for dysarthric patients, as evident in [3].

To mimic the human-auditory system, many perceptual
features are used in speech processing such as the linear
prediction coefficients, linear prediction cepstral coefficients,
Mel-frequency cepstral coefficients (MFCCs), constant Q cep-
stral coefficients (CQCCs), perceptual linear prediction coef-
ficients and the relative spectra coefficients. In literature,
MFCCs have proven their usefulness for modeling patholog-
ical speech signals in general [4], and for dysarthria severity
identification in specific [5], [6], with machine learning clas-
sifiers. In [5], MFCCs show their efficiency over log filter
banks, and a comparable performance to i-vectors when used
for sentence-level dysarthric speech detection from healthy
speech. MFCCs are encoded using a deep belief network
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(DBN), and employed for dysarthria severity classification
using a multilayer perceptron (MLP) in [7]. DBN features have
only a marginal improvement over the MFCC based system.
The glottal features used in [8] were outperformed by the
baseline OpenSMILE-1 feature set, which included MFCCs
on considering isolated words. In [9] it is seen that MFCCs
together with glottal-to-noise excitation ratio (GNER), and
harmonics-to-noise ratio (HNR) outperforms this subset for
spastic dysarthria severity classification. These works moti-
vated us to use the basic MFCC features to investigate the
performance of various deep learning models for dysarthric
severity estimation, to see if significant improvements can be
achieved over the machine learning classifiers. CQCCs were
introduced in the context of spoofing detection in [10] and have
proven to be an excellent choice for speaker recognition in
recent years. The authors of [11] have shown that the strength
of formants and harmonics in the constant Q transform (CQT)
spectrograms decreases as the intelligibility level decreases,
and thus demonstrates the efficiency of CQT in dysarthria
severity identification. CQCCs have also demonstrated good
results in [12], when used as baseline features. We have been
motivated by these results to analyse the capability of CQCCs
for the proposed task. There are many other existing and novel
features explored in literature for improving the accuracy of
dysarthria severity identification, such as [13] using the breath-
iness indices, [12] introducing the perceptually enhanced
single frequency filtering based cepstral coefficients (PE-
SFCC) and [14] using audio descriptors. However, we wanted
to keep our study more focused on analysing the different
deep learning classifiers, and hence avoided such complex
representations.

Speech disorder specific prosodic features like spectral
moments, formants, skewness and MFCCs, are selected
by a genetic algorithm and used with a support vector
machine (SVM) classifier in [6] for dysarthria speech diag-
nosis and severity identification. In terms of mean pitch, jitter,
shimmer, proportion of the vocalic duration and degree of
voiced breaks, prosodic features have been used for dysarthria
severity estimation using the linear discriminant analysis
combined with Gaussian mixture model (GMM) and SVM
in [15] on the Nemours database. Glottal flow patterns have
been analysed for studying Parkinson’s disease (PD) in [16]
and for detecting dysarthric speech from healthy ones in [8]
using SVM classifiers. Articulatory features have been used
to analyse different motor speech disorders in [17] and [18].
All these works put light on the fact that the speech disorder
specific features in terms of prosodic, glottal and articulatory
measures are relevant in identifying the dysarthric speech
patterns, and hence, we extend our study on dysarthria severity
classification using them with deep neural network (DNN)
models.

The i-vector subspace modeling has proven to capture
many aspects of a person’s speech, including gender, age
and intelligibility, which makes them efficient in speaker,
language and accent recognition [19]. In [20], i-vectors
are used with a v-support vector regression predictor for
dysarthric speech intelligibility assessment. Perceptual linear
prediction features are used for acoustic parameterisation,

and a Pearson correlation of 0.9 was obtained. In [12], the
i-vectors modelled from PE-SFCC features are used with
the probabilistic linear discriminant analysis (PLDA) scoring
mechanism for the detection of dysarthric speech from healthy
samples, followed by severity estimation. Thus i-vectors are
capable of modeling dysarthric severity levels as well, and
based on this understanding DNN models are used with
them.

DNN has reported excellent results outperforming the con-
ventionally used techniques in speech emotion recognition,
speaker recognition and end-to-end speaker verification (SV)
system. Deep learning models like DNN, CNN, time delay
neural network, and long short term memory (LSTM) network
are explored for dysarthric ASR on the TORGO database
in [21]. Joint spectro-temporal features from mel-scale spec-
trogram are used in [2] for dysarthria severity estimation.
They showed that the time-frequency CNN which jointly
captures spectral and temporal information is superior to
the time/frequency CNN which captures either temporal or
spectral information and not both. Residual neural networks
are used similarly in [22]. LSTM and DNN have been used
with lexical and acoustic features to differentiate patients
with Huntington disease from healthy ones in [23]. Inspired
by these successful implementations, these deep learning
architectures have been employed in this work for dysarthric
severity classification. The importance of building a speaker-
independent (SID) dysarthria intelligibility assessment system
is explained by the authors of [24] recently. They have
put forth the novel idea of using features obtained from
DeepSpeech, an end-to-end Speech-to-Text engine. We have
been inspired by these works to do a detailed evaluation
of our models under both speaker-dependent (SD) and SID
scenarios.

B. Contribution

Our major contributions can be summed up as,

• Performance analysis of the basic deep learning architec-
tures namely, DNN, CNN, gated recurrent units (GRU),
and LSTM using MFCCs and CQCCs. Our initial phase
of work using MFCCs is reported in [25].

• Assessment of prosodic, glottal, phonetic, and articula-
tory features on DNN classifiers. Further, dimensionality
reduction is performed on the concatenated feature set,
and results are analysed.

• Implementation of a ‘two-level learning classifier’ using
i-vector sub-space modeling as the first level, and DNN
based classification as the second level.

• Experimentation using the round-robin leave-one-
speaker-out (LOSO) cross-validation, to yield SID
models.

The rest of the paper is organized as follows. Section II
details the databases used in the work, and the experimental
design is described in section III. The features and classifiers
used are explained in sections IV and V respectively. Results
and discussion are given in section VI, and the work is finally
concluded in Section VII.
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TABLE I
CLASS-WISE PATIENT DESCRIPTION

II. DATABASES

The standard American English dysarthric databases,
namely (a) the TORGO [26] database and (b) the Universal
Access dysarthric speech corpus (UA-Speech) [27] are used
for evaluating the proposed work. The TORGO database com-
prises of the aligned acoustics and measured 3D articulatory
features of utterances from 7 healthy speakers and 8 dysarthric
patients. The corpus consists of non-words, words, restricted
and unrestricted sentences, of which only the words are used in
this study. These consist of the English digits, the international
radio alphabets, the twenty most frequent words in the British
national corpus, 50 words from the intelligibility section of
the Frenchay dysarthria assessment (FDA), and phonetically
contrasting pairs of words, as explained in [26]. The recordings
of the head-mounted microphone, at a sampling frequency ( fs)
of 16 kHz are used. While using this database, 80% of the data
is used for training and the rest for testing.

UA-Speech comprises of speech from 13 healthy speakers
and 19 dysarthric patients. However, data of only 15 patients
are available. There are 155 common words repeated thrice,
corresponding to the English digits, computer commands,
international radio alphabets, and 100 common words in
the Brown corpus. These 465 common words per speaker
constitute the training data, which sums up to 6975 utter-
ances. The corpus also has 300 distinct uncommon words per
speaker, which are selected from children’s novels digitized
by Project Gutenberg, using a greedy algorithm to maximize
phone-sequence diversity [27]. These are used for testing
(4500 unseen words in total) so as to evaluate the robustness
of the models. Data from the sixth channel in the microphone
array, at fs = 16 kHz, was used, as it had the highest signal-
to-noise ratio. The severity levels are assigned as very low,
low, medium and high, based on intelligibility as reported
by five naive listeners for UA-Speech. For TORGO these are
assigned by an SLP in terms of the clinical intelligibility and
articulatory functionality, as per FDA. The intelligibility rating
of each severity level is as follows: (0-25)%- high, (25-50)%-
medium, (50-75)%-low and (75-100)%-very low. Description
of the databases is given in Table I.

III. EXPERIMENTAL DESIGN

The elaborated study on dysarthria severity level determi-
nation can be explained as three independent experiments.

A. Analysing MFCCs and CQCCs

Vocal muscular coordination influences the speech intel-
ligibility, and MFCCs can capture the irregular vocal fold
movements or the lack of vocal-fold closure due to mass

tissue changes [4]. CQCCs are obtained as a result of coupling
between CQT and the traditional cepstral analysis. They are
more closely related to the human perception system, by giv-
ing a higher frequency resolution at lower frequencies and
higher temporal resolution at higher frequencies. With these
understandings, we perform the first experiment (E1), where
the basic deep learning strategies, namely DNN, CNN, GRU
and LSTM are employed for classification, with MFCCs [25]
and CQCCs as features.

B. Analysing Speech Disorder Specific Features

In the second experiment (E2), glottal, articulatory, phonetic
and prosodic features are used with DNN. Their efficiency in
highlighting the paralinguistic aspects of speech is analysed.
Irregular glottal closure pattern and related breathy voice are
one of the most evident symptoms observed by clinicians
when diagnosing dysarthria. Articulatory features explain the
retardation in the lip, tongue, and jaw movements, and model
the imprecise articulations in dysarthric speech. The voice
quality in terms of stability and periodicity are deteriorated in
dysarthric patients and can be explained through the variations
in the phonation [28]. Hence, phonetic features relating to
perturbation, noise content, and non-linear dynamics [17]
are extracted in this regard. The abnormal changes in pitch,
loudness and time duration in the dysarthric speech contribute
greatly to the detection and analysis of dysarthria. These
abnormalities prevent conveying the right emotion and rhythm
to the speech, and can be quantified by the prosodic features.

In this work, 36 glottal, 488 articulatory, 28 phonetic and
103 prosodic features are used with DNN. They are concate-
nated and dimensionality reduction is applied to yield a better
interpretable representation. The statistical and unsupervised,
factor analysis (FA) technique is used for this. Thus, from the
concatenated feature set, factors are created to represent the
common variance or correlation among them. A compact and
contented description of the multi-variate data can be obtained
using this technique. It can be considered an extended and
elaborated form of the principal component analysis technique
for dimensionality reduction [29]. Thus, the feature vector
of dimension 655 is reduced to 200 for the proposed task.
Generally, FA is used with machine learning classifiers for
the selection of the best features by avoiding redundant repre-
sentations. This would reduce the complexity imposed on the
classifiers and generally improve their performance. However,
the deep learning models are inbuilt with the property of fea-
ture selection and abstract representations that encapsulates all
the non-linearities within. Hence, the dimensionality reduction
techniques are not generally used along. But we explore if
some improvement can be achieved with this addition.

C. Analysing i-Vectors
I-vector is a new FA front-end approach to SV [30] which

maps the high dimensional GMM supervector space to a single
total-variability space, unlike the separate speaker and channel
dependent subspaces of the conventional FA technique. This
total-variability space is a low-dimension subspace which
holds the main variabilities describing the data (variabilities
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in noise, channel, speaker, age, or the intelligibility character-
istics as embedded phonetic contents in the utterance). It is
trained with the FA modeling and yields i-vectors which are
very suitable to be used with simple predictors [31]. Typically
i-vectors are used with the PLDA scoring mechanism or the
SVM classifier for SV. DNNs have been used to bring many
alterations to the conventional i-vector-PLDA systems for
speaker recognition, namely, to provide bottleneck features in
the front-end [32], to compute sufficient statistics [33], and to
discriminatively model the target and impostor i-vectors [34].
Severity level identification is basically a speaker-group recog-
nition task. We hypothesise that the severity dependent factors
encoded in the class-wise computed i-vectors can be efficiently
categorised by DNNs. DBNs were trained with MFCCs, and
their bottleneck features were used with an MLP for dysarthric
speaker recognition in [7], and showed improved results over
MFCCs. A similar approach is adopted here, wherein, we do
a two-level learning using i-vector subspace modeling as the
first level followed by DNN-based classification. Hence, our
work moulds severity level dependent i-vectors, and builds
DNN classifiers to discriminate them. I-vectors using MFCC
(iMFCC) and CQCC (iMFCC) are extracted in this regard, and
fed to the DNNs.

IV. FEATURE DESIGN

13-dimensional MFCCs and their first two derivatives are
computed for each 30 ms frame, with a frame-shift of 10 ms.
The number of frames is set to an approximate average number
of frames over the full utterances in the dataset, which is
180 for TORGO and 400 for UA-Speech. Smaller utterances
are zero padded and the larger ones are trimmed. This 2D
MFCC array is transposed and arithmetic mean along its
horizontal axis is calculated to give the frame-wise averaged
1D features for DNN. For the CNN, GRU and LSTM models,
MFCCs are fed frame-wise and derivatives are not used. These
networks are capable of learning the temporal information
by themselves, so adding the deltas would add redundancy
and may highlight the irrelevant speech characteristics, such
as emotion, gender, and age. MFCC extraction was done
using the librosa python package [35]. Similarly, CQCCs
are extracted as explained in [10], using an open-source
Matlab implementation as in [36]. The bandwidth is limited
to 100Hz - 8kHz ( fs/2), with the number of bins per octave
set to 48. Re-sampling is done at a sampling period of 16.

For extracting i-vectors, first, the acoustic parameterisation
is done using frame-wise 13-dimensional MFCCs and CQCCs,
and their first two deltas. Then, the UBM is trained using
the expectation-maximization (EM) algorithm in 10 iterations
using the auxiliary database comprising healthy audio samples
of UA-Speech. The total-variability (TV) matrix is modeled
using the sufficient statistics from the databases under study,
and the i-vectors are computed. Target (dysarthric) GMM is
adapted from the UBM using the eigen-voice adaption method.
The target GMM supervector (M) is formulated as a shifted
version of UBM, and is given by:

M = m + T w (1)

where m represents the UBM supervector, T is a low dimen-
sional rectangular TV matrix, and w is the resulting i-vector.
In the E-step of the EM algorithm, w is considered as a latent
variable with normal prior distribution N(0, I ). Eventually,
the i-vectors will be estimated as the mean of the poste-
rior distribution of w, as given in [30]. The extraction was
done using the ALIZÉ tool-kit. Performance of the different
classifiers is analysed by varying the number of mixtures or
Gaussian components (Ng) used in building the UBM (128,
256, 512), and dimension (Niv) of the T matrix used for
i-vector extraction (100, 200, 400, 600).

The speech disorder specific features are extracted using the
DisVoice python library1 and the Kaldi toolkit. Only the static
(utterance level) features are computed, and the fundamental
frequency computation was done using the PRAAT algorithm.
103 prosody features based on duration, fundamental fre-
quency and energy are computed as explained in [18]. They
define the pitch and energy contours which discriminate the
different severity levels of dysarthria. The articulatory feature
vector is extracted by applying the four statistical functions,
namely, the mean, standard deviation, skewness, and kurtosis,
on the 122 descriptors, which include the bark band energies,
formants and MFCCs during the onset and offset transitions,
totalling 488 features per utterance. Glottal inverse filtering
technique, specifically, iterative and/or adaptive inverse filter-
ing is employed to give the glottal flow patterns, which are
then characterised by nine different time-frequency parame-
ters as in [16]. Then the statistical measures are applied to
give 36 features per utterance. Seven measures of phonation
corresponding to the jitter and shimmer, amplitude and pitch
perturbation quotients, GNER, HNR, cepstral harmonics to
noise ratio, and the normalized noise energy are calculated,
as explained in [28], and the statistical functions are applied,
giving 28 features per utterance. Thus, on concatenating we
get a feature vector of dimension 655.

V. CLASSIFIER DESIGN

Implementation details of the baseline classifiers and the
different deep learning architectures used are briefed below.

A. Baseline Classifiers

Machine learning classifiers, SVM and random forest (RF)
are built as the baseline classifiers. SVM was built for both
linear and radial basis function (RBF) kernels, with the optimal
regularisation parameter, c being tuned from 1 to 10. For E1
and E2, c = 6 and for E3, c = 1 performed the best on
the validation data (20% of training data). The RBF-based
classifiers reported poorer results, and hence not reported
here. The RF classifiers were built for the number of trees
(ntree) being tuned on the validation data from 10 to 150.
For E1, E2 and E3, ntree = 50,125 and 100 performed the
best respectively. For E3, the PLDA scoring mechanism is
implemented in addition to these classifiers, with eigen channel
number=2, eigen voice number=5 and iterations=10.

1https://github.com/jcvasquezc/DisVoice
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Fig. 1. Variation of the classification accuracy with the number of DNN and CNN layers for (a) MFCC and (b) CQCC.

B. Deep Learning Classifiers

A DNN model can model the high-level abstractions in
the feature sets and learn the underlying data structure. DNN
models are implemented in Keras by stacking n dense layers
of ReLU activation. The number of neurons in each layer is
designed to grow up with the model depth, in powers of 2. The
first layer has the number of nodes equal to the power of two
nearest to the input feature vector. For E1, 39 MFCCs are used,
hence the first layer has 32 nodes, the second has 64 and so on.
The dense layers are followed by a layer with a dropout factor
of 0.4. The output layer has softmax activation. Each DNN is
trained with a batch size of 32 and a learning rate of 0.001,
for 120 epochs. All these are set after hyper-parameter tuning
on the validation data, with Adam optimiser. Final tuning is
done with respect to n for all features.

CNN is built using alternating convolution and pooling
layers, whose 2D filters capture the spectral correlations in
the acoustic features. In the front-end, each speech frame is
represented by 13 MFFCs or CQCCs, which when stacked
up gives the 2D feature maps for the convolution layers to
act upon. Thus, local information can be efficiently extracted
from the variabilities embedded in the frame-wise feature
representation. CNN models are implemented with n stacked
up 2D convolutional layers of 2 × 2 kernel size and ReLU
activation function, each followed by a batch-normalisation
layer. The number of feature maps increases in powers of 2 as
in the case of DNN models. In all models a 2D max-pooling
layer with a pooling size of 2×2 is used, followed by a dropout
layer of factor 0.2. The flattened result of this is passed to the
dense layers with the number of units decreasing in powers
of 2 with n. MFCC features alone are used here, since the
temporal information is captured from the frame-wise data
provided, and deltas would just add redundancy.

Recurrent neural network (RNN) has proven to be efficient
in capturing the temporal dependencies for sequential tasks.
LSTM is one of its variations, which can flexibly capture
the long-range dependencies by overcoming the vanishing
gradient problem in the conventional RNNs. This is achieved
by using three gates, namely, the input gate, the forget gate
and the output gate, that controls the information flow in
the network. They also have memory cells holding past and
present information. Thus, by the efficient gating mechanism
and usage of memory cells they can mitigate the gradient
issues and enable adequate information flow. Three stacked

LSTM layers, followed by a dropout layer, and the output
dense layer constitute the LSTM models. The number of
hidden units (Nh ) in the first LSTM layer is taken by the
general rule of thumb:

Nh = Ns

α(Ni + No)
(2)

where, Ns is the number of training samples used, Ni , the
number of input neurons, No , the number of output units and
α, the scaling factor lying between 2 and 10. Tuning is done
for different values of α, as it controls the number of model
free parameters, and thus the generalisation capability of the
model. The following layers have the number of units tuned
and selected to be 600 and 200, respectively.

Proposed for machine translation [37], GRUs are simpler
structures of LSTMs, with fewer parameters. Unlike LSTM,
GRU has only two gates: an ‘update’ gate to control the
amount of information to be transferred from the previous
hidden state to the current hidden state, and a ‘reset’ gate
to effectively drop irrelevant information, leading to better
predictions. There are no separate memory cells as well. Thus,
they are much simpler and require less computational power.
Also, they train faster and require lesser data to generalise.
Hence, usable in data-stringent cases like the speech-disorder
analysis, where pathologically affected utterances are of lim-
ited number. The GRU models are implemented like the LSTM
models, and are tuned with respect to α. The frame-wise input
is made available as that of CNNs.

VI. RESULTS AND DISCUSSION

A. Analysing MFCCs and CQCCs (E1)
The DNN and CNN models are tuned with respect to

the increasing number of stacked layers (n). The results are
plotted in Fig. 1(a) and (b) for MFCC and CQCC features,
respectively. As the model grows in depth with increasing
n, the upper layers find efficient feature representations that
generalise well across the datasets. Thus, an increase in
accuracy was observed up to n = 4 for both the data-
bases on using MFCCs with DNNs [25]. While labelling the
graphs, UA-Speech is referred to as UAS. As the number of
layers increases beyond four, the overall classification accu-
racy decreases. This is because, the generalisation capability
decreased on increasing the model complexity. That is, the
network becomes overfit to the training set, and fails to make
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Fig. 2. Variation of the accuracy with parameter α for (a) LSTM and (b) GRU.

the right decision on the unseen test data. For CNN models
using MFCCs, n = 5 gave the best result in the case of
UA-Speech and n = 3 for TORGO, as seen in Fig. 1(a).
As in the DNN models, a further increase led to a decrease
in the accuracy. For models using CQCCs, a similar trend
was observed, but with reduced accuracy scores compared
to MFCCs. There is about a 20% difference between the
accuracies, as evident in the graphs. A possible cause is that,
the dysarthric severity is exhibited not only by the speaker
characteristics, but also by the speech pattern. The changes in
the pattern of monotonicity shown by dysarthric patients are
better identified by MFCCs.

The variation of classification accuracy with α, as per (2)
for LSTM and GRU models are plotted in Fig. 2(a) and
Fig. 2(b), respectively. In the case of LSTM, α = 4 gave
the best classification accuracy with 85.87% and 75.08% for
TORGO and UA-Speech, respectively, on using MFCCs. For
models using CQCCs, we find that the maximum accuracy
occurs at α = 2 itself. This means that an increase in the
number of LSTM nodes, and hence, an increase in the model
capacity do not favour the models in capturing discriminating
features from CQCCs. Again, we can find clear margins
between the graphs for MFCCs and CQCCs. The results
obtained on TORGO exceed those obtained on UA-Speech,
even when the latter has almost five times more the data.
This is because the training and testing data of the UA-Speech
comprise of completely different words. This again justifies the
performance of LSTM in UA-Speech data classification, being
worse than the rest. The temporal information identified by the
LSTM model from the common words is not sufficient enough
to identify the severity level from the uncommon words [25].
This is checked by using a mixed-up data for training and
testing, and an accuracy of 88.59% is obtained, which validates
the inference. However, GRU could deal with this variability
in utterances, and gave a comparable performance on both
databases. The advantage of GRU in limited data settings also
adds to this.

From Table II we can observe that, there is an improvement
of more than 10% for the best performing CNN models over
the baseline SVM system on using MFCCs. For models using
CQCCs, more than 20% improvement is observed, which
shows the incapability of CQCC features in representing the
severity level-dependent factors of dysarthric speech. Since
SVM models merely work on these features as such for

TABLE II
OVERALL CLASSIFICATION RESULTS (%) OF E1

TABLE III
ACCURACY (%) USING SPEECH DISORDER SPECIFIC FEATURES

classification, very poor performance is observed. But DNN
models do another level of compact and significant feature
learning from them, and it is this ‘deep learning’ that happens
on the less efficient CQCCs that brings this difference. The
RF classifiers have been able to give better results than SVM
on both the features. In our experiments, the performance
of DNN is at par with that of CNN, with a clear margin
over LSTM. GRU outperforms the rest for CQCCs, showing
that the temporal dependencies among CQCC features are
relevant in identifying the severity levels. On getting averaged
utterance-level features, their contribution is reduced, as seen
on SVM and DNN classifiers.

B. Analysing Speech Disorder Specific Features (E2)
At first, the severity classification is performed using each of

the DisVoice feature sets, namely, prosody, articulation, glottal,
and phonation. The results are tabulated in Table III. We can
observe that DNN outperforms SVM in all cases, but RF
classifiers have managed to give results that are close to those
obtained by DNN. For both the databases, the articulatory
features give the best results. The articulation deficits and the
reduced vowel articulation index have proved to be capable
of identifying the stage of PD in [38], which can be related
to hypokinetic dysarthria, and hence, our findings adhere to
this. From the confusion matrices obtained on using the other
DisVoice features we found that, misclassification happens to
the nearby classes, and there are no signs of over-fitting from
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TABLE IV
CLASSIFICATION ACCURACY (%) ON TUNING NG AND NIV (BEST OVERALL ACCURACY IN BOLD, BEST AMONG THE TUNING SETTING IN RED)

the generalisation curves. This implies that these features, even
though capable of detecting dysarthria from healthy speech as
seen in literature [16], cannot efficiently embed the differences
among the severity levels.

Later, the concatenated feature sets (referred to as ‘UASconc/
TORGOconc’) are used, followed by the FA-based dimen-
sionality reduction being applied, with the number of factors
ranging from 100 to 400, in multiples of 100. The best
performance is achieved at dimension 200 for both databases,
as seen in Fig. 3(a). Hence this dimension is chosen for
further analysis, and referred to as FA(200). This is due to
the ‘curse of dimensionality’ problem, and related overfitting
of models with increased feature complexity. A decreasing
trend in accuracy after a particular n is observed here as well,
as visible in Fig. 3(b). This can also be mapped to the reduced
generalisation capability of the network with increased model
complexity as in E1. The best accuracy of 93.27% can be
found for n = 2 on TORGO, and on UA-Speech it is 90.80%
at n = 3. The difference in train and test data has led to
decreased classification accuracy on UA-Speech as in E1. The
results reported by SVM for TORGO are 82.51% and 86.71%
for concatenated and FA(200) feature sets respectively. For
UA-Speech this respectively maps to 79.69% and 85.35%.
This again validates the usage of FA. Similarly RF gave
82.24% and 73.00% on TORGO, and 89.69% and 82.06%
on UA-Speech for the concatenated and FA(200) feature sets
respectively. The FA(200) features have not been useful in
the case of RF classifiers, as these classifiers themselves do
another level of dimensionality reduction while computing the
results.

C. Analysing i-Vectors (E3)

A first level tuning of the i-vector feature extraction was
done using the UA-Speech database, as it is the largest among
the two corpora, and has all four levels of severity. The results
of i-vector tuning with respect to Ng and Niv are given in
Table IV. At first, Ng is set to 128 and tuning is done with
respect to Niv. Classification accuracy by DNN and PLDA was
found to be maximum at Niv = 200. The most discriminating
features embedding information about the intelligibility is con-
tained in a few dimensions, and this leads to the deteriorating
performance of the classifier with increasing dimension. The
maximum accuracies reported by SVM and RF are 85.64%
and 82.51%, respectively. The classifiers show a decrease in
accuracy with increased feature dimension, as expected, due
to the curse of dimensionality phenomenon. With Niv = 200,
further tuning was done with respect to Ng. It is observed
that maximum accuracy is obtained for Ng = 512 by all
classifiers. Further increase in mixtures is avoided due to

Fig. 3. Variation of the classification accuracy with: (a) number of factors
used in FA, and (b) number of DNN layers.

the computational complexity and the marginal improvement
observed, which is validated by the results in [39]. Thus, the
best performing configuration parameters are Ng = 512 and
Niv = 200. Using this configuration i-vectors for TORGO
database are extracted.

Variation in the DNN classification accuracy with the
increasing number of dense layers (n), is given by Fig. 4 (a).
For UA-Speech, the network gives the best classification
accuracy of 93.97% for n = 3, on using iMFCC. A further
increase did not help the network, and the generalisation
gap is found to be increased. On using iCQCC, the network
performs best at n = 1, giving 66.20%. This means that
the DNN is not learning from iCQCC with growing depth,
and is found to be overfitted. We tried using regularisers,
but the accuracy of 66.20% was barely uplifted to 66.73%.
As a further step, the model complexity was reduced by
lowering the number of units in the first dense layer to
32. However, this led to underfitting. Thus, it is inferred
that the vocal-tract irregularities of dysarthric speech are not
highlighted on iCQCC when used on DNN. This is again
validated by the t-SNE plots [40] in Fig. 4 (b) and (c). These
are drawn from the output vectors produced by the snippets
from various classes for the last dense layer of the trained
networks. Good clustering is exhibited by the DNN model
using iMFCCs, in contrast to the one using iCQCCs. It can be
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Fig. 4. (a) Variation in DNN performance with increasing n, t-SNE plots from the last dense layer of DNN using (b) iMFCC (c) iCQCC.

observed that, the low and the medium class clusters show the
speaker variations, or has higher intra-class variability. This is
owed to the fact that, the number of speakers, and hence the
amount of training data available, is lesser for these classes.
Even then, the inter-class variability is well-maintained. For
TORGO, the accuracies reported by DNN, SVM and RF
classifiers are 95.29%, 87.67% and 84.08% respectively, for
iMFCCs. The same reported for iCQCCs are 74.22%, 66.14%
and 63.45% respectively. For the DNN models, iMFCCs lead
iCQCCs by over 20%, as in the case of UA-Speech, but the
tuning results in Fig. 4 (a) are quite different. The accuracy
saturated at n=1 for iMFCCs and at n=3 for iCQCCs. But being
the largest database among the two, the results of UA-Speech
over-rule this trend shown by the DNN classifiers.

D. Evaluating Speaker-Dependency of the Models

To know if the models work well under unseen-speaker
scenario, the SID experiments are performed. The different
classifiers, with their best tuned settings as obtained from SD
experiments, are evaluated using the LOSO cross-validation
technique. The UA-Speech database is chosen for this, as it
has a larger number of files, and speakers belonging to all
four severity levels. The common words from 14 speakers
were used for training, and the uncommon words of the
left-out speaker were used for testing in each round. Hence,
the models are checked on unseen speakers, as well as with
unseen utterances. As there are 15 speakers, the average of
15 rounds is reported here. The experiment was performed
in two different ways: (a) SID test case with four classes
as in previous experiments, (b) SID binary classification of
severity levels. Table I shows that the intermediate classes
have a lower number of speakers than the border classes,
which implies that the UA-Speech database is unbalanced.
Hence, the deep learning models may overfit the classes having
more speakers. So, we implement this binary classification,
merging classes ‘low’ and ‘very low’ as one, and ‘medium’
and ‘high as another, as in [24] and [41]. This is helpful
in situations wherein a mere understanding of whether the
severity level is ‘high’ or ‘low’ is enough for the intended
medication plan/speech therapy. This also indicates if the
system would efficiently handle the problem of detection of
dysarthric speech from healthy ones, since the border classes
are being differentiated.

TABLE V
AVERAGE LOSO CROSS-VALIDATION ACCURACY (%) OF E1

TABLE VI
AVERAGE LOSO CROSS-VALIDATION ACCURACY (%) OF E2 AND E3

Table V shows that the trend shown in the SD test case is
reversed in the SID case, as CQCCs outperformed MFCCs.
This puts light on the fact that the generic characteristics
among the same class speakers are better identified by CQCCs.
It can be inferred that the dysarthric characteristics specific to
the speakers (such as monotonicity) are being highlighted in
the MFCC features. This causes the network to perform well
even with unseen words of the seen speakers, but not with
unseen speakers. CQCC incorporates the minute variations
in pitch occurring at lower frequencies due to the higher
frequency resolution that CQT provides in low frequency
regions. Thus, is found to outperform the STFT-based MFCCs.
This is in agreement with the findings reported in [11] using
CQT-based and STFT-based spectrograms. The two-class or
binary LOSO cross-validation results are given in the later
rows. Here, since a better balanced dataset is made available,
we find the networks performing well. For all experiments,
DNN outperformed the rest, with the best being E1, with
CQCC, giving 70.77%. This is at an appreciable gain of
over 5% over the best results reported for the same task
in [24]. There is also an improvement of over 10% to the other
models implemented in E1, which implies that utterance-level
CQCC are better than frame-level features here. Another worth
noting point is that the performance of the LSTM model has
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TABLE VII
COMPARISON WITH PIONEER WORKS IN LITERATURE REPORTING SPEAKER-DEPENDENT (SD) AND SPEAKER-INDEPENDENT (SID) TEST CASES

improved to be at par with others. Thus, in the seen-speaker
scenario when other networks showed very high classification
accuracy, there is evident speaker overfitting. However, the
RNN models did not show such a trend. Also, we find a
comparable performance by the SVM and RF classifiers to
that shown by the DNN and RNN networks. This occurs
mainly due to the fact that the dataset is unbalanced, and
has only few subjects per class. Machine learning classifiers
have always shown results better than deep learning models
in data stringent situations. This is because while the former
learns well with handcrafted features on the available data,
the latter aims for consecutive hierarchical identification of
complex concepts that represent the underlying data, which
demands more amount of data.

Table VI gives the LOSO results of E2 and E3. The FA
(200) feature set gave an average cross-validation accuracy
of 36.11% using DNN, beating the results of E1. However,
the feature set worked poor on SVM and RF. As observed
in the SD case, DNN with iMFCC performed best, giving
49.22%. This outperforms the results of E1 and E2, and
highlights the efficiency of i-vectors in identifying the severity
levels. Although this seems to be too low, it is worth noting
that the best SID dysarthria severity assessment system in
literature, [24] reported 53.90% only, and ours is nearing
the same. This result was reported for a probability-fusion
framework on acoustic and textual-derived features extracted
using a pre-trained DeepSpeech-1 ASR model, trained with
1000 hours of data. It is important to note that, we achieved a
comparable result with the simple MFCC-based i-vectors used
on DNN. In binary cross-validation of E2, the concatenated
feature set outperformed the FA(200) feature set. We infer
that, on working with an unbalanced small dataset a precise
and compact feature representation is useful. When the dataset
is favoured to include more speakers per class, a detailed
feature study would be essential. An average accuracy of
70.52% was given by DNN using iMFCC in E3, which is at par
with that obtained in E2 and beats the result in [24] by 5%.
Table VII gives a brief comparison with the pioneer works
on dysarthria severity classification on UA-Speech. Lexical
features such as the fillers, phone rate, error rate, pauses, and
goodness of pronunciation as used in [23] could be combined

with the i-vectors in a multimodal fusion network to improve
the results. Also, the frame-wise computed speech-disorder
specific features of E2 can be used for the i-vector generation,
as they give good SID results.

E. Discussion
The progression of dysarthria as identified by SLPs using

auditory perceptual measures, has been automated in E1
using the perceptual features of speech, namely, MFCCs and
CQCCs. The results prove that they can be used with efficient
classifiers to provide an unbiased judgement of the dysarthria
severity. DNN and CNN classifiers outperform the RNN and
machine learning models on using MFCCs. But GRU handled
CQCCs better, indicating that their temporal dependencies are
important. On the feature side, MFCCs outperformed CQCCs
in the SD test case, but CQCCs promise better SID models by
showing less speaker-overfitting. On using i-vectors, iMFCCs
performed best in the SD case, beating all other features,
and achieved an improvement of nearly 20% classification
accuracy, compared to raw MFCCs in SID systems. There
is an appreciable gain over the conventional i-vector-PLDA
paradigm by the proposed second-level DNN learning of the
i-vectors. The improvement obtained by DNN over the SVM
classifiers is around 8% on using iMFCCs in the SD test case,
and 11% in the SID case. The corresponding values over the
RF classifiers are 10% and 9% respectively. This gain margin
is worth the increased computational time and can be improved
with the availability of a larger database. The models suffer
from the limitation of being trained with few subjects per class,
which is reflected by their poor performance in the SID case.
As in the case of deep learning models, building of UBM and
modeling of the TV matrix for the i-vector extraction would
benefit from the availability of a larger database, resulting in
more discriminating i-vectors. However, at present UA-Speech
is the largest dysarthric speech database available with all
four severity levels, and all pioneer works are done using it.
In literature, the speech-disorder specific features have been
extensively used in detecting disordered speech from healthy
ones, but they have proved to be less useful in modeling
the dysarthria severity levels. The 488-dimensional articula-
tion feature set performed the best among these, followed
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by the 28-dimensional phonation features which pushed the
103-dimensional prosodic features to the third position. This
showed that the dimension of the feature set need not impact
accuracy, as in agreement with the findings of [42]. The
effectiveness of articulation features compared to the others
has been proved in the automatic evaluation of PD patients
in [17] and [38]. A detailed statistical analysis must be done
to find the potential correlation within each feature class to
find the optimum feature descriptors. We would like to do the
hypothesis testing using the technique of paraconsistent feature
engineering (PFE) [43] as future work. The intra-class sim-
ilarities and inter-class distinctions exhibited by the different
feature sets can be quantified by PFE. This would evaluate the
discriminating power of the various features, and rank them
for their efficacy in classifying the severity levels. This would
also explain why the DNN classifiers cannot give good results
with all the features considered for the study.

VII. CONCLUSION

To the best of our knowledge, the current study is the first
detailed investigation on the various deep learning models
using different acoustic features for dysarthria severity classifi-
cation. We have also introduced a second level feature learning
on i-vectors using DNNs. Among the different features stud-
ied, MFCCs offer the least computational complexity on all the
classifiers. However, if accuracy is the prime concern, then the
DNN-iMFCC framework has to be used. I-vectors have proved
to be the best in speaker-recognition cases, and has now proved
to be the best in identifying speaker-groups as well. We would
like to explore the recent state-of-the-art features x-vectors as
future work. The characteristics of dysarthric speech excitation
source and the associated non-linearities in speech production
were analysed using Teager energy operator (TEO) profile
in [22]. The dysarthric TEO profile was found to be highly
irregular, with more high amplitude and noisy bumps noted
at high severity levels. Later in [44], it was shown that the
energy estimated using the enhanced Teager energy operator
(ETEO) [45], is greater than that obtained by using the TEO
for higher frequencies for normal speech. Inspired by these
results, we would like to explore the usage of ETEO for
differentiating the different dysarthria severity levels as future
work.
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