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Abstract—Depression is increasingly impacting individuals both physically and psychologically worldwide. It has become a global
major public health problem and attracts attention from various research fields. Traditionally, the diagnosis of depression is formulated
through semi-structured interviews and supplementary questionnaires, which makes the diagnosis heavily relying on physicians’
experience and is subject to bias. However, since the pathogenic mechanism of depression is still under investigation, it is difficult for
physicians to diagnose and treat, especially in the early clinical stage. As smart devices and artificial intelligence advance rapidly,
understanding how depression associates with daily behaviors can be beneficial for the early stage depression diagnosis, which
reduces labor costs and the likelihood of clinical mistakes as well as physicians bias. Furthermore, mental health monitoring and cloud-
based remote diagnosis can be implemented through an automated depression diagnosis system. In this article, we propose an
attention-based multimodality speech and text representation for depression prediction. Our model is trained to estimate the
depression severity of participants using the Distress Analysis Interview Corpus-Wizard of Oz (DAIC-WQZ) dataset. For the audio
modality, we use the collaborative voice analysis repository (COVAREP) features provided by the dataset and employ a Bidirectional
Long Short-Term Memory Network (Bi-LSTM) followed by a Time-distributed Convolutional Neural Network (T-CNN). For the text
modality, we use global vectors for word representation (GloVe) to perform word embeddings and the embeddings are fed into the Bi-
LSTM network. Results show that both audio and text models perform well on the depression severity estimation task, with best
sequence level F| score of 0.9870 and patient-level F; score of 0.9074 for the audio model over five classes (healthy, mild, moderate,
moderately severe, and severe), as well as sequence level F; score of 0.9709 and patient-level F; score of 0.9245 for the text model
over five classes. Results are similar for the multimodality fused model, with the highest F; score of 0.9580 on the patient-level
depression detection task over five classes. Experiments show statistically significant improvements over previous works.

Index Terms—Atrtificial intelligence, depression, machine learning, mental health, natural language processing, neural network

1 INTRODUCTION

MENTAL health disorder, such as depression, is consid-
ered one of the major challenges facing global society.
During the COVID-19 pandemic, the prevalence of
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depression and anxiety is exacerbated in the general popu-
lation [1], [2], [3], [4]. By 2030, depression will be the second
major cause of disability worldwide and thus it can impose
a heavy healthcare burden globally [5]. It is estimated that
the average cost of treating depression in 2010 is 24,000 €
per patient and the total cost can be as high as € 92 billion in
Europe [6]. In the United States, depression causes an esti-
mated loss of $44 billion, due to the absence or low working
efficiency [7]. According to a report from the World Health
Organization (WHO), over 264 million people of all ages
suffer from depression in 2017 [8]. Nearly 50% of people
with depression worldwide have difficulty receiving ther-
apy [9]. Suicide is one of the severe results of depression,
and the WHO reports that the number of people who
passed away due to suicide is over 800,000 every year [10].
The number of attempted suicide is more frequent, possibly
no less than 20 times that of those who died by suicide [10].
Patients with depression are more apt to generate suicide
thoughts [11], [12]. It is estimated that more than 50% of
people who died by suicide meet clinical criteria of depres-
sion [13], [14]. However, often the symptoms of depression
are not displayed directly. Many individuals often express
their sadness and hopelessness but without depression,
whereas patients are usually reluctant to report their condi-
tions and receive treatment [15]. For instance, many people
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with depression ignore or refuse to admit their emotional
instability and physical health conditions. The reason is that
depression is a stigmatized disease, resulting in the depres-
sive population hiding or camouflaging their symptoms.
Traditionally, a semi-structured clinical interview based on
Diagnostic Statistical Manual (DSM) criteria is the standard
protocol for depression diagnosis [16] with self-test ques-
tionnaires such as the Patient Health Questionnaire Depres-
sion Scale (PHQ) [17], Beck’s Depression Inventory
(BDI) [18] and Montgomery-Asberg Depression Rating
Scale (MADRS) [19]. The PHQ-8 is an assessment form cre-
ated to examine the existence of the core depression symp-
toms, such as fatigue and anxiety. The PHQ-8 scale shows
high sensitivity and specificity for diagnosing depression
and other mental disorders among patients with different
languages and cultures [20]. These methods play a key role
in diagnosing depression, but the results are subject to
physicians’ experience. Previous articles argued that these
clinical criteria, such as DSM and BDI, are not reliable
enough [21]. Diagnosis of depression is not the same as
other medical conditions since gold standards for mental
disorders do not exist currently, which raises the likelihood
of misdiagnosis and finally leads to unexpected results [22],
[23], [24]. However, most depressed people do not have
access to qualified psychological treatment due to economic
conditions (low-/mid-income population) or living con-
straints (in rural regions) [25]. Currently, Schuller et al.
proved that infrastructure such as a high-speed network
and smartphones with high-performance computational
units can provide support for continuous monitoring of the
psycho-emotional state for a long period [26]. Therefore, it
will be beneficial to develop a low-cost screening technique
that can be deployed in communities and operated by peo-
ple without special training. Early-stage mental disorder
screening is also crucial for policymakers and security agen-
cies because someone with mental health disorder could
behave adversely to other innocent people, such as massive
shootings which are attributed to mental health disor-
ders [27]. Recently, the development of Artificial Intelli-
gence (AI) shows its great potential in healthcare [28]. In the
cyber world, we live now, it is very common to share per-
sonal information, concerns through the Internet, especially
after the rise of social media. This raises an opportunity
since the contents on social media increase the likelihood to
detect potential depression patients from a large popula-
tion. The automated depression diagnosis has been studied
from many different aspects, such as collecting and analyz-
ing data, induction and representation of emotions, and pre-
dicting depression based on different modalities. In this
paper, we propose a multimodality automated depression
diagnosis system with prosodic and semantic features to
predict the depression levels with the combination of Bi-
LSTM and T-CNN models. To the best of our knowledge, it
is the first time that time-distributed CNN is adopted to fur-
ther extract the temporal information from the output of the
LSTM encoder. Additionally, our proposed model does not
have a strict limitation of input duration, regardless of the
number of frames, as long as the number of features meets
our specification, our model can always provide a patient-
independent depression prediction. The prediction is based
on a specific text or audio feature sequence. Given a specific
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participant with an audio/text feature sequence of arbitrary
length, our model provides a series of estimations of depres-
sion severity based on the audio/text feature. The set of pre-
dictions can be merged through a major voting algorithm so
that the final output of our model is a patient-level depres-
sion severity prediction. This mitigates the problem that the
audio/text feature sequences are required to be the same in
length in previous articles. LSTM performs well in learning
temporal information because of its recurrent structure. The
bidirectional LSTM model is used to learn long-term bidi-
rectional dependencies in the audio and text feature sequen-
ces because it has been proved to perform better than a
unidirectional LSTM model. The convolutional neural net-
work (CNN) is a popular network architecture to learn the
spatial features of data. A time-distributed CNN architec-
ture is obtained by having multiple CNN layers for Bi-
LSTM output features at each timestep. Given the comple-
mentary advantage of CNN and LSTM, the hybrid model of
LSTM and T-CNN works well in learning the spatiotempo-
ral sequence. The best patient-independent F} score of the
audio and text model is 0.9870 and 0.9709, respectively, on
the test partition of the DAIC-WOZ dataset. The fused mul-
timodality model achieved the best I score of 0.9580 on the
test partition of the DAIC-WOZ dataset.

2 RELATED WORK

2.1 Depression Severity Prediction Based on Text

Text, especially non-verbal cues which are not expressed
directly in dialogue has gained remarkable popularity in
depression prediction and sentiment analysis due to two
reasons. Firstly, psychiatrists observe speech attributes such
as less variation in speech production during an interview,
which are commonly used biomarkers in depression diag-
nosis [24], [29], [30], [31], [32]. Secondly, the text transcrip-
tion is an explicit signal to record, which makes interview
transcripts one of the best candidates for distress analysis
tasks [20], [33]. The prediction of depression severity is
based on the hypothesis that mental disorder causes some
accessible and observable differences affecting how verbal
content is produced [34], [35]. Previously, a problem in
searching for the relationship between depression and
semantic features is the difficulty in collecting qualified and
sufficient data. With the advancement of social network
usage, a large amount of text data inflow gives an opportu-
nity to researchers to analyze distress state from text [24],
[30], [31], [36]. Coppersmith ef al. seminally proposed to
acquire a qualified dataset via social network platforms,
which solves the problem of data insufficiency [37]. How-
ever, those colloquial languages, such as abbreviated words,
popular slang, etc., make data preprocessing very difficult.
Additionally, people are more likely to publish negative
content on social media because they are anonymous. This
indicates that although someone without any mental disor-
ders is still likely to publish many negative posts for some
periods. The effectiveness of social media posts should be
fully investigated before being widely used in automated
depression diagnosis because the quality of the training
data affects the performance of the classifier. We also dis-
agree that collecting data from the Internet is an effective
strategy because those posts not related to depression are
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Fig. 1. Block diagram of our proposed multimodality depression level prediction algorithm given a specific example. Audio features are fed into the
network through the input layer. After batch normalization, the input data is fed into the Bi-LSTM and time-distributed CNN block. In this proposed
design, we have five time-distributed CNN blocks followed by a single-layer Bi-LSTM. The detailed architecture of each block is illustrated and

explained in the remainder of this paper.

likely to be dominating factors compared with those depres-
sion-sensitive posts. To solve the problem of patients con-
cealing their thoughts and emotional states, Scherer et al.
proposed to collect the dialogue during the screening inter-
view led by clinicians [38]. This data collection strategy has
several advantages. Firstly, the questions are specifically
designed by psychologists, and the efficiency of the ques-
tion is better than user-generated content on social media.
Before starting the interview, the participants are required
to complete a questionnaire like PHQ-8 or BDI. After the
interview, the clinician determines the depression severity
of the participant based on the response of the patient dur-
ing the interview and the questionnaire. Overall, these stud-
ies highlight the need for reliable corpora for speech-based
depression prediction.

2.2 Depression Severity Prediction Based on Voice

In this section, we overview the application of prosodic and
acoustic features in predicting depression. The relationship
between depression and voice change has been well-stud-
ied [39], [40]. The earliest research on depressive voices can
be traced back to the 1920 s. The father of modern psychiatry,
Emil Kraepelin, characterized the voice to be depressive as
“low voice, slowly, hesitatingly, monotonously, sometimes
shuttering, whispering, try several times before they bring
out a word, become mute in the middle of a sentence [41].”
To train the audio model, the first thing is to extract audio
features from the raw audio recordings. Feature extraction is
the preprocessing technique that converts the original audio
into more abstract, dense vectors. Cummins et al. pointed out
several critical properties for a perfect feature to detect
depression or other mental disorders [42]. The most

important property is that the feature should represent some
recurring and noticeable effects caused by depression. The
feature must also manifest large cross-label variability but
small inner-label variability. Furthermore, the feature should
be robust to environmental noise if it is intended to be used
in the automated depression diagnosis system. Many previ-
ous works adopted a Support Vector Machine (SVM) and
Gaussian Mixture Model (GMM) [43], [44]. They are two
popular machine learning techniques and are robust to over-
fitting. Much of the available literature has attempted to use
the combination of prosodic and glottal features to train the
classifier [40], [45], [46], [47], [48]. As for the Mel-Cepstral
Coefficients, it is reported that the low-order MFCCs per-
form much better than high-order MFCCs for emotion pre-
diction or some para-linguistic analysis tasks [49].
Additionally, except for these low-level audio features, some
researchers proposed to use pre-trained convolutional neu-
ral networks such as VGG-16 to extract high-level features in
a frequency spectrogram [32]. However, the effectiveness of
this deep frequency spectrum feature is questionable.
Although the CNN model outperforms other traditional
models in Computer Vision, the frequency spectrogram is
different from other images. The CNN is spatial invariant
because it applies a group of identical transformations to dif-
ferent regions of an image [50]. The frequency spectrogram
consists of an X-axis denoting the frequency and the Y-axis
as the intensity of the frequent component. The position of a
component in the frequency spectrogram matters, but the
components in ordinary images are less sensitive to the posi-
tion. Regarding this concern, we do not adopt this deep fre-
quency spectrum feature extraction method. Instead, our
model utilizes the low-level audio features mentioned above.
Together, these studies indicate that we should consider the
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TABLE 1

The Showcase of a Participant’s Transcript
Start time Stop time Speaker Utterance
87.322 89.592 Ellie So how are you doing today?
89.71 91.93 Participant I'm not bad I'm a little tired but okay.
92.945 93.585 Ellie That’s good.
94.257 95.577 Ellie Where are you from originally?
95.78 97.14 Participant Uh from Saint Louis, Missouri.

combination of audio features as the input for training the
depression prediction model.

3 DATASET AND METHODS

In this section, we briefly introduce the preliminary material
we used for developing the audio model, text model, and
multimodality model. We also discuss the dataset and
framework for training and evaluating our proposed model.

3.1 Distress Analysis Interview Corpus-Wizard of

0Oz (DAIC-WOZ)
In this paper, we adopted the Distress Analysis Interview
Corpus-Wizard-of-oz (DAIC-WQOZ) dataset for training and
testing [50]. The corpus consists of 189 recorded clinical
interviews and transcripts as well as facial features from
189 subjects. The audio recordings were taken of semi-struc-
tured interviews between the participants and a virtual
interviewer called Ellie, an animated role controlled by a
human interviewer. The average audio duration of 189 sub-
jects is 974 seconds. Subjects were solicited from the Greater
Los Angeles Metropolitan region from two different popu-
lations. One was from civilians; the other was from veterans
of the U.S armed forces. Subjects were characterized as
depression, Post-Traumatic Stress Disorder (PTSD), and
anxiety based on the self-report questionnaire during the
data collection [50]. Only the interview recordings of the
depression group were released for academic purposes. The
gender distribution over all five groups as well as the data-
set partition is shown in Table 3. In the training set, there
are 44 female subjects (27 without significant depression
symptoms, 17 with depression symptoms) and 63 male
subjects (49 without significant depression symptoms, 14
with depression symptoms). In the validation set, there
are 19 female subjects (12 without significant depression
symptoms, 7 with depression symptoms) and 16 male sub-
jects (11 without significant depression symptoms, 5 with
depression symptoms). In the test set, there are 24 female
subjects (17 without significant depression symptoms, 7
with depression symptoms) and 23 male subjects (16 with-
out significant depression symptoms, 7 with depression
symptoms). All interviews were transcribed verbatim into
English. The interviews lasted from 5 to 20 minutes involv-
ing three phases: it started with neutral questions, which
aimed to ensure subjects being able to calm down; the
interview then proceeded into a targeted phase, and the
questions asked by the interviewer were more related to
the symptoms of depression and PTSD. Finally, the inter-
view terminated with the annealing phase, which assisted
the participants to get rid of the distressed state. The PHQ-
8, ranging from 0 to 24, determines the severity of the

mental disorder. Subjects were divided into five groups:
healthy (PHQ-8<5), mild (5<PHQ-8<10), moderate
(10<PHQ-8<15), moderately severe (15<PHQ-8 <20), and
severe (PHQ-8 >20) [51]. Table 1 shows a sample transcript
in the DAIC-WQOZ dataset, which contains four fields:
beginning and end timestamp of the utterance, the speaker
ID, and sentence content. Due to space limitation, Fig. 2
below illustrates the distribution of the first four audio fea-
tures provided with the DAIC-WOZ dataset with the signif-
icant intra-subject variance. In the remaining part of this
paper, the training, validation and test set are split by the
instruction from the DAIC-WOZ dataset independently,
which ensures all the subjects only appear in one of the
above partitions.

3.2 Recurrent Neural Network and Long-Short
Term Memory

A recurrent neural network (RNN) is a deep learning archi-
tecture that outputs a time sequence. The input of the neural
network is transformed into hidden states at different time
steps. Given an input vector z;, the intermediate variables
in the network are computed iteratively, from (i, z1), (h,
29) to (hy, ), where h; and z; are the hidden state and out-
put of the RNN cell, respectively. The traditional RNN per-
forms well on some machine learning tasks, such as voice
recognition [32]. However, the gradient vanishing/explod-
ing problem during the backpropagation limits the depth of
the RNN. To solve this problem, Hochreiter et al. proposed
the LSTM, which stands for Long-Short Term Memory [52].
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Fig. 2. The distribution of a subset of audio features within the dataset.
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this paper.

LSTM can determine when to “forget” some previous infor-
mation and update the hidden state during the training
phase by combining different “gates” in the LSTM cell. The
traditional RNN and the LSTM cell are illustrated in Fig. 3.
Compared with the traditional RNN cell, the LSTM cell
includes some special components such as the input gate,
forget gate, output gate, input modulation gate, and the
memory cell. The ¢, and f; determine whether the previous
information should be memorized or forgotten. Similarly,
the output gate determines how much information in the
cell memory can be transferred to the hidden state. These
gates enhance the performance of LSTM on time series-
related tasks and make it possible to train a deeper network.
The hidden state of the previous layer can be fed into the
following layers to construct a deeper network, which
improves the capability of LSTM to deal with more compli-
cated time series. From the probabilistic perspective, auto-
mated depression diagnosis is to find a correct severity
sequence y that maximizes the conditional probability of y
given an input feature sequence (i.e., audio/text feature).
Our proposed framework, based on an RNN encoder-
decoder, learns to predict depression severity given a
sequence of audio and text features. In the encoder neural
network, an encoder reads and projects the input feature
sequence X = (zy,%s,...,2r) into a context vector ¢, which
is given by:

c=gq(hy,...,hr) )]

he = f(xy, hi—1) (2)

where h; is a hidden state at time ¢, ¢ is a vector computed
from a sequence of hidden states. f and ¢ are nonlinear
functions. The decoder neural network is trained to predict
the depression severity given the context vector and the
input feature at time ¢. The probability of depression sever-
ity is given by:

T
p(y) = [ [ (v {z1, - w1}, 0) (3)
=1
where y = (y1,...,yr), and each term of the conditional
probability is given by:
p(ye[ {71, 21}, ¢) = g(@-1, 81, ) 4)

where g is a nonlinear function, s; is the hidden state of the
RNN.

3.3 Attention Mechanism

Most of the proposed deep learning-based depression pre-
diction models are a member of a family of encoder-

2255

decoders, with an encoder for high-level representation of
original input audio or text features. The encoder network
reads and encodes the variable-length input audio/text fea-
tures into a fixed-length vector. A decoder then decodes the
fixed-length vector and outputs a probability matrix from
the encoded fixed-length vector. The cascade model, which
consists of an encoder and decoder, is optimized simulta-
neously to maximize the probability of a correct depression
severity given an original audio/text feature sequence.

A shortcoming of this encoder-decoder architecture is
that the encoder network has to compress all the depres-
sion-sensitive information into a fixed-length vector. In the
scenario of extremely long input sequences, this may make
it challenging for the encoder network to encode necessary
information into the fixed-length vector, especially during
testing, when the length of the input sequence for testing is
longer than the length of sequence for training. To overcome
this drawback, we adopted an attention mechanism that
allows the model to select a subset of encoded vectors adap-
tively while decoding the high-level representation. Each
time the decoder makes an inference on depression severity,
it goes through the encoded input sequence and works out
the most depression-sensitive information. The most impor-
tant feature of the attention mechanism is that it does not
rely on a single fixed-length vector. The model can select a
subset of encoded high-level representation adaptively dur-
ing training, which frees the encoder network from com-
pressing all necessary depression-related information, no
matter how long the original sequence is, into a fixed-length
vector. This improves the performance of our model, espe-
cially the performance coping with long sequences.

With the attention mechanism, we can compute the
weighted context vector with RNN output hidden states. The
depression conditional probability of time step t is given by:

p(yt|{$1»---7$t—1}7c) :g($t—175t7ct) (5)

Where s, is the RNN hidden state for time ¢, which is given
by:

st = f(s1-1, %41, 1) (©6)

Unlike the traditional encoder-decoder framework, the
depression conditional probability is not only conditioned
on a uniform context vector ¢ but a distinct vector ¢; for
each timestep. The context vector is given by a sequence of
RNN hidden states, which are the output of the encoder
neural network. A hidden state at time step ¢ contains all
information about the input feature sequence prior to time
step ¢, with an emphasis on the part around the entries at
time step t. The context vector is given by:

T
c = Zaijhj )
=

The coefficients «;; for each hidden state is determined by:

i = eXp(eij) (8)
i explen)
where ¢;; is given by:
€ij = a(si,l, h]) (9)
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a(zx) is a score function that evaluates how well the inputs
around the entries at time j and the output of RNN at time
(¢ — 1) match. The score function a(z) is a distinct layer that
is simultaneously trained with all other layers of the pro-
posed model. The probability «;; describes the importance
of the hidden state h; regarding the previous hidden state
si—1 during calculation of s;. This allows the decoder itself
to determine which part of the input sequence should be
focused on. With the attention mechanism, we alleviate the
burden of compressing the input sequence, regardless of its
original length, to a fixed-length vector. Therefore, with the
attention mechanism, the correlation in the context vector
can be propagated through the network, which allows the
decoder to selectively retrieve those depression-related hid-
den states.

3.4 Audio Features and Models
In this paper, the audio features are extracted by COVA-
REP [53], which can be divided into three categories: glottal
flow features (NAQ, QOQ, H1-H2, PSP, MDQ), Peak slope,
Rd), voice quality features (Fy, VUV), and spectral features
(MCEP, HMPDM, HMPDD). Normalized Amplitude Quo-
tient (NAQ) quantifies the time-based feature of the speaker
by amplitude-domain measurements calculated from the
glottal flow and its first derivative [54], [55], Quasi Open
Quotient (QOQ), which is a correlate of the open quotient
(OQ) which involves the derivation of the quasi-open phase
based on the amplitude of the glottal phase [56], [57], the
amplitude difference of the first two harmonics of the differ-
entiated glottal source spectrum (H1H2) [58], Parabolic
Spectral Parameter (PSP), which is based on the quantifica-
tion of the spectral decay of the speaker [58], and Maxima
Dispersion Quotient (MDQ), which is designed to quantify
the maxima dispersion as a result of phonation type moves
towards a breathier phonation [59], [60]. Spectral features
consist of Mel-Cepstral Coefficients (MCEP0-24), which is a
representation of the short-term power spectrum of a
sound [61], harmonic model and phase distortion mean
(HMPDMO0-24) and deviation (HMPDDO0-12). Thus, there
are 74 audio features in total. Each subject is represented in
the COVAREP features, X; € R7*F where T denotes the
time dimension, which is proportional to the duration of the
audio. Each 10 milliseconds frame of audio was trans-
formed into an audio feature vector. F' denotes the number
of features COVAREP extracted for each frame. Among the
74 audio features, the entry “VUV” indicates whether the
audio features are extracted from the audible or silent part
of the original interview recording. Only those audio fea-
tures where “VUV” is 1 can be the input to the following
models. Among all the 189 subjects in the dataset, audio fea-
tures are in an average of 35850 frames (rows) and a stan-
dard deviation of 15791 frames (rows). For each subject, we
concatenated a constant number of audio feature frames
into a set of successively retrieved audio feature sequences,
which were used to represent this subject. The shape of the
input tensor is thus (#samples, #frames, 73). The field
”VUV” is always 1 in the input tensor so it is dropped,
which results in the final input tensor shape as 73.

Audio models with different configurations for depres-
sion assessments are introduced as follows. The input to
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these models is the previously mentioned audio feature
sequences, the output of these models is the prediction of
the depression severity given an audio feature sequence.
The first audio model is a simple one that consists of the
LSTM and fully connected layers. The LSTM served as a fea-
ture extractor and the following fully connected layers
made the prediction based on the output of the LSTM.
Then, we introduce our proposed model that consisted of
the Bi-LSTM and T-CNN and they were evaluated for the
prediction of depression severity.

3.4.1 Traditional LSTM-Based Model

Our first audio model comprises of single-layer Long-Short
Term Memory (LSTM) network and fully connected layers.
LSTM network was obtained using an LSTM layer contain-
ing 73 hidden units, connected to a fully connected layer. To
avoid overfitting, the dropout was applied to the recurrent
input signal on the LSTM units and between fully-con-
nected layers with the dropout rate of 0.2. The time step is
equal to the constant “#frames” and there were 73 features
in each timestep. In this model, only the hidden state at the
last time step was fed into the following fully connected
layers, with 128 and 64 hidden units. The output of the fully
connected layer was then fed into a batch normalization
layer and flattened into a 1D tensor. The flattened tensor
was fed into a fully connected layer with 5 hidden units,
where the SoftMax activation function transformed the
unnormalized output of each neuron into the probabilities
of five severities. An Adam optimizer was adopted for the
training, the initial learning rate was set to be 0.001, g; =0.9,
B,=0.999 and the epsilon was 10~7. A callback function
monitored the validation loss and terminated the training if
the validation loss did not decrease after five epochs. A loss
function of cross-entropy was applied.

3.4.2 Hybrid of Bi-LSTM and T-CNN Model

Bidirectional LSTM is a variant of LSTM which consists of a
forward layer on the original input sequence, and a back-
ward layer on the reversed sequence. The Bi-LSTM outper-
forms the traditional LSTM because the forward and
backward networks combine both forward and backward
context information of the input sequence. Previous articles
proposed to represent the input sequence by the last hidden
state of the LSTM [61], [62]. However, depression assess-
ment is a complicated task, which heavily relies on the rela-
tionship between the audio features at different time steps,
thus it is insufficient to use the last hidden state for classifi-
cation, otherwise, it leads to the loss of temporal informa-
tion. To solve this issue, we utilized the T-CNN to learn
potential temporal and spatial information in the output of
the Bi-LSTM. The structure of T-CNN is illustrated in Fig. 5.
In general, simple CNN only supports the 2D or 3D spatial
tensors as the input. However, the output shape of the
LSTM is (#samples, #frames, #LSTM neurons) given a unidi-
rectional LSTM, and (#samples, #{frames, 2*#LSTM neurons)
given a bidirectional LSTM. The T-CNN convolves the
LSTM output vector along its 3 rd axis and the shape of the
convolution result is (#samples, #frames, #output features,
#kernels). Therefore, we expand the shape of the LSTM out-
put vector by inserting one new axis so that it can be
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processed by T-CNN. The T-CNN accepts a tensor with
shape (#samples, #frames, 2*#LSTM neurons, 1) as the
input, which denotes a time series of LSTM hidden states.
Our proposed T-CNN block consisted of three layers, first,
time-distributed convolution layer, then time-distributed
pooling layer to downsample the feature maps; and finally
batch normalization layer. There were five T-CNN blocks in
total in our proposed design, the output of the last T-CNN
block contained “#frame” samples, each sample is repre-
sented by 256 feature maps. Therefore, the last thing before
the feature maps were fed into the following network was
to downsample the output by the global average pooling
layer, it slides along the time dimension of the feature vector
and computes the mean value of each feature, which
ensures that the relationship between each time step was
taken into consideration. The output of the global average
pooling layer was then fed into the following two linear
layers. At last, the Softmax activation functions transformed
neuron output into the probability of five severities. An
Adam optimizer with a similar configuration in 3.4.1 was
adopted for the training.

3.5 Text Features and Models

The input layer of the text model took tokenized transcripts
of each subject. Among all the 189 subjects in the dataset,
text transcripts are in an average of 80 rows and a standard
deviation of 14 rows. The interviews were in colloquial
speech, thus the first step was to rephrase these colloquial
descriptions to written languages, otherwise, colloquial
terms all became out-of-vocabulary words, which were rep-
resented by the token [UNK], and greatly diminished model
performance. Semantic information is highly essential in
depression diagnosis because psychologists also formulate
diagnosis by text produced by the patients during the inter-
view. To acquire the text features, we firstly removed stop
words in the patients’ responses with Natural Language
Toolkit (NLTK) and substituted some words and phrases
such as "what’s,” ”e-mail” with “what is” and ”"email,” this
eliminates different expressions of the same word [63].
Next, we lemmatized the remaining words in the sentences,
the WordNet lemmatizer removes the inflectional endings
and returns the base form of a word. Then the remaining
texts were tokenized into word lists and were used to build
a vocabulary with 7373 words. Each word in the vocabulary
was assigned an index, the word list was then represented
by these indices. After we acquired the word list, the main
issue was that each word list was different in length, which
made it more difficult to batch process text data if they were
different in length. Therefore, the sliding window technique
was applied to generate sequences in the same length,
which was the same length as the sliding window. Each
window consists of a constant number of words while 20%
words at the end were overlapping between two neighbour-
ing time windows, which assigned higher weights to the
words at the edge of the window so that the edge details
were enhanced. The sliding window not only generated all
training pairs but also performed data augmentation as
well as directed the focus on a specific part of the sentence.
Next, word sequences were encoded with the pre-trained
100D GloVe word embedding vector [64]. The word
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embeddings were concatenated into a sentence embedding.
For some short sentences, the size of the sliding window
was greater than the length of the sentence, those short sen-
tences were zero-padded to be the same length as the win-
dow. Therefore, the shape of the final input vector is
(window size, 100). However, sentences shorter than 20% of
window size were discarded.

3.5.1 BIi-LSTM Text Model

Our proposed text model consists of a single-layer Bi-LSTM
network and fully connected layers. The text feature
sequences mentioned above comprise the index of words in
the vocabulary. Text feature sequences were preprocessed
to map each word to word embedding space with a non-
trainable embedding layer before being fed into the model,
and the shape of the embedding layer is (vocabulary size +
1, 100). Next, a batch normalization layer and then the Bi-
LSTM layer further captured the semantic information
underlying the input word sequences. To avoid overfitting,
the dropout was applied to the recurrent input signal on the
LSTM units and between fully-connected layers with the
dropout rate of 0.2, and the shape of the Bi-LSTM output
was (batch size, 200) at each time step. We adopted the
attention mechanism to allow the model to adaptively select
those depression-sensitive hidden states. The attention vec-
tor was then fed into two linear layers with 256 and 128 hid-
den units, respectively. Finally, the last linear layer with 5
hidden units determined the probability of the five severi-
ties. An Adam optimizer with a similar configuration in
3.4.1 was adopted for the training. The cross-entropy loss
calculated the distance between the output and the ground-
truth label.

3.6 Fused Text-Audio Joint Model

Our final fused multimodality model was comprised of two
subnetworks: text model and audio model, and followed by
a shared late fusion neural network as Fig. 1 shows. The late
fusion neural network concatenated the outputs of the text
and audio model to integrate text and audio features. For
any subject, we extracted a high-level representation that
included both semantic and prosodic features through the
previous recurrent neural network and convolutional neu-
ral network. This high-level representation could be used in
the following assessment of mental disorders. The output of
our proposed model was a scoring matrix that denoted the
likelihood of the depression severity. As the timesteps of
the audio and text model were different, the late fusion net-
work had to deal with input of different sizes. To solve this
issue, we first attempted to adopt a max-pooling method to
downsample the output from audio and text models so that
they were in the same shape. Moreover, an attention mecha-
nism was exploited, which provided us insights into the
ratio of the contribution of each modality towards the final
prediction.

Regarding fusion, we designed a set of models to inte-
grate different modalities. Firstly, we fused the text models
with different window sizes with the audio model with con-
stant configuration. Our text model could be divided into
two categories, one is the unidirectional LSTM text model,
the other is the bidirectional LSTM. Our proposed audio
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TABLE 2
Result of the T-Test of the Control and Experiment Group

Sentence length Audio duration

Control Experiment
8.7854+8.9475  7.3717+7.2975
3.2397 x 10~ 14

Control Experiment
951.3711£266.6010  997.8773+290.1901

p-value 0.0952

and text model was previously described in Section 3.5 and
Section 3.4, respectively. The only difference was that the
output size of the audio and text model was 32 instead of 5
since they acted as feature extractors rather than classifiers.
Global max pooling was adopted to align the extracted
audio and text features. In order to integrate text and audio
modalities, the output of the text and audio model was
concatenated into a tensor and passed through a fully con-
nected layer with 5 units. Secondly, the other fused model
was set up using a similar configuration to the first one. The
difference was that the attention mechanism played its role
in aligning the features from different modalities. The third
one was all the same as the previous two models, except it
was created with an attention mechanism not only during
the feature alignment but also in the fusion of the high-level
representations.

4 EXPERIMENTS AND RESULTS

In this section, the results of those models described in Sec-
tion 3 are presented and discussed. We next assessed the
effect of the hyperparameters for the proposed models. For
the audio model, we compared the effect of architecture
and timestep and investigated the potential long-term
dependency of the audio features in severe patients. For the
text model, we conducted experiments to investigate the
effect of the hyperparameters such as the size of the win-
dow in preprocessing, the removal of stop words. Regard-
ing the audio-text fused model, we mainly focused on the
impact of fusion methods on the model performance. All
the experiments were conducted on one RTX 2080Ti 11 GB
GPU. The size of multimodality models was limited mainly
by the amount of memory available on our GPU and the
amount of time for training we can tolerate. Our single-
modality model usually took between 3 to 5 hours to train,
but the training of our proposed multimodality model
always took around 20 hours. The results of our experiment
provided an insight that our models could be improved by
faster GPUs and larger datasets. The detailed results are dis-
cussed in the following parts.

4.1 The Statistics of Audio and Text Features

The pause time between responses is also longer than usual
in the depressive population [41]. To verify whether the
DAIC-WOZ dataset follows a similar pattern, we calculated
the statistics of the raw interview recordings and the tran-
scripts. The subjects were divided into two groups by PHQ-
8 scale, the subjects were considered as normal or mild (con-
trol group) if their PHQ-8 is less or equal to 10, otherwise,
they are considered as moderate or severe (experiment
group). This threshold is given by a previous study on the
efficacy of PHQ-8 on the diagnosis of major depressive dis-
order. It was reported that given the cutoff score of 10, the
PHQ-8 exhibited a sensitivity of 58.3%, specificity of 83.1%
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Fig. 4. The histograms of the audio duration and sentence length of con-
trol and experiment groups. (a) The audio duration of the control and
experiment groups. (b) The sentence length of the control and experi-
ment groups.

[65]. The two-sided T-test was applied to test if there was a
significant difference in the audio duration between the con-
trol and experiment groups. The statistics of the two groups
are listed in the Table 2. The histograms of the audio dura-
tion and sentence length of the control and experiment
groups are illustrated in Fig. 4. The response duration of the
control and experiment groups is on an average of 951.3711
+ 266.6010 and 997.8773 £ 290.1901 seconds, respectively.
The two-tailed p-value is 0.0952. The sentence length of the
control and experiment groups is on average of 8.7854 +
8.9475 and 7.3717 £ 7.2975 in the number of words, respec-
tively. The two-sided T-test was applied to test if there was
a significant difference between the sentence length in the
control and experiment groups. The two-tailed p-value is
3.2397 x 107!, The above results indicate no significant dif-
ference in the audio duration of the control and experiment
groups. However, the sentence lengths for the control and
experiment groups are significantly different. More
responses in the experiment group consisted of less than 5
words. As the audio durations between the control and
experiment groups have identical average values, we can
conclude that there are more pauses in the conversations of
the experiment group. This result is identical to other
researchers’ conclusions. Therefore, our dataset and crite-
rion for depression are reasonable.

4.2 Results of the Audio Modality

As for the audio models, evaluation metrics accuracy, recall,
precision, and f1 score used to evaluate models with differ-
ent configurations are shown in Tables 4 and 5. The test set
for evaluation is balanced by oversampling the minority
class. Random forest was used as the baseline in evaluating
the audio modality sequence-level prediction. Audio
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TABLE 3
Gender Distribution Over All Groups and Dataset Partitions

Training set

Validation set Test set

303, 304, 305, 310, 312, 313, 315, 316, 317, 318, 319, 320, 321, 322,
324,325,326, 327, 328, 330, 333, 336, 338, 339, 340, 341, 343, 344,
345, 347, 348, 350, 351, 352, 353, 355, 356, 357, 358, 360, 362, 363,
364, 366, 368, 369, 370, 371, 372, 374, 375, 376, 379, 380, 383, 385,
386, 391, 392, 393, 397, 400, 401, 402, 409, 412, 414, 415, 416, 419,
423, 425, 426, 427, 428, 429, 430, 433, 434, 437, 441, 443, 444, 445,
446, 447, 448, 449, 454, 455, 456, 457, 459, 463, 464, 468, 471, 473,
474, 475, 478, 479, 485, 486, 487, 488, 491

302, 307, 331, 335, 346, 367, 377, 381, 382, 388, 389, 390, 395, 403,
404, 406, 413, 417, 418, 420, 422, 436, 439, 440, 451, 458, 472, 476,
477, 482, 483, 484, 489, 490, 492

300, 301, 306, 308, 309, 311, 314, 323, 329, 332, 334, 337, 349, 354,
359, 361, 365, 373, 378, 384, 387, 396, 399, 405, 407, 408, 410, 411,
421, 424, 431, 432, 435, 438, 442, 450, 452, 453, 461, 462, 465, 466,
467, 469, 470, 480, 481

Dataset profile for depression level classifcation

Female Male
7 9

Female

Male Female Male

#Healthy 3 2
#Mild 12 25 7 6 9 11
#Moderate 10 20 5 2 7 3
#Moderately severe 10 5 2 2 1 4
#Severe 5 4 3 3 4 3
Dataset profile for depression detection
#Subjects w/o significant symptom (PHQ-8<10) 27 49 12 11 17 16
#Subjects w/ significant sympotom (PHQ-8>10) 17 14 7 5 7 7

feature sequences for training and evaluating are non-statio-
narity series, which are difficult to model and forecast. They
were pre-processed by differencing to be made stationary.
Differencing is the change from one audio feature sampling
time to the next. The random forest model we used in this
manuscript is an ensemble approach that fits a set of deci-
sion trees on different sub-sample of the dataset, and aver-
aging the output of each decision tree to improve the
prediction accuracy, as well as prevent the model from
overfitting. In our article, 100 decision trees were trained on
various sub-sample of the training set to construct the ran-
dom forest model. Another baseline method, Madhavi et al.
proposed a CNN consisting of 2 convolutional layers and
two successive linear layers to extract high-level features
from the frequency spectrogram of interview recordings.
The output of CNN is fed into the following neural net-
works to predict an individual’s depression level. They also
evaluated their models on the DAIC-WOZ dataset. More-
over, Yang et al. proposed a similar but more complex
model, they also adopted the combination of convolution
neural networks and deep neural networks (i.e. multi-layer
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Fig. 5. The structure of the T-CNN model and the following linear neural
network.
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perceptron model). Each subject was labelled by their
depression-related symptoms, such as prior depression
diagnosis, sleep disorder, present or not. Their proposed
CNN consists of three convolution layers and the intermedi-
ate output of CNN is fed into the deep neural network to
predict the presence of depression symptoms. These symp-
tom labels are fed into another deep neural network for pre-
dicting depression severity. Their results on the DAIC-
WOZ dataset are summarized in our comparative studies.
For the LSTM with the fully connected layers model, it out-
performed the baseline model machine learning model (i.e.
decision tree) by 24% in terms of accuracy. In contrast, the
Bi-LSTM with the fully connected layers model outper-
formed by 54% in terms of accuracy. For our proposed Bi-
LSTM combined with the T-CNN model, we achieved 16%
improvements over the best baseline model in terms of
accuracy. From Tables 4 and 5, it can be concluded that the
LSTM performed better on the depression level classifica-
tion compared with the baseline machine learning models,
such as the naive Bayes model. Moreover, we observed that
the network followed by the LSTM layer is critical for good
performance. If the other configurations were fixed, Bi-
LSTM with T-CNN outperformed other methods because
the T-CNN learned more temporal and spatial information
than others by capturing the correlation within all hidden
states of the LSTM. We also investigated the influence of the
value of the time step and concluded that our model per-
formed best when the timestep was 16. Fig. 6(a) shows the
receiver operating characteristic (ROC) curve when time-
step=16. The micro-average AUC for our proposed model is
0.98, and the AUC for “mild” is smaller than any other,
which indicates it is more challenging for the model to dis-
tinguish mild depression from the other levels correctly.
This is likely to be attributed to the fact that mild patients
behave very similarly to healthy people during the inter-
view. Fig. 6(b) is the ROC when the time step is 32. The

TABLE 4
Results of the Baseline Audio Models

Test Baseline

Models Random Madhavi et al. [66]. Yang et al. [67]
Forest
Mean St. dev Mean St. dev
Accuracy 0.3192 0.0085 0.7500 0.8273
Precision 0.3206 0.0064 0.7200 0.7930
Recall 0.3184 0.0040 0.7500 1.0000
F1 Score 0.3168 0.0076 0.7300 0.8850
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Fig. 6. The ROC of three different model configurations. (6(a)) The Bi-LSTM followed by T-CNN given the time step = 16. Micro-Average AUC: 0.97.
The AUC of “Severe” is smaller than any other class, this indicates the detection of severe depression is more challenging than other depression lev-
els. (6(b)) The Bi-LSTM followed by T-CNN given the time step = 32. Micro-Average AUC is 0.93. The micro-average AUC is smaller compared with
that when the time step = 16. The longer sequence does not mean a better result because the noise introduced by the longer sequence can mislead
the model. (6(c)) The Bi-LSTM followed by T-CNN given the time step = 32. Micro-Average AUC is 0.86, which is in line with our expectation that a
longer input sequence makes it more challenging to predict the severity.

micro-average AUC for this model is 0.93. The performance 16 timesteps performed the best, but from the entries on the
of the model with 32-timesteps was worse than that of the second row of Fig. 7(c), the model with 64 timesteps was
model with 16-timesteps. This is likely due to the negative less likely to classify the mild patients incorrectly. The con-
correlation between the signal-noise ratio of the input tribution of the model with a longer time step in the depres-
sequence and the length of the sequence. A longer input sion prediction should be further investigated to find the
sequence contains more information to assess the emotional cut-off value of the time step that optimizes the trade-off
state, but as the sequence length grows, the increasing noise ~ between the computation cost (larger time step means more
cannot be ignored and the bias of the model rises due to the computation) and the misdiagnosed rate.

noise. Another factor is the limitation of the memorization

capability of LSTM. The longer the input sequence is, the

more difficult it is for LSTM to memorize earlier informa- 4.3 Results of the Text Modality

tion when processing the end of the sequence because the 4.3.1 The Effect of Stop Words and Bidirectional Layer

depth of the LSTM network is proportional to the timestep. [, this experiment, we used NLTK to remove the stop
Given a long sequence, the information cannot smoothly  yords in English transcripts. Apart from the stop words,
flow through the network, which results in diminished per-  he other factor is the choice between LSTM and Bi-LSTM
formance. The confusion matrix of the 32-time step modelis  1,odels. Compared with the unidirectional LSTM model,
illustrated in Fig. 7(b), which shows the performance of the ¢ pidirectional model converges faster, and the validation
model on the test partition of the DAIC-WOZ dataset. Com- accuracy is higher. The following experiment demonstrates
paring the models with different time steps, Fig. 7(a) shows  gayeral advantages of the Bi-LSTM model over the tradi-
the confusion matrix of the model with 16 timesteps, while  j5n4] LSTM model on the depression level classification
Fig. 7(c) shows the confusion matrices of the model with 64 .51 Eour models were trained with the different configura-
timesteps. Different timestep means the different sizes of jons presented in Table 6. The test set for evaluation is bal-
the test set. To eliminate the influence of the size of the test ,;,ceq by oversampling the minority class.

set, we normalized the confusion matrix along each row. In From Table 6, we concluded that if the type of the LSTM
terms of the normalized confusion matrix, the model with 25 fixed (i.e., the two text models both consist of LSTM or

KerasClassifier Confusion Matrix KerasClassifier Confusion Matrix KerasClassifier Confusion Matrix

[\l 100% None WEL 20% 4% 3% None N 13% 12%

a Mild 22% 7% 2% a Mild 53% 20% 8% 10% 2 Mild 6% 15%
< < <
O Moderate O Moderate O Moderate
E g g
= Moderately = Moderately = Moderately
severe severe severe
Severe Severe Severe 49%
¢ =ZT 8 > o g =T L2 > o g T 2 > o
S £ © Teo © S 5 B To o s 5 8 To ¢
z g © o ) z % o ) z g < O [
8 3z © 8 g3 © 8 gg ©
= g9 = 389 = 8¢
= = =
Predicted Class Predicted Class Predicted Class

(a) Confusion matrix of 16-timestep model  (b) Confusion matrix of 32-timestep model  (c) Confusion matrix of 64-timestep model
on DAIC-WOZ on DAIC-WOZ on DAIC-WOZ

Fig. 7. Results of the proposed audio model on the DAIC-WOZ dataset.
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TABLE 5
A Comparative Study of Different Proposed Audio Models
Models Experimental Settings Accuracy F1 p-value
LSTM + FC TS=16, HU=73, LHU=(128,64,5), Adam 0.5674 £ 0.0034 0.5650 £ 0.0042 < .01
Bi-LSTM + FC TS=16, HU=73, LHU=(128,64,5), Adam 0.8717 4 0.0013 0.8818 £ 0.0013 < .01
LSTM + T-CNN TS=16, HU=73, #TCNNB=5, #KRNL= 0.8698 £ 0.0897 0.8609 £ 0.0988 < .01
(64,64,64,128,256), KS=(3,3,3,3,9), Adam
Bi-LSTM + T-CNN TS=16, HU=73, #TCNNB=5, #KRNL= 0.9871 + 0.0009 0.9870 + 0.0009 < .01

(64,64,64,128,256), KS=(3,3,3,3,9), Adam

#TCNNB: Number of T-CNN blocks #KRNL: Number of conv kernels in each T-CNN block  #KS: Kernel size

TABLE 6
A Comparative Study of the Proposed Text Models

Models Experimental Settings Accuracy F1 Micro-average AUC
LSTM + FC TS=64, HU=100, LHU=(256,128,5), Adam, Stopwords 0.9091 0.9094 0.9738
LSTM + FC TS=64, HU=100, LHU=(256,128,5), Adam, No stopwords 0.9792 0.9754 0.9897
Bi-LSTM + FC TS=64, HU=100, LHU=(256,128,5), Adam, Stopwords 0.9617 0.9610 0.9908
Bi-LSTM + FC TS=64, HU=100, LHU=(256,128,5), Adam, No stopwords 0.9685 0.9709 0.9925

TS: Timestep; HU: #Hidden units in LSTM; LHU: #Hidden units in linear layers

Bi-LSTM network), the performance of the model without
stop words was better. If the stop words were kept, the Bi-
LSTM model still outperformed the traditional one. This
result was in line with our expectation that Bi-LSTM was
better in text classification because it learned more contex-
tual information with the combination of the forward and
backward networks.

4.3.2 The Effect of Window Size

Window size is another factor that influences the perfor-
mance of the model. Intuitively, the longer the window, the
more information it contains about the mental state of the
subjects, which means our model can assess their emotions
more accurately. However, if the window is too long, while
making an inference, the impact of the noise cannot be
ignored, which leads to significant performance degrada-
tion. Moreover, the memorization capability of LSTM is lim-
ited, which means the longer the sequence is, the more
challenging for the LSTM to memorize and extract useful
information. To demonstrate the relationship between the
performance and the window size, we conducted experi-
ments by changing the window size. As shown in Table 7,
when the window size started to increase, the metrics
increased firstly but began to decrease after the window
size is greater than 64. This was in line with our expectation,
the classifier gained a lot of information due to a larger win-
dow but started to degrade as the result of the noise in the
large window and the reduced performance of LSTM. We
concluded that the window size should be appropriately set
to train the model with the best performance, in our experi-
ment, the best window size is 64.

4.4 Results of the Fused Model

In this experiment, the audio and text models were jointly
optimized so that we could verify whether our methods
were still effective under multimodality configuration. We
proposed three varieties of fusion models and merged these
segment-wise predictions through major voting to obtain

the patient-level prediction. The configuration details of
those fused models were described in Section 3.6. The met-
rics of each fusion model on the test partition were covered
in Table 8. When experimenting with models made up of
unidirectional LSTM, without an attention mechanism, the
model with a window size of 32 performed better than
others when classifying for a multi-class outcome in terms
of the accuracy on the test set(accuracy = 0.9209). Theoreti-
cally, the models with Bi-LSTM should be better than a uni-
LSTM one, however, with all other configurations fixed,
except the Bi-LSTM model with a window size of 16, other
Bi-LSTM models did not show significant improvement
over the uni-LSTM one. Nevertheless, once the attention
mechanism was introduced, the performance was boosted
and the F; increased compared to the model without an
attention mechanism, except the Bi-LSTM model with an
attention mechanism and window size of 16. As we
reported in the methodology section, the attention mecha-
nism could be introduced during the multimodal feature
aligning phase as well as the multimodality fusion phase.
The attention mechanism during the fusion process
weighed each modality and made it possible for the model
to determine the contribution of each modality. From
Table 8, we concluded that the highest sensitivity of 0.9941
was achieved by the model comprised of Bi-LSTM and two
attention layers, with a window size of 32. Given that we
expected to train an early-stage depression screening tool,
we preferred higher sensitivity so that we would not miss

TABLE 7
A Comparative Study of the Text Model With Different Window
Size
Window Size Accuracy Precision Recall F1 Score
16 0.8254 0.8318 0.8340 0.8141
32 0.8256 0.8371 0.8465 0.8260
64 0.8778 0.8779 0.8782 0.8705
128 0.8409 0.8599 0.8430 0.8304
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TABLE 8
A Comparative Study of Our Proposed Patient-Level Methods and the State of the Art
Model Experimental Settings Accuracy F1 Sensitivity  Specificity
WIN=16, Stride=64 0.8604 0.8579 0.9844 0.8182
UniLSTM as encoder WIN=32, Stride=64 0.9209 0.9188 0.9647 0.9777
WIN=64, Stride=64 0.8674 0.8682 0.9705 0.9888
WIN=16, Stride=64 0.9488 0.9500 0.9735 0.9444
BiLSTM as encoder WIN=32, Stride=64 0.9186 0.9191 0.9852 0.9700
WIN=64, Stride=64 0.8535 0.8546 0.9647 0.8778
WIN=16, Stride=64, attention 0.8419 0.8427 0.9735 0.8222
BiLSTM as encoder WIN=32, Stride=64, attention 0.9581 0.9580 0.9824 1.0000
WIN=64, Stride=64, attention 0.9093 0.9086 0.9706 0.9889
WIN=16, Stride=64, attention(aligning&fusion) 0.8977 0.8973 0.9559 0.9889
UniLLSTM as encoder WIN=32, Stride=64, attention(aligning&fusion) 0.9326 0.9315 0.9735 0.9889
WIN=64, Stride=64, attention(aligning&fusion) 0.8581 0.8615 0.9412 0.8889
WIN=16, Stride=64, attention(aligning&fusion) 0.8491 0.8439 0.9353 0.9000
BiLSTM as encoder WIN=32, Stride=64, attention(aligning&fusion) 0.9047 0.9103 0.9941 0.9000
WIN=64, Stride=64, attention(aligning&fusion) 0.6279 0.6560 0.7500 1.0000
WIN=16 * BLSTM: 0.7929 ULSTM:0.8096 * *
Unimodality text model WIN=32 * BLSTM: 0.7964 ULSTM:0.7619 * *
y WIN=64 * BLSTM: 0.9245 ULSTM:0.9058 * *
WIN=128 * BLSTM: 0.8266 ULSTM:0.7148 * *
BLSTM + FC * 0.8819 * *
. . . ULSTM + FC * 0.7604 * *
Unimodality audio model BLSTM + TCNN . 0.9074 . “
ULSTM + TCNN * 0.8443 * *
Srimadhur et al. [68] End to end convolutional neural network 0.7464 0.7750 0.74 0.8
Alhanai et al. [62] Combination of LSTM and CNN * 0.77 0.83 *
Niu et al. [69] Hierarchical context-aware graph attention model * 0.92 0.92 *

those potential depression patients. The model with two
attention layers led to results that outperformed the state of
the art, Niu et al. by 8% in terms of sensitivity. In compari-
son with Alhanai et al. who adopted a similar method made
up of CNN and LSTM, our proposed method was better by
17% in terms of sensitivity. This is not conclusive since the
dataset for evaluation in their article was slightly different
from ours. By conducting a student t-test between the I of
the best patient-level audio model with the result of p-value
=0.0099 (<0.01), as well as patient-level text model with the
result of p-value = 0.0246 (<0.05), we could conclude that
multimodality models statistically significant outperformed
single modality models.

5 CONCLUSION

In this paper, a multimodality approach for automated
depression detection was presented. Firstly, we performed
the statistical test to investigate the difference between the
audio and text features of severe and healthy subjects. We
proved the pattern of severe depression patients was differ-
ent from that of the healthy. Therefore, the audio feature
sequence carried information that could be used to predict
depression severity. Secondly, models that considered
audio and text features individually were trained and eval-
uated at the patient-independent level. These unimodality
models then acted as feature extractors and output features
were combined by audio-text fused model. For the audio
modality, at the patient-independent level, the model com-
prised of single-layer Bi-LSTM and five stacked T-CNN
blocks achieved the best sequence level F; score of 0.9870
and patient-level F} score of 0.9074 with the test set. This
result indicates that the Bi-LSTM provides a more reliable
representation, from which the automated depression

detection model could benefit. Additionally, we evaluated
the patient-independent audio models with different time-
steps with the Area Under Curve (AUC) metric. We con-
cluded that the 16-timestep model performed best and the
micro-average AUC was higher than any other model.
However, the 64-timestep model showed its strength in
detecting the audio feature sequence from the mild patient,
which met our expectation that the model should be able to
distinguish mild patients so that clinical interference can be
conducted in the early stage. Overall, the 16-timestep model
outperformed the 32-timestep and 64-timestep models,
which could be attributed to the relatively low signal-noise
ratio of the shorter input sequences and the memorization
limit of the LSTM. The new understanding assisted in our
model selection and hyper-parameter configuration when
we deployed this method in clinical settings. These findings
provided the following insight for future research, our pro-
posed unimodality model was patient-independent, and
the prediction was based on a period of audio/text features.
Therefore, compared with other models, our proposed
model did not have limitations to the length of interview
audio or transcript, which made it possible for people to
monitor their mental state in daily use.

Moreover, for the text modality, the model consisted of
Bi-LSTM and three fully connected layers achieved the best
sequence level I score of 0.9709 and patient-level F; score
of 0.9245 on the test set. We conducted experiments to
investigate the influence of the text model hyper-parame-
ters, such as window size and stop words. We found the
best window size is 64. In our experiment, we investigated
the effect of stop words, the result indicated the text model
performs better if the stop words were removed in advance.
Currently, our patient-level prediction was carried out by a
major voting algorithm, which yielded a patient-level
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depression prediction model with satisfying performance.
Our proposed multimodal method achieved the highest F;
of 0.9580 on the patient-level depression detection task,
which showed a significant improvement over the previous
state-of-the-art. In the future, a study on how to represent
the audio/text features during the whole interview should
be carried out so that the model could make patient-level
predictions based on a digest of text and audio features.
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