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a b s t r a c t

Recently, we have witnessed Deep Learning methodologies gaining significant attention for severity-
based classification of dysarthric speech. Detecting dysarthria, quantifying its severity, are of paramount
importance in various real-life applications, such as the assessment of patients’ progression in
treatments, which includes an adequate planning of their therapy and the improvement of speech-
based interactive systems in order to handle pathologically-affected voices automatically. Notably,
current speech-powered tools often deal with short-duration speech segments and, consequently,
are less efficient in dealing with impaired speech, even by using Convolutional Neural Networks
(CNNs). Thus, detecting dysarthria severity-level based on short speech segments might help in
improving the performance and applicability of those systems. To achieve this goal, we propose a
novel Residual Network (ResNet)-based technique which receives short-duration speech segments as
input. Statistically meaningful objective analysis of our experiments, reported over standard Universal
Access corpus, exhibits average values of 21.35% and 22.48% improvement, compared to the baseline
CNN, in terms of classification accuracy and F1-score, respectively. For additional comparisons, tests
with Gaussian Mixture Models and Light CNNs were also performed. Overall, the values of 98.90% and
98.00% for classification accuracy and F1-score, respectively, were obtained with the proposed ResNet
approach, confirming its efficacy and reassuring its practical applicability.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Dysarthria (Freed, 2018) consists of a motor speech disorder in
hich the articulatory elements and muscles required to speak
rdinarily are somehow affected, paralyzed or damaged. Indi-
iduals suffering from dysarthria face difficulties in conveying a
poken message or expressing voice emotions, since vocal folds,
ongue, and associated muscles cannot be adequately controlled.

Concomitantly with dysarthria-related issues, we know that,
ith the advancement of speech technologies, Intelligent Per-
onal Assistants (IPAs) such as Google Assistant, Siri, Amazon, and
Alexa, are overgrowing. Nevertheless, these systems have been
produced based on the assumption that the speech to be pro-
cessed is in its natural form and comes from a healthy subject.
Hence, they are not capable of performing speech recognition
efficiently in impaired people (Young & Mihailidis, 2010). More-
over, recent interactive devices, such as specific IPAs, use to deal
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893-6080/© 2021 Elsevier Ltd. All rights reserved.
with short-duration speech segments and, consequently, their
performance is highly dependent on the Automatic Speech Recog-
nition (ASR) algorithm (De Russis & Corno, 2019; Swarup, Maas,
Garimella, Mallidi, & Hoffmeister, 2019).

Not only ASR systems benefit from the possibility of assessing
and identifying dysarthric speech (Bhat, Vachhani, & Kopparapu,
2017a; Mustafa, Salim, Mohamed, Al-Qatab, & Siong, 2014) but
also many other systems. To allow for dysarthric speech en-
hancement and patients’ progression in treatment, detecting the
severity-level of a pathology from short-duration speech seg-
ments is an essential task. Standard methods for the assessment
of dysarthric speech are traditionally based on a clinical trial
by Speech Language Pathologists (SLPs), using pre-defined rating
scales or observing the movement of various articulatory ele-
ments over the spoken time-interval (Rudzicz, Namasivayam, &
Wolff, 2012). For dysarthria detection, specific speech segments
from a certain set of speakers can be obtained from long speech
signals based on manual or automatic framing. In the latter case,
deep learning-based approaches have played an important role,
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s demonstrated in papers (Wang & Chen, 2018; Zhang & Wu,
013), and (Zhang & Wang, 2016).
The recent study documented in Connaghan, Wertheim, Laures

ore, Russell, and Patel (2020) demonstrates how important
emantic differential scales are to investigate listener impressions
n speakers with dysarthria. For the severity-based classification,
ost of the methods focus on feature-based techniques and
coustic modeling (Calvert, Spence, Stein, et al., 2004; Falk, Chan,
Shein, 2012; Paja & Falk, 2012a; Sztahó & Vicsi, 2016). Ac-

ordingly, the study reported in Gurevich and Scamihorn (2017),
or instance, shows a detailed analysis of the various method-
logies for dysarthria severity assessment using different rating
cales defined decades ago (Enderby, 1980; Fahn & Elton, 2000;
oehn & Yahr, 1967; Schmitz-Hübsch et al., 2006; Yorkston,
eukelman, & Traynor, 1984a, 1984b). There is, however, sub-
tantial performance variability among listeners who transcribe
egraded speech, as mentioned by the authors of paper (kyong
hoe, Liss, Azuma, & Mathy, 2012). The authors of paper (Paja &
alk, 2012b) proposed the application of a Mahalanobis distance-
ased discriminant classifier in conjunction with a set of acoustic
eatures formerly proposed for intelligibility prediction and voice
athology assessment, where feature selection is used to sieve
eatures for both disorder severity classification and intelligibil-
ty prediction. In the same way, multinomial logistic regression
ith sparsity constraints is used in paper (Lansford, Berisha, &
tianski, 2016) as a similarity-based approach to characterize
ysarthria. In sum, however, those processes are time-consuming,
ifficult, and costly.
Turning to more recent computer-based assessments, as re-

orted in paper (Gomez et al., 2019), for instance, 16 subjects
ffected with Parkinson disease and 16 healthy subjects have
hown considerable differences between the statistical distribu-
ions of dynamic articulation features based on Kullback–Leibler
nd Jensen–Shannon divergences. Accordingly and as explained
n paper (Yang et al., 2020), a total of 35 patients affected by
arkinson disease and 26 healthy controls were considered to
erform single-, double-, and multiple-syllable tests based on
ogistic regression. The corresponding results revealed that the
inimum, maximum and mean fundamental frequencies, in
ddition to jitter, duration of speech, and median intensity of
peaking were considerably different for the groups. In the same
irection, the authors of paper (Giri & Rayavarapu, 2018) demon-
trated a relatively similar result.
Some artificial intelligence-based approaches have been tried,

ncluding Hidden Markov Models (HMMs) using a Maximum
ikelihood Estimation (MLE) technique (Bhat, Das, Vachhani, &
opparapu, 2018; Bhat, Vachhani, & Kopparapu, 2016), Gaus-
ian Mixture Models (GMMs), and Long Short-Term Memory
LSTM) (Kim, Cao, An, & Wang, 2018). Another similar
trategy was proposed in Bhat et al. (2017a): it uses different
eature sets combined with Artificial Neural Networks (ANNs),
etting worth-mentioning results in severity-based classifica-
ion. Data augmentation technique was also used to address
he data scarcity problem in severity-based classification (Vach-
ani, Bhat, & Kopparapu, 2018). Following the same way, the
uthors of paper (Bhat, Vachhani, & Kopparapu, 2017b) proposed
non-linguistic manner for the automatic assessment of severity

evels of dysarthria by means of music-related features. An or-
inary Artificial Neural Network (ANN) was used together with
niversal Access (UA) corpus and TORGO database, where the
verage classification values of accuracy of 96.44% and 98.7% were
btained for those datasets, respectively. Nevertheless, all the
bove-mentioned strategies are sub-optimal in particular aspects,
ith limitations in at least one specific sense, such as being based
olely in shallow classifiers.
Proceeding over time, we can find another significant piece of

ork in paper (Chandrashekar, Karjigi, & Sreedevi, 2019), which
106
combined spectro-temporal features, ANNs, and Convolutional
Neural Network (CNN)-based classifiers. Accordingly, the results
reported in paper (Farhadipour, Veisi, Asgari, & Keyvanrad, 2018),
in which authors presented a feature-extraction method based
on Deep Belief Networks (DBNs) to identify speakers suffering
from dysarthria, are relevant: considering UA corpus, an accu-
racy of 97.3% was reported. Following, Vásquez Correa, Arias,
Orozco-Arroyave and Nöth (2018) the authors proposed a mul-
titask learning approach based on CNNs to discover different
patients’ speech issues, such as lack of possibility to move the lips,
larynx, tongue and palate. They found that their approach im-
proved in 4% the average accuracy in relation to single networks
trained to analyze and evaluate speech details.

Another interesting piece of work published by the authors
of paper (Perez, Aldeneh, & Provost, 2020) consists of a novel
acoustic model based on a mixture of experts, allowing for in-
telligibility speech stages to be assessed. The proposed approach
drastically reduced phone error rates across all severity stages
in aphasic speech, in comparison with their baseline strategy. In
the same way, the authors of paper (An et al., 2018) investigated
the possible existence of amyotrophic lateral sclerosis based on
dysarthria. Different CNN structures were used, considering both
time-domain and frequency-domain. Experimental results out-
performed ordinary ANN-based approaches, with results around
71.6% and 80.9% for the values of sensitivity and specificity,
respectively. Similarly, the authors of paper (Tripathi, Bhosale, &
Kopparapu, 2020) proposed a speaker-independent intelligibility
assessment system based on DeepSpeech, which is an end-to-end
speech-to-text engine, and a support vector machine. Considering
the UA corpus, a value of accuracy of 53.9% was obtained.

Even adopting deep classifiers, all the previous approaches
proposed for dysarthria severity classification work effectively on
long-duration speech signals, i.e., those generally ranging from 4
to 8 s. In this study, however, a novel approach has been proposed
for severity-based classification of dysarthric speech based on
short-duration speech segments, lasting less than one second.
In addition, inspired on two recently-proposed CNN-based ap-
proaches used to detect Parkinson’s disease, as documented in pa-
pers (Vásquez Correa, Arias-Vergara, Orozco-Arroyave and Nöth,
2018; Vásquez-Correa, Orozco-Arroyave, & Nöth, 2017), our strat-
egy focuses on a Residual Network (ResNet)-based classification
algorithm.

ResNet was introduced in 2015 and revolutionized the field
of Deep Neural Networks as it was able to achieve a network
depth of more than 100 layers, which was far deeper than the
other existing neural network architectures of those times. Since
then, ResNet has proved to be very successful in image classifica-
tion (Jiang, Chen, Zhang, & Xiao, 2019; Liu, Tian, & Xu, 2019; Wang
et al., 2017), image recognition (He, Zhang, Ren, & Sun, 2016a;
Lu, Jiang, & Kot, 2018), and computer vision applications (Jung
et al., 2017; Liu et al., 2020). Inspired by these successes, the
effectiveness ResNet model has also been explored for the speech
research problems. In Chen, Xie, Zhang, and Xu (2017), ResNet
is used to classify between the speech of a genuine speaker and
replayed speech on ASVspoof2017 dataset. The model was able
to achieve an Equal Error Rate of 16.26 when MFCC features
were used as input to the model. The authors of Vydana and
Vuppala (2017) used a Hidden Markov Model-based ResNet for
speech recognition task. While comparing the results with a
Hidden Markov Model-based Deep Neural Network, a reduction
in Word Error Rate of 8% was achieved. However, to the best of
author’s knowledge, ResNet architecture has not been used for
classification of dysarthric speech and hence, this is the first time
that the ResNet architecture has been employed for severity-level
classification of dysarthric speech.

Therefore, based on the limitations of key methods, previ-
ously reviewed, the proposed approach successfully advances
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able 1
everity classification based on intelligibility.
ource: Adapted from Kim et al. (2008).
Intelligibility rating (%) Severity-level

0–25 High
25–50 Medium
50–75 Low
75–100 Very low

the state-of-the-art in the field. Our specific contributions are
summarized as follows: (i) this is the first attempt of its kind
to detect the severity of dysarthric speech using short-duration
speech segment; (ii) this is the first time ResNet is adopted for
dysarthria severity classification; and (iii) statistically meaningful
experiments on standard UA corpus were conducted, reassuring
the efficacy of our original technique.

Aiming at a better understanding of the concepts explained
ereafter, the remaining of this paper is structured as follows:
ection 2 presents the problem statement, Section 3 characterizes
ysarthric speech to investigate suitable feature representation
nd nonlinearities in speech production. Section 4 explains the
roposed methodology and Section 5 shows the experimental
etup for which the corresponding results are discussed in its
ubsections. Lastly, Section 6 describes the conclusions along with
uture suggested directions.

. Problem formulation

Our goal is to classify dysarthric speech based on its severity-
evel using short-duration speech segment. In this study,
ysarthric speech is classified into four severity-based categories
s shown in Table 1. As suggested in Kim et al. (2008), five naive
isteners were recruited for each speaker, and they were allowed
o listen to words as many times as needed for transcription. For
ach listener’s transcription, the percentage of correct responses
as calculated. The correct percentage was then averaged across

ive listeners to obtain each speaker’s intelligibility. Based on the
veraged percent accuracy, each speaker was classified into one
f four categories as shown in Table 1.
Since speech is essentially produced upon air exhalation, a

recisely coordinated respiratory support is of paramount im-
ortance for communication. In dysarthric subjects, however,
he combined pneumo-phono-articulatory cognitive commands
rom the brain are pathologically-affected, drastically degrading
peech quality. Remarkably observable, distorted vowel sounds
ave been a direct consequence of dysarthria, where articulatory
ndershoot forces a humble vowel working space, as mentioned
n papers (Lansford & Liss, 2014; de Oliveira Chappaz, dos San-
os Barreto, & Ortiz, 2018). Hence, as shown in papers (Kim,
asegawa-Johnson and Perlman, 2011; Kim, Kent and Weismer,
011; Rosen, Goozee, & Murdoch, 2008; Turner, Tjaden, & Weis-
er, 1995; Watanabe, Arasaki, Nagata, & Shouji, 1994), formant

requencies centralization, uncommon formant frequencies for
oth front and high vowels, formants instability, and reduced
lopes involving the second formant, are notable. This justifies
ur efforts in using short speech segments for the detection of
ysarthria, since, presumably, they contain the formant-related
nformation we need and, in addition, are capable of character-
zing severity-levels. Based on our strong evidences, let us move
orward to the formal problem formulation.

Let X = {xi}ni=1 denote the features of dysarthric speech, and
= {yi}ni=1 denotes the corresponding labels. First, we map this

abeled data, D = {xi, yi}ni=1 as:

(x) =

⎧⎪⎨⎪⎩
y = 0, if severity-level is high,
y = 1, if severity-level is mid,
y = 2, if severity-level is low,
y = 3, if severity-level is very low.
107
Fig. 1. The residual block strategy.

Problem Statement: Given a manually annotated
dysarthric speech data (D), for severity-based classification
in four categories, learn severity-based classifier (as a
mapping function), F : X → Y , which can do efficient
classification using short-duration speech.

To solve our proposed problem, we certainly need an adequate
classifier. Although universal approximation theory (Christensen
& Christensen, 2006) presents results allowing for the conclusion
that feedforward neural networks containing a single layer could
represent any function, data overfitting and the vanishing gra-
dient issue have forced machine learning algorithms to advance
much more. As observed in practice and confirmed theoretically,
however, expanding the networks in such a way they get deeper
does not mean just adding layers because accuracy and perfor-
mance might degrade extraordinarily fast. Thus, since they allow
for training up to thousands of layers with remarkable perfor-
mance, Deep Residual Networks (ResNets) (Kawaguchi & Bengio,
2019) have been considered one of the most groundbreaking
advancements in deep neural network-related fields.

The identity shortcut connections (ISCs), used to occasionally
skip one or more network layers, as shown in Fig. 1, is the essence
of ResNets. By blocking the information flow in case the feature
maps of two subsequent layers present considerably different
distributions, usually jumping two or three layers, ISCs allow for
clear and appropriate gradient paths. Simulating the pyramidal
cells in the cerebral cortex, the circumvention permits back-
ground and rectifier linear unit (ReLU) normalization (Huang, Liu,
Weinberger, & van der Maaten, 2017). Therefore, since ResNets
have been the most flexible structure capable of handling the
above-mentioned problems adequately, they are presumably use-
ful to capture the differences between healthy and dysarthric
subjects. Furthermore, considering that they had never been used
to the detection of dysarthria, we are adopting them as being our
fundamental classification strategy.

3. Characterizing dysarthria in speech signals

In this section, we present the time-domain, frequency-
domain, and joint time–frequency domain analysis of dysarthric
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Fig. 2. Analysis of time-domain waveform: (c) is the segment of normal speech signal which is depicted in (a), and (d) is the segment of the dysarthric speech
ignal which is depicted in (b).
Fig. 3. Analysis via LP residual for signals shown in Fig. 2(a) LP residual for normal speech, and (b) LP residual for dysarthric speech.
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peech as compared to its normal counterpart. The key moti-
ation for such an analysis is to be able to choose appropriate
eature representation for proposed deep learning architecture in
ur paper.

.1. Analysis of time-domain waveform and glottal excitation source

Fig. 2-(a) and (b) show the time-domain waveform for normal
nd dysarthric speech, respectively. It can be observed from time-
omain acoustic pressure variations that dysarthric speech has
everal distinct characteristics, such as relatively longer dura-
ion, longer pitch period, and production noise, possibly due to
rication. This is a direct consequence of the combined pneumo-
hono-articulatory cognitive commands from pathologically-
ffected brains, as discussed in the previous section.
In order to analyze the characteristics of speech excitation

ource during production, we employed two well-known meth-
ds, namely, Linear Prediction (LP) residual and Teager Energy
perator (TEO) profile. In particular, for a speech signal s(n), LP
esidual is given by (Atal & Hanauer, 1971)

(n) = s(n) − s̄(n),

here s̄(n) =
∑p

k=1 ak · s(n − k), with ak representing the Linear
rediction Coefficients (LPC). LP residual is known to give rela-
ively higher values at, and also around, Glottal Closure Instants
GCIs) primarily due to relatively weaker capability of linear
redictor before excitation signal is applied to, or reaches, the
ocal tract system, as it has its own inertia so far as physics of
peech production is concerned. Hence, historically LP residual
nd its analytic representation via Hilbert transform are used for
stimation of GCIs (Ananthapadmanabha & Yegnanarayana, 1975,
979). To that effect, Fig. 3 shows the plot of LP residual for
108
ormal vs. dysarthic speech cases shown in Fig. 2-(a) and (b).
e can observe from Fig. 3 that LP residual is highly irregular

or dysarthic speech, indicating abnormal changes in pitch period
T0) and hence, pitch frequency (or fundamental frequency, F0).
hat is why changes in T0, i.e., jitter, have been used in literature
or classification of normal vs. dysarthric speech.

Next, we present the analysis of the excitation source part via
eager Energy Operator (TEO) profile. In particular, for a speech
ignal s(n), TEO profile is given by

EO{s(n)} = (s(n))2 − s(n − 1) · s(n + 1) .

rom TEO, we can observe that three consecutive speech samples
re required to find the running estimate of signal energy and,
hus, it is known to have excellent time-resolution (Kaiser, 1990).
ig. 4 shows the corresponding TEO profile for the normal vs.
ysarthic speech case shown in Fig. 2. We can note from Fig. 4
hat, as in LP residual, TEO is also highly irregular for dysarthic
peech, indicating abnormal changes in pitch period, i.e., T0, and,
ence, pitch frequency. In particular, TEO is found to give high
nergy pulses corresponding to GCIs due to its capability to cap-
ure characteristics of impulse-like excitation which are known
o have higher signal-to-noise (SNR) ratios.

.2. Analysis of nonlinearities in speech production

Historically, TEO was developed to investigate possible non-
inearities in speech production, showing bumps within glottal
ycles. If production mechanisms for speech would have been
inear, then the corresponding impulse response of each 2nd
rder digital resonator, whose cascade approximates frequency
esponse of vocal tract system, would have been as damped
inusoids and, hence, corresponding TEO profile would be an
xponentially decaying function (Kaiser, 1990).
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Fig. 4. Analysis via TEO profile for signals shown in Fig. 2, as follows: (a) TEO profile for normal speech, and (b) TEO profile for dysarthric speech.
Fig. 5. Analysis of nonlinearities via TEO profile (bumps in within GCIs): (a) Normal Speech Waveform, (b) TEO profile for normal speech signal. Dysarthric Speech
waveform for (c) severity-1, (e) severity-2, (g) severity-3, and (i) severity-4. TEO Profile of Dysarthric Speech for (d) severity-1, (f) severity-2, (h) severity-3, and
(j) severity-4.
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Therefore, the presence of bumps within two consecutive GCIs
ndicates the production of speech is not only due to the lin-
ar system, as in linear acoustics; rather, there is significant
ontribution from nonlinear effects such as aeroacoustic mech-
nisms (Quatieri, 2002; Teager & Teager, 1990). To that effect,
ig. 5 shows the TEO profile for the normal vs. dysarthic speech
ase with four severity levels. We can observe that bumps are
resent within two consecutive GCIs for both the normal and
he dysarthric speech. Furthermore, as severity of dysarthria in-
reases, Teager energy pulses corresponding to GCIs are irreg-
larly located and, in addition, more high amplitude and noisy
umps can be noted, indicating much more significant nonlinear
spects in production of dysarthic speech.

.3. Time–frequency analysis

Features derived from time–frequency representation of
peech signal have been used in several speech applications. In
articular, the study in Chen, Wang, and Wang (2014) evaluated
arious acoustic features based on their relative effectiveness to
stimate quality of time–frequency mask, namely, ideal binary
ask (IBM) — a central research issue in speech enhancement
nd source separation area. The wide range of acoustic features
primarily motivated by robust Automatic Speech Recognition
109
(ASR)) such as Mel-Frequency Cepstral Coefficients (MFCC), Per-
ceptual Linear Prediction, Relative Spectral Transform-Perceptual
Linear Prediction, Gammatone Frequency Cepstral Coefficients,
Power Normalized Cepstral Coefficients, fundamental frequency
(F0), etc. are considered in this study. In addition, study in Chen
t al. (2014) proposed a new acoustic feature called the Multi-
esolution Cochleogram (MRCG), which is encoder multi-
esolution power distribution in the time-frequency represen-
ation of a signal. Finally, study in Chen et al. (2014) found
RCG and pitch as complementary features using group Lasso

least absolute shrinkage selection operator) that improve l1/l2
ixed norm regularization on logistic regression to investigate

he complementary features. The study in Chen et al. (2014)
s extended in Delfarah and Wang (2017) for monaural speech
eparation from supervised learning perspective by predicting an
deal time–frequency mask from similar acoustic features of noisy
peech under reverberant conditions at low signal-to-noise ratios
SNRs) and employing a simple Deep Neural Networks (DNNs)
s a learning machine. The key findings of this study are that
omplementary feature sets for speech separation in reverberant
onditions are different from those in anechoic conditions (as
eported in Chen et al., 2014).

Motivated by these studies, we employ such representation
or the dysarthic severity classification problem. Fig. 6-(a) and
b) show the plot of Short-Time Fourier Transform (STFT) vs. LP



S. Gupta, A.T. Patil, M. Purohit et al. Neural Networks 139 (2021) 105–117

s
t
t
s
s
t
i
t
s
h
s
r
a
s
b
t

Fig. 6. STFT representation of: (a) Normal speech (b) Dysarthric speech vs. LP spectrum of (c) Normal speech (d) Dysarthric speech.
Fig. 7. Waterfall characteristics of: (a) Normal speech (b) Dysarthric speech.
pectrum for the normal vs. dysarthria speech case. We also show
he waterfall plot in Fig. 7 to emphasize the corresponding joint
ime–frequency characteristics during the production of dysarthic
peech. From the waterfall plots, we can observe that the formant
tructure is severely damaged for dysarthric speech as compared
o its normal counterpart, where formant peaks and their evolv-
ng structures are clearly visible. Thus, the analysis presented in
his section indicates that F0, its harmonics, formants, and their
tructures are severely affected due to dysarthria, more so for
igh severity, and hence, we propose to exploit this unstructured
pectral energy distribution captured via spectrograms as feature
epresentation for the proposed deep learning architecture. In
ddition, TEO-based analysis helped us to observe relatively more
evere nonlinearities in speech production. To that effect, authors
elieve that proposed deep learning-based architecture may help
o imitate this nonlinearity effectively.
110
4. Proposed approach

In this section, we provide readers with a detailed description
of the methodology and strategies used to solve the proposed
problem. Specifically, as represented in Fig. 9, the following three
major components exist:

1. onset–offset detection;
2. Time–Frequency (T–F) representation of selected short-

duration speech segments;
3. mapping technique for utilizing features to do efficient

classification.

Along with the schematic representation of the proposed method-
ology, we provide the respective Algorithm 1, used to solve our
severity classification task. Detailed explanations can be found
hereafter.
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Fig. 8. Schematic representation of F0 detection.
Source: Adapted from Bořil and Pollák (2004).
Fig. 9. Schematic representation of proposed methodology. After (Vásquez-Correa et al., 2017).
Algorithm 1 Proposed Algorithm for the Dysarthria Severity
lassification using Short-duration Speech Segment

Result: Optimized weights and biases for Classifier and Severity
label for the input Dysarthric Speech

for number of iterations do
Randomly select a speech wave file s from the training set of
the dysarthric speech S;
Detect the Onset-Offset from the wave file using DTFE
method;
Create a set of time stamps T = {ti}ni=1, where ti represents
the ith seconds where Onset-Offset is detected;
Remove all the t ∈ T where t > 1second;
Create a set of chunks C with time-interval (t − 100ms, t +

100ms), ∀t ∈ T ;
Train the classification model:
for ∀c ∈ C do

spec = STFT(c , window-size=2ms, frame-shift=0.5ms);
logits = classificationmodel(spec);
ŷ =argmax(logits);
L(y, ŷ) = CrossEntropyLoss(y, logits);
Update the classifier by descending its stochastic gradient,
i.e., ∇θc (L(y, ŷ))

end
end

4.1. Onset–offset detection

The onset and offset regions of the speech signals were char-
cterized, as a function of their fundamental frequencies (F0), by

using the Direct Time Fundamental Frequency Estimation (DTFE)
method, described in a study reported in Bořil and Pollák (2004).
DTFE is a novel algorithm for fundamental frequency (F0) estima-
tion performed directly in the time-domain. In this algorithm, F0
detection is performed via evaluating actual F0 candidate from
the distance between neighboring significant peaks (i.e., local
extremas) that there is only one peak representing the absolute
maximum and one the absolute minimum in the quasi-period
of the signal. Structure of the F detection is shown in Fig. 8.
0
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Implementation details for pitch (F0) tracker DTFE are presented
here.1

We carefully used that method to extract the onset and offset
time stamps from each input speech signal in our dataset. After
this, the borders were detected and, in addition, 100 ms from
each signal was taken to the left and 100 ms to the right of each
border, forming the 200 ms-long signals as ‘‘chunks’’. Each one
of those chunks was modeled by using the Short-Time Fourier
Transform (STFT), as described ahead.

4.2. Spectrogram: T-F representation

As discussed in Section 3, STFT was applied to each generated
chunk, for T-F representation. To feed the classifier, 2 ms-long
frames, shifted 0.5 ms over time, were considered in order to
generate a spectrogram image with dimensions of 570 × 450
pixels. Fig. 10 shows example spectrograms for different severity-
levels of dysarthria. The spectrograms were plotted only for one
second-long, i.e., short-duration, speech signals. Observably, the
energy distribution across the frames, for speakers with different
severity-levels of dysarthria, is significantly unlike. Hence, we
hypothesize that those short-duration speech segments are suf-
ficient for the intended classification. To support our hypothesis,
we show the experimental results in Section 5.

4.3. Mapping technique: CNN vs. ResNet

A recent trend indicates that a high number of stacked layers
in neural networks provides better results for classification task in
general (LeCun, Bengio, & Hinton, 2015). Nevertheless, accuracy
degrades rapidly after the increment in the number of layers.
The reason behind this is the ample training error, instead of
overfitting (He et al., 2016a). Moreover, current studies show
that deep neural networks are more challenging to train due to
overfitting, vanishing gradient, and besides additional issues, as
explained in Angelov and Sperduti (2016), Goodfellow, Bengio,
and Courville (2016) and Hestness, Ardalani, and Diamos (2019).

Making CNN models deeper for our task is not an appropriate
solution. To overcome the limitation of CNN-based architectures,

1 https://personal.utdallas.edu/~hynek/tools.html.

https://personal.utdallas.edu/~hynek/tools.html
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Fig. 10. STFT of the one second of speech segment of speakers with different severity-levels when they pronounce the word ‘‘Command’’: (a) Very Low, (b) Low,
c) Medium, and (d) High.
esidual learning-based classifiers, ResNet, were used in He et al.
2016a) and Tai, Yang, and Liu (2017). The former technique is
sed as a baseline for comparisons. Although ResNet uses convo-
ution layers as its building blocks, it is more effective than CNNs
or image classification, as suggested in He et al. (2016a). Thus,
e decided to use the strength of ResNet for our classification
roblem, analyzing its results. In residual-learning, f (y) is the
nderlying function, as shown in Section 2, to be learned by a
egular neural network-based classifier, where y is the set of input
eatures, i.e., spectrogram image of chunk in our case. Due to the
etwork non-linearity, it is capable of learning f (y) − y along

with f (y), forcing the classifier to optimize the residual function
F (y) = f (y)−y. Hence, the original optimization function becomes
F (y) + y. Although both the methods are learning the same
underlying functions, the ease of learning is different. The main
reason behind that is the associated identity mapping, as shown
in He, Zhang, Ren, and Sun (2016b). Due to the skip connections
in ResNet, it would be easier to push the residual to zero than to
fit an identity mapping by a stack of nonlinear layers. This helps
ResNet in learning different patterns more efficiently, as shown
in He et al. (2016a) and Tai et al. (2017).

5. Experimental setup and results

In this section, we provide the description about the database
used for experiments, and the details of hyperparameters used

both in the baseline system and in the proposed ResNet model.
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The results for the severity-based classification task for differ-
ent architectures (GMM, CNN, LCNN, and ResNet) are discussed
along with the analysis of the effectiveness of ResNet over other
methods for our classification task.

5.1. Dataset

Universal Access (UA) corpus (Kim et al., 2008) was used in our
experiments. This dataset includes details on speech intelligibility
for each dysarthric speaker, in terms of severity-level, based on
transcription tasks at the word-level performed by the human
listeners. In our experiments, we used 8 speakers, i.e., 4 males
namely M01, M05, M07, M09 and 4 females namely F02, F03,
F04, F05. Details about them can be found in Kim et al. (2008).
Each speaker produced a total of 765 isolated words, in which
455 words are distinct. For training and testing, we used 90% and
10% data, from 455 distinct words for each speaker, respectively.

5.2. Comparison methods

Our ResNet model has two types of residual blocks: (i) regular
residual block; and (ii) downsampling-based residual block (He
et al., 2016a). In this paper, our ResNet structure comprises nine
regular and three downsampling-based residual blocks. In resid-
ual blocks, we used two 2-dimensional CNN layers with a kernel
size of 3 × 3 = 9. However, for downsampling-based residual

blocks, we increase the stride to 2 for the first CNN block and,
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Table 2
Proposed architectural details of ResNet. Here, Conv1 and Conv2 show continuous layers of residual block and Conv3 shows parallel
downsampling layer in residual block.
Block # of Neurons General settings Conv1 settings Conv2 settings Conv3 settings

Convolution 3200 64, 7 × 7, 1 – – –
Batch normalization – 64, –, – – – –
Max pool – 64, 7 × 7, 1 – – –
Residual block 1280 – 64, 3 × 3, 1 64, 3 × 3, 1 –
Residual block 1280 – 64, 3 × 3, 1 64, 3 × 3, 1 –
Residual block 1280 – 64, 3 × 3, 1 64, 3 × 3, 1 –
Residual down sampling 3840 – 128, 3 × 3, 2 128, 3 × 3, 1 128, 3 × 3, 2
Residual block 2560 – 128, 3 × 3, 1 128, 3 × 3, 1 –
Residual block 2560 – 128, 3 × 3, 1 128, 3 × 3, 1 –
Residual down sampling 7680 – 256, 3 × 3, 2 256, 3 × 3, 1 256, 3 × 3, 2
Residual block 5120 – 256, 3 × 3, 1 256, 3 × 3, 1 –
Residual block 5120 – 256, 3 × 3, 1 256, 3 × 3, 1 –
Residual down sampling 15360 – 512, 3 × 3, 2 512, 3 × 3, 1 512, 3 × 3, 2
Residual block 10240 – 512, 3 × 3, 1 512, 3 × 3, 1 –
Residual block 10240 – 512, 3 × 3, 1 512, 3 × 3, 1 –
Average pool – 512,8 × 8,– – – –
Fully-connected layer 4 – – –
i
E
t
a
m
a

before adding input x to the output of second CNN block, we
use downsampling with similar settings as first block. There-
fore, we use one downsampling-based shortcut connection with
two residual blocks to process the downsampled output. Table 2
shows the architectural details of the proposed model. We first
used a single CNN layer with 7 × 7 kernel size to downsample the
nput. Later, we used a total of 14 different residual blocks and, at
he end, we adopted a single fully-connected layer with softmax
ctivation function to predict the severity of the input dysarthric
peech spectrogram. Architectural details related to the proposed
esNet are shown in Table 2.
For the baseline system, we have used Gaussian Mixture

odel (GMM) as a classifier (Bishop, 2006; Duda & Hart, 2006;
eynolds, 1992; Reynolds & Rose, 1995). GMMs parameters are
nitialized with random initialization and updated based on Ex-
ectation Maximization (EM) algorithm. The parameters are up-
ated up to 50 iterations. Four GMMs were trained for each
everity level. Test sample was presented to each of the GMM
o obtain its log-likelihood score (LLK). The GMM producing the
aximum LLK is considered to be the predicted class.
We also designed a regular CNN-based architecture containing

5 × 5 kernel for each one of its four CNN layers: CNN-layer-
, CNN-layer-B, CNN-layer-C and CNN-layer-D, with 8, 16, 32,
nd 64 output channels, respectively (LeCun, Bottou, Bengio, &
affner, 1998). Moreover, we adopted max-pooling with a kernel
ize of 4 × 4 after the first three CNN blocks. Later, we used three
ully-connected layers with 128, 64, and 4 output neurons. ReLU
as used as an activation function for the hidden layers in both
he models. Accordingly, the output layers in both the models
re followed by a softmax activation function. The models were
rained for 30 epochs with learning rate of 0.0001, by using Adam
ptimizer (Kingma & Ba, 2014).
The LCNN architecture was also employed here since it per-

ormed exceptionally when used for the spoof speech detection
ask (Lavrentyeva et al., 2017, 2019). Hence, we decided to use
t for severity-based classification of dysarthric speech. These
xperiments were carried out by using spectrogram images of
ize 450 × 570 in Red-Green-Blue (RGB) color format. The LCNN
rchitecture uses Max-Feature-Map (MFM) activation operation
nstead of other non-linearities, such as ReLU or sigmoid function.
FM activation is a special case of max-out function, for learning
ith a small number of parameters as compared with ReLU
ctivation function (Wu, He, Sun, & Tan, 2018). Also, the MFM
unction has the better generalization ability for distinct data
istributions. MFM function is defined as:

k k k+ N
2 ), (1)
ij = max(xij, xij
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Table 3
Details of the proposed LCNN architecture for dysarthria severity classes.
Layer Filter/Stride Output #Parameters

Conv1 5 × 5/1 × 1 32 × 450 × 570 2432
MFM1 – 16 × 450 × 570 –
MaxPool1 2 × 2/1 × 2 16 × 225 × 285 –
Conv2a 1 × 1/1 × 1 32 × 225 × 285 544
MFM2a – 16 × 225 × 285 –
Conv2b 3 × 3/1 × 1 64 × 225 × 285 9280
MFM2b – 32 × 225 × 285 –
MaxPool2 2 × 2/1 × 2 32 × 112 × 142 –
Conv3a 1 × 1/1 × 1 64 × 112 × 142 2112
MFM3a – 32 × 112 × 142 –
Conv3b 3 × 3/1 × 1 128 × 112 × 142 36992
MFM3b – 64 × 112 × 142 –
MaxPool3 2 × 2/2 × 2 64 × 28 × 35 –
Conv4a 1 × 1/1 × 1 128 × 28 × 35 8320
MFM4a – 64 × 28 × 35 –
Conv4b 3 × 3/1 × 1 64 × 28 × 35 36928
MFM4b – 32 × 28 × 35 –
MaxPool4 2 × 2/2 × 2 32 × 14 × 17 –
Conv5a 1 × 1/1 × 1 64 × 14 × 17 2112
MFM5a – 32 × 14 × 17 –
Conv5b 3 × 3/1 × 1 32 × 14 × 17 9248
MFM5b – 16 × 14 × 17 –
MaxPool5 2 × 2/2 × 2 16 × 7 × 9 –
FC6 – 1 × 128 24704
MFM6 – 1 × 64 –
FC7 – 1 × 4 260

where the number of channels of the input convolution layer is
2N , (1 ≤ k ≤ N), (1 ≤ j ≤ W ), and (1 ≤ i ≤ H). Here, i and j
ndicate the feature component and frame number, respectively.
ach convolution layer is a combination of two independent
erms previously calculated from input layer’s output. The MFM
ctivation function is used then to calculate element-wise maxi-
um of those parts. Max-Pooling layers with kernel of size 2x2
nd stride of size 2 × 2 were used for dimensionality reduction.

The fully-connected FC6 layer contains a low-dimensional high-
level audio representation. Then, the FC7 layer with softmax
activation function was used to distinguish between four classes
of dysarthric speech during the training process. The details of
LCNN architecture are shown in Table 3.

As described in Section 4.1, 200 ms-long chunks were ex-
tracted from each speech signal. For our experiments, we selected
a different number of onset-offset detection routines and then
used them for training. In case the distance between consecu-
tive onset-offset tags is less than 200 ms, we used overlapped
chunks. In the case of non-overlapping chunks, we got [(num-

ber of chunks) × (200 ms)] seconds of speech segment, which
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Fig. 11. Baseline CNN vs. ResNet, for different speech-duration based on (a) classification accuracy score and (b) F1-Score. Additionally, LNCC and GMM were also
considered for comparisons, however, since GMM exhibit a poor accuracy, its F1-scores were not even computed.
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becomes, however, less than this in the case of overlapping sce-
narios. Hence, we took a maximum of [(number of chunks) ×

(200 ms)] seconds of speech from each utterance for training. The
proposed system was assessed for different number of chunks,
i.e., different speech-duration, to prove our hypothesis that max-
imum one-second of speech, i.e., five chunks, is a sufficient time
for an efficient classification.

5.3. Performance evaluation

Accuracy and F1-score were used for performance evaluation,
where the former is the number of correctly predicted wave
files out of all the input wave files, and the latter is calculated
by taking the harmonic mean of precision and recall for each
class. Precision was considered as being the fraction of correct
classified instances among all classifications for each class, and,
in addition, recall was defined as being the fraction of correct
classified instances among the ones that actually belong to that
class. In particular, we calculated the F1-score for each class and
presented the ‘‘macro average’’ results. We analyzed the perfor-
mance of both systems in terms of different speech duration,
i.e., maximum [(number of chunks) × (200 ms)] seconds. From
ig. 11-(a) and (b), we can clearly see that the proposed ResNet-
ased approach outperforms the baseline CNN. In particular, we
ot, on average, 21.35% and 22.48% of improvement compared
ith the baseline CNN in terms of classification accuracy and
1-score, respectively. For further comparisons, a Gaussian Mix-
ure Model (GMM) and a Light-CNN (LCNN), which is a lighter
ersion of the conventional CNN architecture, were also consid-
red.
We can observe that GMM performed relatively poor com-

ared to other systems, indicating its unsuitability for classify-
ng severity of dysarthria from short-duration speech. Moreover,
MM is based on the first two moments only, i.e., mean and vari-
nce, which may not be adequate to represent nonlinearities in
peech production mechanism, and more so for dysarthric speech,
s discussed in Section 3. In addition, estimating higher-order
oments with the same statistical confidence, as that of first

wo moments, requires a large amount of training data, which
s not feasible in this problem due to the impossibility in get-
ing long-duration dysarthric speech data. Contrary to this, deep
earning architectures, in particular the proposed ResNet, are
ble to capture such nonlinearities from short-duration speech
egments.

.4. Analysis of results

In this subsection, we analyze how effective the proposed
ethodology is in two different aspects: (i) learning performance,
 c
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and (ii) amount of training data. Since CNN and ResNet performed
relative better than LCNN and GMM, as discussed in the pre-
vious subsection, we assess hereafter just the behavior of CNN
and ResNet-based systems w.r.t. learning performance and the
amount of training data.

5.4.1. Learning performance
To analyze the learning performance, we observed the output

of the last layer just before the softmax activation from both of
our architectures, i.e., CNN and ResNet. To analyze efficiently, we
converted the image into binary format, where the white color
part shows the pattern learned by the architecture, as illustrated
in Fig. 12. For that analysis, we used Guided Backpropagation
Saliency method in order to extract the region learned by any
trained CNN-based classifier (Simonyan, Vedaldi, & Zisserman,
2013). In guided backpropagation, forward pass was performed
till the target layer on input features is performed. Then, the
disadvantageous neurons were kept to zero and back propagation
was applied till the input features. More formally, the whole
process can be explained as: (Springenberg, Dosovitskiy, Brox, &
Riedmiller, 2014):

activation: f l+1
i = relu(f li ) = max(f li , 0)

backpropagation: Rl
i = (f li > 0) · Rl+1

i ,where

Rl+1
i =

∂ f out

∂ f l+1
i

backward ‘deconvnet’: Rl
i = (Rl+1

i > 0) · Rl+1
i

guided backpropagation: Rl
i = (f li > 0) · (Rl+1

i > 0) · Rl+1
i .

From Fig. 12, we can observe the advantage of ResNet over
NN for the dysarthric severity-based classification, and we can
ee that ResNet can learn various characteristics of dysarthric
peech which are different from natural speech. To understand
he advantage of ResNet in our problem, we explored the energy
arameter. The energy in dysarthric speech is more distributed,
.e., energy fluctuations are more frequent, compared with nat-
ral speech (Kent, Weismer, Kent, Vorperian, & Duffy, 1999;
udzicz, 2013). Moreover, it is observed that as the severity-
evel changes, the energy of dysarthric speech shows significant
hanges (Purohit, Parmar, Patel, Malaviya, & Patii, 0000). Hence,
apturing these energy fluctuations from the spectrogram is an
ssential task. In other words, detecting patterns from low and
igh-frequency regions from the spectrogram can achieve this
ask and help the model to distinguish between different severity
evels. Consequently, our short-duration speech segments include
oth the patterns (i.e., high and low energy regions), as shown
n Fig. 10. From Panels I and ll, we can observe that ResNet is

apturing both the regions efficiently, hence, performing better
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Fig. 12. Learning of proposed ResNet vs. baseline CNN. For both Panels, we have: [First Column]: Input spectrogram of chunk (horizontal axis: time, vertical axis:
frequency); [Second Column]: Visualization of learning of ResNet; [Third Column]: Visualization of learning of CNN; [Fourth Column]: Visualization of learning of
LCNN. Here, Visualization images are in the form of pixels.
Fig. 13. Evaluation of baseline CNN vs. ResNet for different number of chunks (i.e., amount of training data) based on (a) classification accuracy score, and
(b) F1-Score. As previously presented, GMM and LCNN were considered for comparisons, however, since GMM exhibit a poor accuracy, its F1-scores were not
even computed.
compared to the CNN. In Fig. 12, CNN only captures high energy
regions, however, fails to capture low energy regions, hence has
poor performance compared to the ResNet.

5.4.2. Amount of training data
Here, we analyze the performance of both the systems w.r.t.

the amount of training data. To do so, we increased the num-
ber of chunks one-by-one, i.e., increasing a speech-duration by
maximum of 200 ms, as shown in Fig. 13. Observably, for five
chunks, ResNet performance is high in terms of classification
accuracy and F1-score. This analysis empirically supports our
hypothesis that one second-long speech segments are sufficient
for an efficient classification. With a maximum of one second-
long speech segment, we got 86.63% classification accuracy and
0.86 F1-score for ResNet. Contrary to this, we obtained 64.35%
classification accuracy and 0.64 F1-score for CNN, respectively.

In complement, as the goal of this work is to detect dysarthria
severity-level by using short-segments of speech, we also ana-
lyzed both ResNet and CNN structures when the entire speech
utterance is available for training and testing. As shown in Ta-

ble 4, ResNet exhibits superior performance for this task. Hence,
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Table 4
Evaluation of baseline CNN vs. ResNet when entire speech utterance is available
for training.
Systems Accuracy (%) F1-Score

ResNet 98.90 0.98
CNN 91.76 0.91

ResNet outperforms baseline CNN for both the classification sce-
narios, i.e., using short-duration speech segments and using entire
speech utterances. This definitively proves ResNet is superior for
the intended classification task.

5.5. Complementary comments

Additionally, we can observe that LCNN could capture both
high and low frequency regions, however, the capture ratio is
significantly lower compared to ResNet and to CNN, as also shown
in Fig. 12. In contrast, ResNet is efficient in capturing both regions.
Therefore, our ResNet structure not only outperforms the baseline
CNN, but also LCNN and GMM. Observably, GMM was the worst
classifier in terms of accuracy.

In addition to the mentioned comparison methods, we have
also investigated other variants of the ResNet architecture, in
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articular, ResNeSt, which uses a Split Attention layer between
he two convolutional layers in the ResNet block. However, re-
ults obtained were poorer than the original ResNeSt architecture.
herefore, it has not been included in the manuscript.

. Summary and conclusions

In this paper, a novel technique to detect dysarthria severity-
evels was proposed. In particular, we presented time-domain,
requency-domain, and TEO analysis of dysarthric speech to jus-
ify spectrogram as feature representation particularly capable of
apturing unstructured spectral energy density distributions. Ad-
itionally, we investigated nonlinearities in production of
ysarthric speech using TEO. Our results indicate that GMM per-
orms poorly than other systems, suggesting deep learning-based
rchitectures and, in particular, the proposed ResNet. Based on
hort-duration speech segments and ResNets, our strategy differs
rom current state-of-the-art methods, in which long-duration
peech segments feed a CNN. Our relevant experiments show that
he former classifier outperforms the latter in terms of accuracy
nd F1-score, not only for short-speech segments but also for long
nes. We observed, however, that only ResNet succeed in using
hort speech tags to detect dysarthria severity-levels.
Although our method shows remarkable results for the

ntended goal, the detection of onset-offset points and the sub-
equent spectrogram characterizations, both in real-time, are
ime-consuming. Hence, real-time implementation of this system
n limited-capacity devices is still a challenge. Nevertheless, since
ur initial hypotheses were confirmed, we are satisfied with
he results. Notably, the proposed approach opens a large and
romising source of possibilities to explore the application of
esNets in speech processing and biomedical sciences.
In the future, we will try additional feature extraction tech-

iques, such as Mel Cepstral Coefficients (MCCs), and slightly
odified versions of ResNet to allow for more modest hardware

equirements, consequently making the system more adequate
or real-time implementations.
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