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A B S T R A C T

Non-invasive acoustic analyses of voice disorders have been at the forefront of current biomedical research.
Usual strategies, essentially based on machine learning (ML) algorithms, commonly classify a subject as
being either healthy or pathologically-affected. Nevertheless, the latter state is not always a result of a
sole laryngeal issue, i.e., multiple disorders might exist, demanding multi-label classification procedures for
effective diagnoses. Consequently, the objective of this paper is to investigate the application of five multi-label
classification methods based on problem transformation to play the role of base-learners, i.e., Label Powerset,
Binary Relevance, Nested Stacking, Classifier Chains, and Dependent Binary Relevance with Random Forest
(RF) and Support Vector Machine (SVM), in addition to a Deep Neural Network (DNN) from an algorithm
adaptation method, to detect multiple voice disorders, i.e., Dysphonia, Laryngitis, Reinke’s Edema, Vox Senilis,
and Central Laryngeal Motion Disorder. Receiving as input three handcrafted features, i.e., signal energy (SE),
zero-crossing rates (ZCRs), and signal entropy (SH), which allow for interpretable descriptors in terms of speech
analysis, production, and perception, we observed that the DNN-based approach powered with SE-based feature
vectors presented the best values of F1-score among the tested methods, i.e., 0.943, as the averaged value from
all the balancing scenarios, under Saarbrücken Voice Database (SVD) and considering 20% of balancing rate
with Synthetic Minority Over-sampling Technique (SMOTE). Finally, our findings of most false negatives for
laryngitis may explain the reason why its detection is a serious issue in speech technology. The results we
report provide an original contribution, allowing for the consistent detection of multiple speech pathologies
and advancing the state-of-the-art in the field of handcrafted acoustic-based non-invasive diagnosis of voice
disorders.
1. Introduction

The precise identification of different voice disorders persists as a
challenge, requiring much dedication from health professionals. Usu-
ally, specific patterns perceived during vocal folds vibration, com-
plemented by direct laryngeal examinations, are used to support the
decisions (Casper and Leonard, 2011). Observing that the rate of suc-
cessful diagnoses depends on the professionals’ audition and commonly
requires a subjective strategy, automated speech pathology detection
(SPD) algorithms are certainly of paramount importance. Most of the
current SPD algorithms are based on artificial intelligence methods,
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such as Support Vector Machines (SVMs), Decision Tree (DT), and
Artificial Neural Networks (ANN), each of them representing a machine
learning (ML)-based approach (AlRshoud et al., 2019; Lorenzo and
Claudia, 2002; Ghasem et al., 2019; David, 2018; Belhaj et al., 2015;
Verde et al., 2018a; Areiza-Laverde et al., 2018; Muhammad et al.,
2012a).

In the above-cited scientific papers, voice disorders were classified
by using ML models grounded on single-label classification procedures
in which the outputs are mutually exclusive, i.e., each single pathol-
ogy needs to be predicted. Nonetheless, the same subject could be
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Fig. 1. Overview of problem and experimental pipeline to addressing multiple voice disorders in one individual using handcrafted features.
stricken by multiple voice pathologies concomitantly, demanding meth-
ods capable of addressing multiple classes of disorders. Particularly,
multi-label classification (MLC) approaches, which have been applied
in different research areas, such as molecular biology (Lin et al., 2013),
clinical data (Zufferey et al., 2015; Wosiak et al., 2018), emotion, and
sentiment analysis (Liu and Chen, 2015; Almeida et al., 2018), are
concerned to associate instances with more than one conceptual class.

Consequently, this research paper explores the applications of MLC
to identify a voice signal either as being healthy (HEA) or
pathologically-affected with the following disorders: Dysphonia, Laryn-
gitis, Reinke Edema, Vox Senilis, and Central Laryngeal Motion Disor-
der. Current literature shows that there are subjects affected by multiple
pathologies at once, such as Dysphonia combined with Laryngitis, and
Dysphonia combined with Reinke’s edema, for instance. Consequently,
we compared five problem-transformation methods for MLC, i.e., Label
Powerset (LP), Binary Relevance (BR), Nested Stacking (NS), Classifier
Chains (CC) and Dependent Binary Relevance (DBR), using Random
Forest (RF) and Support Vector Machine (SVM) with three differ-
ent kernels, i.e., Linear, Polynomial, and Radial Basis Functions, as
base-learners, considering multiple pathologies in the same individual.

Additionally, by using the algorithm adaptation strategy, we took
advantage of a Deep Neural Network (DNN) grounded on a Multi-Layer
Perceptron to provide a fair comparison to problem-transformation
approaches. Experiments were conducted with the original Saarbrücken
voice dataset, containing 914 sample voices, complemented by aug-
mented signals. Fig. 1 exposes an overview of problem and experi-
mental pipeline. The most accurate result from problem-transformation
corresponds to a value of accuracy of 93.76% when LP is combined
with RF considering a balancing rate of 20% in the dataset 𝑆𝑒𝑡1,
described ahead. Contrary to this, the DNN designed as a 5-Layer
MLP achieved, under the same experimental setup, a value of accuracy
of 91.60%. DNN outperformed the other methods when trained with
a high number of augmented samples. The primary contribution of
our research paper is the comparison of various multi-label classifi-
cation approaches, as well as different feature engineering strategies,
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for the detection of multiple voice disorders in the same individual,
particularly:

• exploring a real-life labelled dataset composed by multiple-
disorders;

• evaluating the voice descriptors, and the importance of balancing
and synthesizing samples.

• comparing problem transformation, and algorithm adaptation us-
ing different base-learners.

Notably, as detailed ahead in Section 3.1, the small number of voice
samples available is one of the challenges that motivated our work. The
precise identification of different voice disorders in the same individual
is very tricky. Using a data-driven strategy, the dataset quality inter-
feres directly with the results, requiring a robust collection of samples
or alternative methods to support the creation of the automatic models.
On one hand, we have to put the effort into creating a wide-range
dataset, since we are in a scenario of a scarcity of data, dealing with a
real-life dataset, labelled and composed with individuals with multiple
disorders. This kind of dataset is extremely rare and hard to be built
since the disorders affect one to another, which reduces the confidence
of synthetic samples. On the other hand, we have several machine
learning methods able to support the exploration of unbalanced and
small datasets. We choose the latter option towards developing our
research paving the way to discuss the performance of multi-label
techniques in voice disorder identification, exploring Synthetic Mi-
nority Over-sampling Technique (SMOTE) in a multi-label context,
handcrafted features and machine learning algorithms.

To allow for a better understanding of the concepts explained
hereafter, the remainder of this paper is structured as follows: Section 2
reviews multi-label methods and comments on the related ML-based
techniques applied to the detection of voice disorders, Section 3 details
the proposed approach, as well as the metrics used for assessment, and,
lastly, Sections 4–6 present the results, discussions, and conclusions,
respectively.



Speech Communication 152 (2023) 102952S. Barbon Junior et al.
Fig. 2. Simplified taxonomy for MLC methods. After Tsoumakas et al. (2009).
2. Literature review

2.1. Multi-label classification

Let 𝐿 be a set of disjoint labels. In Single-Label Classification strate-
gies, the main purpose is to learn from the samples that are related to a
single label 𝑙 from 𝐿. On one hand, |𝐿|=2 turns the problem to a binary
classification problem. On the other hand, |𝐿|> 2 characterizes a multi-
class problem (Tsoumakas and Katakis, 2007). When each example is
linked to a set of labels 𝑌 ⊆ 𝐿, then the learning task is defined as
a multi-label classification. Fig. 2 exemplifies the taxonomy associated
with MLC. MLC methods are split into two groups (Tsoumakas et al.,
2009): (i) Algorithm Adaptation, and (ii) Problem-Transformation.

Algorithm Adaptation approach includes algorithms extending tra-
ditional single-label classifiers to deal with multi-label data directly,
such as ANNs, Logistic Regression (LR) and k-Nearest Neighbours (k-
NNs). Among algorithm adaptation strategies, those based on Multi-
layer Neural Networks have been extended to cope with multi-label
data. Modifications, such as adaptations in back-propagation learning
algorithm (Zhang and Zhou, 2006; Wang et al., 2020; Lenc and Kral,
2016) or in weight updating strategies (Crammer and Singer, 2003)
prove to be effective when using ANN for multi-label classification.

• Deep Neural Network (DNN), the high predictive capacity pro-
vided by ANN paves the way for robust solutions, particularly,
DNN. In Liu et al. (2017), for instance, a DNN was adopted to
address the classification of documents in a text mining multi-
label solution. It is important to mention that the successful
application of DNN is strongly related to the scale of the largest
datasets, i.e., a small dataset could not provide a proper training
set for deep learning models.

Problem-Transformation approach consists of strategies which turn
the original task into one or more algorithm-independent SLC routines,
implying that any single-label classifier might be used as a base-learner.
The base-learner is employed 𝑘 = 1, 2, 3,… times for each possible label
using all the subsets 𝐷𝑖 (𝑖 = 1, 2, 3,… , and 𝑖 ≠ 𝑘) for training and the
subset 𝐷𝑘 for evaluation. Important examples are as follows.

• Binary Relevance (BR), the simplest problem-transformation
method. For each label, the method trains a binary classifier
responsible for predicting whether the example contains that label
3

or not (Tsoumakas and Vlahavas, 2007). This method reduces
a given multi-label problem with 𝑚 labels to 𝑚 binary classifi-
cation problems. More precisely, 𝑚 hypotheses ℎ1, ℎ2, ℎ3,… , ℎ𝑚
are induced, each of them being responsible for predicting the
relevance of one label, using just  as the input space: ℎ𝑗 ∶
 ←←→ {0, 1}. In the classification of a new unknown instance, the
output is the union of labels classified with a positive indication.
Therefore, since the labels are predicted independently, possible
correlations between them are ignored.

• Classifier Chains (CC) (Read et al., 2011), which is grounded
on the idea of partial conditioning. It means that, to predict
the label 𝑧𝑘, the feature space is based on the original features,
and also by the true label information from the previous labels
(𝑧1, 𝑧2,… , 𝑧𝑘−1). Similarly to BR, this method trains 𝑚 binary
classifiers for 𝑚 labels, although the feature space is different for
each classifier. Particularly, CC tries to explore the correlation
between the labels by using them as features. Since it is based
on a chain of classifiers, the labels order influences on the global
accuracy. Additionally, one label may be harder to predict than
the others, implying that it should be placed at the end of the
chain, while an easier-to-predict label should be at the beginning.

• Nested Stacking (NS) (Senge et al., 2013), which is a problem-
transformation method similar to CC. During the training phase,
a binary classifier learns each label by using the label from the
previous classifier as a feature. The main difference between
this method and CC is the label incorporated in the feature
space. Whereas on CC the true label is used, NS uses the pre-
dicted label. Thus, the only classifier trained using the true la-
bel information is the first chain classifier. According to Senge
et al. (2013), the predicted labels should be obtained through an
internal out-of-sample method, such as 𝑘-fold cross-validation.

• Dependent Binary Relevance (DBR) (Montanes et al., 2014),
which is based on BR. Essentially, DBR also trains one binary
classifier for each label, however, the feature space is augmented
with the labels that are not going to be predicted by the classifier
being trained. Thus, to train a classifier 𝐶𝑘 in order to predict
the label 𝑦𝑘, the feature space is composed by the original fea-
tures and by the other labels (𝑦1,… , 𝑦𝑘−1, 𝑦𝑘+1,… , 𝑦𝑚). To apply
those classifiers to an unlabelled sample, multi-label strategies
are required to create the labels to play the role of features,
subsequently applying the DBR method.
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• Label Powerset (LP), which is an effective problem-transfor-
mation method. It takes every unique combination of labels in the
multi-label training set and creates one label that represents this
combination for a new SLC problem (Tsoumakas and Vlahavas,
2007). For a new instance, the single-label classifier predicts a
metalabel, which is, indeed, a set of labels. The main drawback
of LP method is the number of new labels it creates: considering
𝑀 unique combinations, it creates 2𝑀 labels for the single-label
classifier.

2.2. Related work on voice disorders sorting

The first scientific paper we reviewed, documented in Al-Naheri
et al. (2017), concentrates on the development of a feature extraction
method for detecting and classifying speech pathologies based on the
analysis of different frequency bands. Besides entropy, the authors
extracted the maximum peak amplitude from each frame of a voiced
signal based on autocorrelation function. Particularly, distinct examples
of the sustained vowel /a/ for both normal and pathologically-affected
voices from three different databases in English, German, and Arabic
were used. An SVM classifier was adopted, demonstrating significant
difference between of both the types of signals. This is primarily due
to the capability of SVMs to map lower dimensional feature space into
higher dimensions. Moreover, due to Cover’s theorem of separability,
the classes that are nonlinearly separable in lower dimension feature
space become linearly separable in higher dimensions (Cover, 1965).

The authors of paper Muhammad et al. (2012b) developed a feature
extraction technique for automatic speech recognition (ASR) that com-
bines a time–frequency analysis with a Gaussian Mixture Model (GMM)
to distinguish speech pathologies. Data from 70 dysphonic subjects with
six different voice disorders and 50 normal subjects were analysed.
Mean values of accuracies of 97.48% and 99% were obtained for the
text-independent and the text-dependent cases, respectively. Particu-
larly, the authors verified that the proposed features outperformed the
conventional Mel Frequency Cepstral Coefficients (MFCCs).

In paper Muhammad and Melhem (2014), the authors proposed
an algorithm to classify pathologically-affected voices based on Mov-
ing Pictures Expert Group 7 (MPEG)-7 audio low-level features. They
specifically showed that MPEG-7 part-4 codes can accurately detect
abnormalities. Their experiments were carried out on a subset of sus-
tained vowels /a/, as in the word dogma, from MEEI speech corpus. For
lassification, they applied an SVM-based algorithm, achieving a value
f accuracy of 99.99% with a standard deviation of 0.01%.

Additionally, the authors of paper Vikram and Umarani (2013)
tated that MFCCs extracted from the phonemes /a/, /i/, and /u/
ould be used as features in distinguishing normal from affected voices.
pecifically, their system combined specific descriptors with a Gaussian
ixture Model-Universal Background Model (GMM-UBM) classifier.
hen 18 ordinary MFCCs served as input to the GMM-UBM classifier,

he mean value of accuracy was 85.18%. Oppositely, when the wavelet-
ased MFCCs were used, 93.32% of the results were correct, indicating
hat the latter features enhance classification.

The authors of paper Akbari and Arjmandi (2014) developed a
ystem to detect voice disorders using the Discrete Wavelet Packet
ransformation (DWPT). They found that normal and pathologically-
ffected voices are well characterized on the basis of energy and
ntropy, extracted from a specific Wavelet-Packet tree with eight de-
omposition levels. The mean values of accuracy of 96.67% and 97.33%
ere obtained on the Kay Elemetrics database from entropy features,
nd wavelet packet-based energy, respectively.

In paper Hemmerling et al. (2016), the authors evaluated the useful-
ess of different methods for acoustic-based classification of laryngeal
athologies. First, a vector of 28 components was extracted from time-
frequency- and cepstral-domains when the sustained vowels /a/, /i/,
nd /u/, all at high, low, and normal pitches, were analysed. Ensuingly,
4

hey used Principal Component Analysis (PCA) to reduce the feature
vector dimension and then choose the most effective acoustic features.
When k-means clustering and Random Forest (RF) classifiers were
adopted, full accuracy was obtained.

The authors of paper Martinez et al. (2012) presented a set of
experiments on the detection of pathologically-affected voices over SVD
corpus by using the MultiFocal toolkit for a discriminative calibra-
tion and fusion of features. A generative GMM trained with MFCCs,
harmonics-to-noise ratio, normalized noise energy and glottal-to-noise
excitation ratio was used as the classifier. Grouping different record-
ings from each speaker the proposal obtained performance over 90%
accuracy.

The authors of paper Saeedi and Almasganj (2013) created a wavelet
feature extraction method in which, instead of default filterbanks,
dynamic bases were used and applied to extract features from the voice
signals. Orthogonal wavelets were adjusted via lattice structure and,
then, the best parameters were investigated through an iterative task
based on a Genetic Algorithm (GA). An SVM was adopted to classify
the signals, revealing that paralysis, nodules, polyps, edema, spasmodic
dysphonia, and keratosis were completely catalogued.

The authors of paper Mekyska et al. (2015) presented a study
of strategies for SPD focused on parametrization. They provided 92
widely used speech features and, additionally, a few which had not
yet been tried. The significance of these descriptors was tested on
three voice databases based on classification accuracy, sensitivity, and
specificity. For the Príncipe de Asturias (PdA) Hospital in Alcalá de
Henares of Madrid database, the authors made improvements in clas-
sification accuracy using a single-classifier approach. All the features
introduced were identified by the Mann–Whitney U-test with at least one
of the databases. Among the descriptors, those which especially quan-
tify hoarseness and breathiness were the most prominent candidates to
identify pathologically-affected voices.

In paper Ali et al. (2016), researchers developed an automatic
speech pathology classification system with text-dependent running
speech. According to them, three psychophysics conditions of hearing,
i.e., critical band spectral estimation, equal loudness hearing curve, and
the intensity loudness power law of hearing, were employed to compute
the auditory spectrum. The all-pole models of the auditory spectra were
evaluated in conjunction with a GMM classifier. Using Massachusetts
Eye and Ear Infirmary (MEEI) database, a level of accuracy of 99.56%
was obtained.

In paper Markaki and Stylianou (2011), the authors explored sig-
nals from acoustic and modulation frequency representations for de-
tecting and discriminating voice pathologies. From that dimension-
reduced representations, a feature selection based on the mutual in-
formation between voice classes and features was performed. For SPD,
the system achieved a mean value of accuracy of 94.1%, considering a
95% confidence interval. Additionally, for pathology classification, the
proposed system significantly outperformed the results obtained with
cepstral-based features.

Specific techniques, such as those mentioned in Pranav and Sabari-
malai (2017), use identification of glottal instants and electroglottogra-
phy (EGG) parameters to identify multiple types of voice pathologies,
including neurological, functional and laryngeal. Initially, the authors
presented an adaptive variational mode decomposition-based method
for suppressing low frequency artifacts and additive high frequency
noise. Then, the algorithm built a novel EGG feature signal to deter-
mine the glottal closure and opening instants. Proceeding, the novel
glottal instants were confirmed by computing the positive and negative
zero-crossings around. Thus, the algorithm significantly outperformed
existing systems for both noise-free and noisy-EGG inputs.

Interestingly, paper Sasou (2017) reports the automatic detection
of speech pathologies to enable non-invasive and objective assessments
based on the inspection of roughness, breathiness, asthenia, and strain.
The proposed method adopted Higher-Order Local Auto-Correlation

(HLAC) features, which were calculated from the excitation source
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signal obtained by an automatic topology-generated analysis. Addition-
ally, the authors of paper Verde et al. (2018b) created a personalized
methodology to estimate the fundamental frequency (𝐹0) of dysphonic
voices. They found that the personalization supports two of the main
factors that influence 𝐹0, i.e., the subject’s gender and age, allowing
for a better distinction between normal and pathologically-affected
voices. To evaluate their methodology, they carried out a set of tests
and compared its classification ability to other algorithms documented.
The results obtained showed that the authors’ technique provided an
acceptable value of accuracy of 77%.

In paper Lachhab et al. (2014), the authors proposed a simple and
fast method to detect voices disordered due to esophageal constriction.
A continuous speech recognition technique based on GMM and Hidden
Markov Model Toolkit (HTK) platform was applied, in a speaker-
dependent mode, over the French Pathological Speech Database. The
acoustic vectors were linearly transformed by using Heteroscedas-
tic Linear Discriminant Analysis (HLDA), which refitted them into
a smaller space with good discriminative properties. The mean ob-
tained value of accuracy of 63.59% was considered very promising,
assuming that esophageal voices contain unnatural sounds difficult to
understand.

The authors of paper Zhong et al. (2016) presented an intelli-
gent approach for vocal folds damage detection based on Hidden
Markov Models (HMMs). They showed that particularly-transformed
pathologically-affected voice signals follow a Gaussian distribution and
demonstrated that a type-2 fuzzy membership function (MF) is capable
of finding them, stimulating the application of a nonlinear signal pro-
cessing technique to handle the problem. The authors also observed
that the Short-Time Fourier Transform (STFT) of a disordered voice
usually fades at a rate that can be used as an identifier for SPD. Lastly,
two fuzzy machines, a Bayesian technique and a linear classifier were
used in conjunction with the phonemes /a/ and /i/ to distinguish
normal from disordered voices. Simulation results showed that the
type-2 fuzzy classifier outperforms the other strategies.

Importantly, paper Fonseca and Pereira (2008) presents a Least-
squares SVM (LS-SVM) classifier using a radial basis function (RBF)
kernel that led to an adequate larynx pathology classifier. A value of
accuracy of 90% was attained considering two classes, i.e., normal
voices and those collected from subjects with vocal fold nodules. In
complement, the mean value of accuracy of 85% was reported in
distinguishing normal voices from those affected by Reinke edema.
Lastly, 8 in each 10 results were correctly labelled, considering nodules,
and Reinke edema only.

The above-referenced scientific papers, for which an overview is
provided in Table 1, essentially focus on vocal fold derived-information
to characterize a subject’s condition, i.e., healthy or pathologically-
affected. Taking advantage of the previous findings, mainly those doc-
umented in Akbari and Arjmandi (2014) and Pranav and Sabarimalai
(2017), we selected energy, zero-crossing rates, and entropy as the
features to analyse five pathologies, considering that a subject might
have more than one voice disorder at the same time, justifying the
applications of MLC algorithms. We also compared the application of
SVM and RF as base-learners, since those algorithms have a relevant
accuracy for different problems. To the best of authors’ knowledge, the
experiments and results we report in this paper provide an original
contribution to the SPD field.

3. Materials and methods

In this work, we selected five problem-transformation strategies
and one algorithm adaptation method. The problem-transformation
MLC methods, i.e., LP, BR, CC, NS, and DBR were chosen due to
their notable performance in previous works (Zufferey et al., 2015;
Wosiak et al., 2018) and implemented using R language2 and the

2 https://www.r-project.org
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utiml package3 (Rivolli and Carvalho, 2018) along with their default
hyperparameter values. It is important to mention that RF and SVM
were compared to support a discussion on accuracy specifically con-
sidering the application of ML algorithms. Our algorithm adaptation
implementation was based on artificial neural networks (Wang et al.,
2020; Lenc and Kral, 2016; Ji et al., 2020). The multi-layer perceptron
network (MLP) was constructed using Keras (Chollet, 2018) for com-
putational speed boost. We propose an MLP with five hidden layers
(𝑛-256-128-64-7), where 𝑛 is the size of 𝑛-dimensional feature vector.

We employed the binary cross-entropy as loss function, adaptive
moment estimation (adam) as optimizer and rectified linear units
(ReLU) as the classification function in our DNN to compute classifi-
cation score. In addition, we applied batch normalization after ReLU
for smoothing and improving the final predictive performance on test
set. To provide a fair comparison between the results from problem-
transformation and algorithm adaptation, we induce the models based
on the same set of features, i.e., 𝑆𝑒𝑡1 and 𝑆𝑒𝑡2 described ahead, and
evaluation strategy.

3.1. Voice disorders database

The experiments were carried out by using SVD database (Barry and
Putzer, 2007), which was created by specialists from the Institut für
Fonetik of the Universität des Saarlandes.4 The dataset contains 914 voice
signals diagnosed as healthy (HEA) or pathological. It is important to
highlight that this dataset comprises data from subjects with single
and multiple pathologies: Dysphonia (DYS), Laryngitis (LAR), Reinke’s
edema (RDE), Vox Senilis (VSE), Central Laryngeal Motion Disorder
(CLMD), both Dysphonia and Laryngitis (DYS-LAR) and, also, both
Laryngitis and Reinke’s edema (LAR-RDE). Originally, the signals were
sampled at 50000 samples per second, mono-channel, 16-bit, without
compression. To the best of the authors’ knowledge, this dataset is the
only one in the literature containing multiple voice disorders in the
same individuals.

Table 2 shows the way signals were distributed in the original and
the augmented datasets, being the latter obtained upon the applications
of SMOTE (Chawla et al., 2002). Originally, the healthy samples are the
majority since many voice pathologies are rarely observed in daily life,
compromising the creation of a balanced dataset. Thus, the prediction
task suffers from a lack of balance (Haixiang et al., 2017). Particularly,
SMOTE has overcome the imbalance dataset problem, as in Georgoulas
et al. (2007), Lee et al. (2013), Krawczyk et al. (2015), Potharaju and
Sreedevi (2016) and Saarela et al. (2019). We experimented balancing
rates, i.e., the rates of synthetic samples, from 20% to 95% just to
observe the impact on the prediction.

In our experiments, we used just the /a:/ vowels, using a 10-
fold stratified cross-validation strategy. The stratified cross-validation
method is a variant of cross-validation that ensures that the class
distributions of the folds are similar to the class distributions of the
entire data. The augmentation procedure was only conducted in the
training folds to avoid overfitting and fairness in our experiment. This
can help to ensure that the model is trained on a representative sample
of the data and that its performance is not biased towards the majority
class. The adoption of stratified cross-validation together with SMOTE
data augmentation can be an effective approach for reducing bias in
machine learning models, particularly in cases where the dataset is
imbalanced, as shown in Batista et al. (2004). Particularly, by ensuring
that the model is trained on a representative sample of the data and
that the minority class is not underrepresented during training, we can
improve the model generalization performance and reduce the risk of
bias. In addition, it is important to mention that, although SVD contains
more than two thousand voice samples, with more than half being

3 https://github.com/rivolli/utiml
4 http://www.stimmdatenbank.coli.uni-saarland.de/

https://www.r-project.org
https://github.com/rivolli/utiml
http://www.stimmdatenbank.coli.uni-saarland.de/


Speech Communication 152 (2023) 102952S. Barbon Junior et al.
Table 1
Overview of the related work, where, in the third column, MVDSI means ‘‘multiple voice disorders in the
same individual’’. Notably, no previous work handles MVDSI, as the proposed approach does.
Authors and
references

Main approaches and tools MVDSI (yes/no)

Al-Naheri et al. (2017) feature extraction; frequency bands; SVM no

Muhammad et al. (2012b) feature extraction; GMM; MFCC no

Muhammad and Melhem (2014) MPEG-7 features; SVM no

Vikram and Umarani (2013) MFCC; GMM-UBM no

Akbari and Arjmandi (2014) DWPT; energy; entropy no

Hemmerling et al. (2016) cepstrum; PCA; random forest; K-means no

Martinez et al. (2012) GMM; MFCC; glottal-to-noise ratio no

Saeedi and Almasganj (2013) wavelets; GA; SVM no

Mekyska et al. (2015) Mann–Whitney U-test; parametrization no

Ali et al. (2016) psychophysics; GMM no

Markaki and Stylianou (2011) modulation-related features no

Pranav and Sabarimalai (2017) glottal instants; EGG features no

Sasou (2017) HLAC; jitter; shimmer; neural nets no

Verde et al. (2018b) gender; age; fundamental frequency no

Lachhab et al. (2014) GMM; HLDA no

Zhong et al. (2016) HMM; fuzzy MF; STFT no

Fonseca and Pereira (2008) LS-SVM; RBF kernels no
Table 2
Dataset distribution of samples and classes without balancing and with several
balancing rate. After Barry and Putzer (2007).

Balancing
rate

HEA Pathology Samples

DYS LAR RDE VSE CLMD DYS-LAR LAR-RDE

0% (Original) 686 69 81 33 22 10 4 9 914

20% 686 137 137 132 132 130 136 135 1625

35% 686 207 162 231 220 240 240 234 2220

50% 686 276 324 330 330 340 340 342 2968

65% 686 414 405 429 440 440 444 441 3699

80% 686 483 486 528 528 540 548 540 4339

95% 686 621 648 627 638 650 648 648 5166

diagnosed as pathologically-affected. We used just 228 pathologically-
affected voice samples (comprising single and multiple pathologies
in the same individual) and 686 voice samples without pathology. It
should be noted that each voice signal was collected from an individual.

3.2. Feature extraction for voice analysis

In the proposed approach, specific handcrafted features were ex-
tracted from the subjects’ voices in order to describe their acoustic
apparatus (Al-Nasheri et al., 2018; Shilaskar et al., 2017; Hegde et al.,
2019). We extracted energy (SE), zero-crossing rates (ZCRs) and en-
tropy (SH), which provide a joint time–frequency information map,
as explained in papers Guido (2016a), Guido (2016b), and Guido
(2018), respectively. Interestingly, as shown in paper Guido (2016a)-
pp. 277–280, energy is one of the most elementary features used to
describe the workload performed by speech-related biological entities:
the lungs and the vocal organs. Moreover, hearing is the process of
detecting energy (Zhau et al., 2001). In particular, due to the theory
of hearing, and the mathematical model used to describe cochlea, this
detected energy is processed as an amplitude and frequency modulation
(AM-FM) signal representing the output of cochlear filterbank.

Complementary, energy measures have advantages over strictly
spectral features because they are more robust to different kinds of
transmission and recording variations (Guido, 2016a). Notably, in case
of the algorithms designed in this paper, energy is relevant because it
6

expresses the effort the speakers’ lungs perform to utter, as a function
of time. As demonstrated by the tests and results in paper Guido
(2016a), signal energy can certainly be considered a useful feature
for pattern recognition in speech and voice analysis, among others,
even associated with modest classifiers (Guido, 2016a). Another inter-
esting aspect is that, being simple, energy allows for the proposed
features to be interpretable, what does not holds true in case of learned
features (Guido, 2016a). Thus, energy consideration is extremely rele-
vant for both speech production and perception.

Additionally, normalized ZCRs, as shown in paper Guido (2016b)-
pp. 257–258, can be interpreted as specific neuronal structures, exhibit-
ing a neural-like behaviour. ZCRs are of paramount importance because
they carry information on formant frequencies, as shown in the study
on integration, differentiation, and clipping speech signals (Licklider,
1948). As explained in paper Guido (2016b), ZCRs are extremely simple
to be computed, with a linear order of time and space complexities.
Naturally, they reveal spectral information on input data without an ex-
plicit conversion from time to frequency-domain, reducing computation
time (Guido, 2016b).

Furthermore, relevant speech processing problems have frequently
benefited from them. Years ago, transient signals were analysed to
demonstrate they can be accurately found based on zero-crossings and,
subsequently, applications related to the estimate of epochs in speech
signals were performed, confirming that assumption. Word boundary
detection, distinctions of voiced and unvoiced signals, speech recog-
nition, speech pathology detection, and related applications have also
benefited from ZCRs, as mentioned and demonstrated in paper Guido
(2016b).

Lastly, as shown in paper Guido (2018)-pp. 165, entropies computed
as described ahead show a close relationship with DNNs, possibly
strengthening their statistical richness. Particularly, entropy obtained
based on the proposed approach for feature extraction, has a flagrant
potential, as also evidenced by the authors of different scientific papers
such as Techakesari and Ford (2013), Xia and Xu (2012), Zarinbal et al.
(2015), Zhang et al. (2016), Rallapalli and Alexander (2015). Similarly
to the characterization of ZCRs as neurocomputing agents, entropy is
shown to be the outcome of a specifically tuned deep neural network
(DNN) that fuses important information (Guido, 2018), bringing a sig-
nificant value to our experiments and allowing for more interpretable
outcomes. Furthermore, applications on restricted-vocabulary speech
recognition found in paper Guido (2018) reassure the efficacy of this
feature.
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Consequently and as complemented ahead, these are the reasons
hy those features have been selected to work in conjunction in our
xperiment. Further details about those features follow.

.2.1. Signal energy
If 𝑠[⋅] is the 𝑀-sample long digital signal under analysis, then SE,

hich is related to the potential to perform work (Salehi, 2015), is
omputed as in Eq. (1).

𝐸(𝑠[⋅]) =
𝑀−1
∑

𝑖=0
(𝑠𝑖)2 . (1)

s exposed in Guido (2016a), i.e., the paper used to guide the appli-
ation of SE in this experiment, a critical base-level (0 < 𝐶 < 100%) is
equired to conduct the analysis according to the method 𝐴3 defined in
hat reference. In our experiments, we compared the effect of 𝐶 = 1%
nd 𝐶 = 10%, i.e., a fine resolution and a wide resolution, producing
9 and 9 features, respectively.

.2.2. Signal ZCRs
Different from SE, ZCR is related to the fundamental frequency

𝐹0) contained in 𝑠[⋅], being useful to analyse the spectral stability of
honation. It is computed as shown in Eq. (2), where 𝑍𝐶𝑅(𝑠[⋅]) ⩾ 0,

nd 𝑠𝑖𝑔𝑛(𝑦) =

{

1, if 𝑦 ≥ 0
−1, if otherwise

, and according to method 𝐵3 defined

n paper Guido (2016b) either using 𝐶 = 1% or 𝐶 = 10%.

𝐶𝑅(𝑠[⋅]) = 1
2

𝑀−2
∑

𝑗=0
|𝑠𝑖𝑔𝑛(𝑠𝑗 ) − 𝑠𝑖𝑔𝑛(𝑠𝑗+1)| . (2)

Notably, ZCRs are particularly important for speech analysis and
even speech perception. According to current literature, we can con-
sider the input speech signal 𝑠[⋅] as the output of a linear time-invariant
(LTI) system. Hence, if 𝑝[𝑛] =

∑∞
𝑘=−∞ 𝛿[𝑛 − 𝑘] represents the impulse-

train excitation source, and ℎ[⋅] represents the vocal tract impulse
response, then,

𝑠[⋅] = 𝑝[⋅] ∗ ℎ[⋅] , (3)

where ℎ[𝑛] = ℎ1[𝑛] ∗ ℎ2[𝑛] ∗ ..., being ℎ𝑖, for 𝑖 = 1, 2,…., the
impulse response of the vocal tract formant frequencies. Considering
a second-order resonator filter in the Z-domain, then, ℎ𝑖[𝑛] becomes

𝐻𝑖[𝑧] =
𝑏0𝑖

𝑎0𝑖 + 𝑎1𝑖𝑧−1 + 𝑎2𝑖𝑧−2
=

𝑏0𝑖
(1 − 𝑝1𝑖𝑧−1)(1 − 𝑝2𝑖𝑧−1)

,

where 𝑝1𝑖 = 𝛾𝑖𝑒
𝑗𝜔𝛾𝑖 and = 𝑝2𝑖 = ̄𝑝1𝑖 correspond to a complex conjugate

ole-pair in the Z-plane. By using partial function expansion and the
nverse Z-transform, we can observe that the impulse response of the 𝑖th
ormant is, for a stable resonator, like a damped sinusoid, as in Fig. 3.
n particular,

𝑖[𝑛] =
𝛾𝑖𝑛𝑏𝑜𝑖
𝑠𝑖𝑛(𝜔𝛾𝑖 )

𝑠𝑖𝑛(𝜔𝛾𝑖 (𝑛 + 1))𝑢(𝑛 + 1) ,

here 𝑢(𝑛 + 1) is the unit step function at point (𝑛 + 1).
Considering only the first formant model, we have, from Eq. (3) and

ccording to Fig. 4,

[𝑛] = 𝑝[𝑛] ∗ ℎ1[𝑛] . (4)
7

From Fig. 3, we can observe that zero-crossings in ℎ𝑖[𝑛] dictate its
eriod of oscillation and, hence, its reciprocal, i.e., 1

𝑍𝐶𝑅 , thus defining
the 𝑖th formant frequency. Similarly, from Eq. (4) and Fig. 4, we can
note that the same zero-crossings in ℎ1[⋅] are present in the output
voiced speech waveform. Thus, zero-crossings in speech signals are
related to the formant frequencies, even though other specific signal
characteristics are severely damaged. Moreover, due to the experiments
performed by Manfred Robert Schroeder (Schroeder, 1966), we know
that human beings emit and perceive sounds by emitting spectral peaks,
i.e., formants, not spectral valleys, i.e., anti-formants or valleys in the
vocal system transfer function. Thus, ZCRs are important not only for
speech analysis but also for speech production and perception.

Furthermore, according to the non-linear source-filter interaction
theory (Quatieri, 2008)-pp. 153–161, whenever the glottis opens, there
is a sudden change in −3 dB bandwidth (𝐵1) of the corresponding
first formant (𝐹1), depending on the glottal geometry and according to
erodynamics and Bernoulli’s principle. However, glottal geometry may
hange due to the damage caused by particular laryngeal pathologies,
hus modifying 𝐹1 and 𝐵1 which causes, consequently, changes in the

zero-crossings of ℎ1[⋅] and in the speech waveform. Therefore, ZCRs
offer very important acoustic cues to detect fine details related to
pathological issues in the vocal mechanism.

3.2.3. Signal entropy
Lastly, signal predictability is measured in this experiment by using

SH, defined in Eq. (5) and in method 𝐶2 of paper Guido (2018), where
𝑝𝑖 is the probability of the 𝑖th value in a set with 𝐾 signal values and
𝛽 = 2 is the basis employed. We used a sliding window of length
𝐿 = 𝐶⋅𝑀

50 , adopting an overlapping rate of 𝑉 = 50% which produces
a feature vector of length 𝑇 =

⌊

100⋅𝑀−𝐿⋅𝑉
(100−𝑉 )⋅𝐿

⌋

. Specifically, 𝑆𝐻 is defined
as:

𝑆𝐻(𝑠[⋅]) = −
𝐾−1
∑

𝑖=0
𝑝𝑖 ⋅ 𝑙𝑜𝑔𝛽 (𝑝𝑖) . (5)

Notably, there have been a considerable number of scientific papers
dealing with entropy in the field of speech analysis. Particularly, as
observed by the authors of paper Vinay and Bharathi (2019), maximum
and minimum entropy values represent the presence of flat distribution
of noise and clean speech, respectively. Entropy is also used by the
authors of paper Babatsouli et al. (2016) to measure the ‘‘peakiness’’
of a speech spectral distribution, being a very useful feature for speech
analysis and recognition. Specifically, a peaky spectrum with infor-
mation on formant structure of voiced sounds is expected to present
low entropy, whereas a flatter spectrum matching noisy regions of
speech is expected to exhibit a higher entropy (Babatsouli et al., 2016).
Entropy is observably guaranteed to be more sensitive than other linear
measures for dysfluency identification, as observed by the authors of
paper Misra (2004), where entropy is adopted to measure the degree
of noisiness found in speech and audio signals.

Summarizing, we use and compare two different sets of feature
vectors which were defined based on SE, ZCR, and SH. They are called
𝑆𝑒𝑡1 and 𝑆𝑒𝑡2, where the former and the latter correspond to feature
extraction procedures using 𝐶 = 1% and 𝐶 = 10%, respectively. We
created these two different sets to provide a fair comparison between
different problem-transformation and algorithm adaptation methods.
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Fig. 4. (a): unit-sample impulse source 𝑝[⋅]; (b): impulse response shape of the first formant ℎ1[⋅]; (c): voiced speech signal 𝑠[⋅] resulting from the convolution of 𝑝[⋅] with ℎ1[⋅].
.3. Base-learners selected

Since all MLC methods used in this work are problem-transformation
trategies, an associated base-learner is required. RF (Breiman, 2001)
nd SVM (Vapnik, 1995) classifiers were selected because they are
ell known algorithms with relevant results in different problems.
urthermore, a relevant number of SPD algorithms has employed SVMs
or building their classification models, as observed in sub- Section 2.2.

Particularly, the randomForest R package was used in our ex-
eriments, relying on default hyperparameters. Accordingly, based on
package e1701, three kernel functions, i.e., linear-kernel (L-SVM),

olynomial-kernel (P-SVM), and radial-kernel (R-SVM), were associ-
ted with an SVM to assess the linearity of the problem being treated.
ll the implementation code used in the experiments is available on-

ine.5

.4. Evaluation metrics

The predictive values of accuracy of the methods we propose were
ssessed by using a 10-fold cross validation strategy. Two different
aselines were also adopted in the experimental setup: a model that
lways recommends the majority class, i.e., Majority. Random, was

another baseline which represents a model that provides random rec-
ommendations.

Four of the most used multi-label classification example-based met-
rics were adopted: accuracy obtained as 1-Hamming loss, precision,
recall, and F1-score. Given a dataset with 𝑚 instances, they were
computed by using the following equations (Godbole and Sarawagi,
2004), Pereira et al. (2018):

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 1
𝑚

𝑚
∑

𝑖=1

|𝑍𝑖𝛥𝑌𝑖|
|𝐿|

, (6)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 1
𝑚

𝑚
∑

𝑖=1

|𝑌𝑖 ∩𝑍𝑖|

|𝑍𝑖|
, (7)

𝑟𝑒𝑐𝑎𝑙𝑙 = 1
𝑚

𝑚
∑

𝑖=1

|𝑌𝑖 ∩𝑍𝑖|

|𝑌𝑖|
, (8)

5 http://www.uel.br/grupo-pesquisa/remid/?page_id=145
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Table 3
Average accuracy (using RF and SVM) for each label considering the MLC problem
transformation methods. The values in bold correspond to the best method for each
label.

Label Method

LP BR DBR CC NS

HEA 71.10% 70.43% 70.39% 69.95% 69.32%

CLMD 96.35% 96.88% 96.78% 96.55% 96.65%

DYS 90.75% 90.07% 89.43% 90.12% 89.81%

LAR 86.76% 84.86% 85.17% 83.96% 85.05%

RDE 90.89% 90.19% 89.72% 87.88% 89.53%

VSE 94.91% 95.48% 95.63% 92.53% 95.19%

Average 88.46% 86.31% 87.85% 86.83% 87.59%

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 1
𝑚

𝑚
∑

𝑖=1

2|𝑌𝑖 ∩𝑍𝑖|

|𝑌𝑖| ∪ |𝑍𝑖|
, (9)

where 𝑌𝑖 represents the 𝑖th instance of the true set of labels, 𝑍𝑖
represents 𝑖th instance of the predicted set of labels, and 𝛥 represents
the symmetric difference.

4. Tests and results

The tests and results presented in this section are organized to
support some comparisons and insights covering: (a) different values of
accuracy from MLC methods and disorders prediction, (b) base-learners
inductive values of accuracy and balancing and, complementarily, (c)
related issues.

4.1. MLC predictive assessment for disorder prediction

All MLC methods achieved suitable predictive results. Table 3
presents the average values of accuracies for both base-learners, i.e., RF
and SVM, embedded in the MLC methods, i.e., LP, BR, DBR, CC, and
NS, over datasets 𝑆𝑒𝑡1 and 𝑆𝑒𝑡2.

This experiment took into account the results obtained for each dis-
order and all MLC problem-transformation methods, where an average

http://www.uel.br/grupo-pesquisa/remid/?page_id=145
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value of accuracy of 87.41% was obtained: 88.46% for LP, 86.31% for
BR, 87.85% for DBR, 86.83% for CC, and 87.59% for NS. The highest
value per label is highlighted in bold in Table 3. CLMD, DYS, RDE and
VSE obtained a value of accuracy higher than 90% with LP. CC and NS,
in average, have not achieved the best values of accuracy for any of the
labels. The healthy condition, i.e., HEA, attained the worst accuracy
among all the labels, disregarding the method.

The fact that healthy samples presented the lowest accuracy is
related to the variability under healthy conditions that lead to mis-
classifications, intrinsically related to the false positive rate obtained.
However, with a close look at the results by using F1-score as the main
metric, particularly involving problem transformation methods such as
Label Powerset (LP), as visible in Table 6, we note that the healthy
samples were classified with higher performance than the disorders
one. In this way, healthy voices demand suitable classification methods
in a multi-label scenario. To face that challenge, we proposed more
competitive methods, improving the detection of such a pattern. In
addition, we emphasize that SMOTE, as we adopted, is capable of
providing us with the expanded dataset we used, allowing for F1-score
to be sufficiently convincing in view of the restricted data samples we
have. Furthermore, we once again observe that we are working with a
restricted dataset because no other exists with the characteristics we
are exploring in this paper. Moreover, such data imbalance problem is
a vexing issue in several other pattern classification problems especially
dealing with the medical-domain data.

When comparing the disorders, CLMD achieved the best value of
accuracy, close to 100%. Contrary to this, LAR was the most difficult
pathology to be predicted, achieving, in the optimal case, 86.76% of
accuracy. It is important to mention that the disorders with multi-
ple labels, i.e., LAR-DYS and LAR-RDE, obtained the lowest values
of accuracy, but all of them were superior to HEA. DYS and RDE
achieved their best accuracy, i.e., 90.75% and 90.89%, respectively,
when predicted by using LP. It is worth mentioning that, even with few
data samples in the original dataset, the experiments exposed different
patterns from these combinations of multiple disorders. Likewise, the
predictive performance increased when using SMOTE to expand the
original set of samples.

4.2. Machine learning inductive assessment and balancing improvements

In this Section, we discuss the predictive performance of ML al-
gorithms: RF and SVM as base-learners for problem-transformation
methods, and a DNN with five-layers as the algorithm adaptation
method (Sorower, 2010).

F1-score for LP, considering both feature groups and varying the
balancing rate (r), are presented in Table 4. To reassure the importance
of balancing, we can observe the LP results: without balancing, there
are minimal differences between the values of accuracy of the base-
learners and Majority baseline but, after balancing, these differences
increase considerably, reducing the F1-score of Majority baseline to
0.4218 and improving that of RF to 0.7926, even with the smallest
rate of balancing, i.e., 20%. For the highest balancing rate, Majority
baseline drops to 0.1326, performing worse than Random, whereas RF
accuracy improves to 0.9262.

For problem transformation methods, the precision was smaller than
the corresponding values of accuracy. Complementary, we observe that
all the methods achieved their best results using RF as their base-
learners. Following RF, L-SVM achieved the second best predictive
value of accuracy. SVM with radial kernel was the third and then
the polynomial kernel. Moreover, all the base-learners obtained better
results than the baselines. Regarding all methods and base-learners, the
association of LP with RF achieved the best results, with a value of
accuracy of 93%, a value of precision and recall of 82% and an F1-score
equals to 0.82.

For BR, DBR, CC, and NS, the same occurrence holds true: with the
9

original dataset, i.e., without balancing, the label with more examples, c
i.e., Majority, presents approximately the same value of accuracy in
comparison with ML algorithms. However, with a balanced dataset, the
F1-score of RF was higher than that of Majority.

Our DNN model was composed of five dense layers with 99, 256,
128, 64, and 6 neurons, respectively. Each dense layer is followed by
batch normalization, except the last one, i.e., the output layer. Relu
was adopted as the activation function for all layers except the output
layer, which uses sigmoid activation. The model has a total of 190342
trainable parameters which were learned by using Adam optimiser with
a learning rate of 0.001 and binary cross entropy as the loss function.
We adopted a batch size of 60 samples and trained the model for 1000
epochs. We also used Repeated K-Fold Cross Validation with 10 folds
to evaluate the performance of our model.

Algorithm adaptation, i.e., the proposed DNN model, was capable
of overcoming the problem transformation methods. Table 5 shows
the obtained F1-score with several augmentation rates over both the
datasets. However, our proposed method could not converge towards
delivering predictions for all possible class combinations using the
original dataset due to imbalance issues. F1-score boost over both
datasets when the augmentation rate grew. Based on 20% of balancing,
the DNN achieved an average F1-score of 0.906. Additionally, DNN was
superior to all base-learners, disregarding the method, using all rates
of balancing. As expected, F1-score rose following the balancing rate,
achieving an average F1-score of 0.963 using both 𝑆𝑒𝑡1 and 𝑆𝑒𝑡2 when
applying 95% of balancing rate.

The previous results highlight some drawbacks found when dealing
with unbalanced datasets, such as the sensitivity of multi-label metrics
to the label distribution in the dataset (Zufferey et al., 2015). Therefore,
dataset balancing was required to support reliable and improved re-
sults. Based on SMOTE with a balancing rate of 20% in Majority, we
were capable of reducing the unbalancing problem and providing clas-
sification improvements with MLC methods. Since this dataset needs
the least amount of synthetic examples among those we experimented
and is the closest to the original dataset, further analyses of this work
were carried out and supported by that balancing rate.

4.3. Related issues

Historically, laryngitis is known to be a serious research issue for
speech technology problems, in particular for speaker recognition (Dod-
dington et al., 2000). Thus, it is interesting to note that our finding of
most negative performance for laryngitis may explain this. Since our
task includes the prediction of two states, it is important to know which
label was the most difficult to detect. Particularly, when observing
further results related to LP with 20% of balancing rate, we note that
Laryngitis was the label presenting most false negatives, i.e., 115 for
𝑆𝑒𝑡1 and 127 for 𝑆𝑒𝑡2. Lastly, when comparing the critical base-levels
of energy, i.e., 𝐶 = 1% and 𝐶 = 10%, the former was clearly the best
ption, as shown by the results obtained with RF for all MLC methods in
able 6. Corroborating with RF, DNN obtained the highest performance
ith 0.916 and 0.897 of F1-score for 𝑆𝑒𝑡1 and 𝑆𝑒𝑡2, respectively. The
verage values of F1-score for 𝑆𝑒𝑡1 and 𝑆𝑒𝑡2 were 0.832 and 0.745,
espectively. Besides, for each method, the average value of F1-score
or 𝑆𝑒𝑡1 was higher than that obtained with 𝑆𝑒𝑡2.

A relevant evaluation among the possible strategies is to consider
he number of produced models. Different from the single-label clas-
ification that generates models in the same number of targets, when
ddressing multi-label classification, some methods could increase the
umber of models, requiring more computational resources and time
o train the solution. In Mastelini et al. (2019), the authors proposed

metric named Counting of Trained Regression Models (CTRM) for
ulti-output problems. In our domain, by counting models for classifi-

ation problems, we can compare the solutions in terms of the number
odels trained. Using this perspective, LP and DNN generate the same
umber of single-label classification. LP increases the number of classes

onsidering all possible label combinations (i.e. in our domain, from 5
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Table 4
F1-scores for all base-learners, methods and each balancing rate (r) of SMOTE for both the datasets,
i.e., 𝑆𝑒𝑡1 and 𝑆𝑒𝑡2.
Method Dataset Classifier

RF L-SVM P-SVM R-SVM Majority Random

LP

Original 0.7430 0.7503 0.7481 0.7503 0.7503 0.1530
20% (r) 0.7926 0.5805 0.4799 0.5796 0.4218 0.1854
35% (r) 0.8388 0.5900 0.4312 0.5869 0.3087 0.1988
50% (r) 0.8779 0.5755 0.4129 0.5958 0.2309 0.2141
65% (r) 0.9005 0.6000 0.4608 0.6253 0.1852 0.2169
80% (r) 0.9162 0.6229 0.5033 0.6607 0.1577 0.2202
95% (r) 0.9262 0.6472 0.5577 0.6852 0.1326 0.2203

BR

Original 0.7406 0.7503 0.7488 0.7479 0.7503 0.2258
20% (r) 0.7513 0.5538 0.4774 0.5851 0.0799 0.2571
35% (r) 0.8123 0.5154 0.4446 0.6010 0.1079 0.2647
50% (r) 0.8536 0.5043 0.4265 0.6046 0.1143 0.2764
65% (r) 0.8837 0.5161 0.4489 0.6391 0.1187 0.2781
80% (r) 0.9008 0.5371 0.4761 0.6746 0.1241 0.2796
95% (r) 0.9124 0.5415 0.4940 0.6968 0.1255 0.2776

DBR

Original 0.7421 0.7497 0.7485 0.7412 0.7503 0.2286
20% (r) 0.7585 0.5573 0.4822 0.5855 0.0799 0.2705
35% (r) 0.8161 0.5341 0.4553 0.6137 0.1079 0.2737
50% (r) 0.8528 0.5390 0.4680 0.6220 0.1143 0.2719
65% (r) 0.8850 0.5501 0.4957 0.6506 0.1187 0.2791
80% (r) 0.9011 0.5710 0.5260 0.6884 0.1241 0.2761
95% (r) 0.9133 0.5808 0.5411 0.7036 0.1255 0.2816

CC

Original 0.7377 0.7501 0.7475 0.7404 0.7503 0.2418
20% (r) 0.7440 0.5550 0.4357 0.5390 0.0799 0.2640
35% (r) 0.8028 0.5164 0.4212 0.5644 0.1079 0.2668
50% (r) 0.8346 0.4968 0.4161 0.5720 0.1143 0.2664
65% (r) 0.8684 0.5111 0.4412 0.6086 0.1187 0.2738
80% (r) 0.8867 0.5371 0.4668 0.6440 0.1241 0.2825
95% (r) 0.9019 0.5540 0.4860 0.6672 0.1255 0.2761

NS

Original 0.7390 0.7503 0.7497 0.7464 0.7503 0.2911
20% (r) 0.7431 0.5717 0.4787 0.5749 0.0799 0.2566
35% (r) 0.7971 0.5238 0.4462 0.5904 0.1079 0.2391
50% (r) 0.8352 0.5033 0.4433 0.5928 0.1143 0.2360
65% (r) 0.8667 0.5214 0.4600 0.6233 0.1187 0.2314
80% (r) 0.8927 0.5373 0.4947 0.6590 0.1241 0.2292
95% (r) 0.9016 0.5451 0.5133 0.6833 0.1255 0.2271
Table 5
F1-scores for DNN and each balancing rate (r) of SMOTE for
both the datasets, i.e., 𝑆𝑒𝑡1 and 𝑆𝑒𝑡2.

Method Dataset Feature set

𝑆𝑒𝑡1 𝑆𝑒𝑡2 Average

DNN

20% (r) 0.897 0.906

35% (r) 0.947 0.926 0.936

50% (r) 0.958 0.938 0.948

65% (r) 0.962 0.945 0.953

80% (r) 0.956 0.952 0.954

95% (r) 0.972 0.955 0.963

to 7 classes) and DNN adapts its structure. BR, DBR, and CC increased
the number of classifiers considering the number of labels. In this study,
these three methods generated five different models. Finally, NS can
create several layers of models to take advantage of predictions made
by the previous layers. In our experiments, we used two layers, reaching
a total of 10 models, where five are in the first layer and five are in the
second one. Using the count of trained classification models, we can
state that LP and DNN were the most concise.

Our results revealed the DNN as the most predictive method de-
manding a single model to tackle the classification problem. It is
important to mention the DNN tuning poses an additional effort to-
wards adapting the architecture and hyperparameters when fitting the
model. However, the authors of paper de Carvalho and Freitas (2009)
highlighted that this strategy may present a better performance in
difficult real-world problems than the problem transformation methods.
10
5. Discussion

Principal components analysis (PCA) is a well-known method that
produces a sequence of best linear approximations to a provided feature
vector. This method can provide patterns in data to exploit their
similarities and differences. Thus, four PCAs were calculated to support
a general overview of the features sets 𝑆𝑒𝑡1 and 𝑆𝑒𝑡2. Two scenarios
were built over all classes, as shown in Figs. 5(a) and 5(b). Accordingly,
other two PCAs were computed to expose the behaviour of single and
multiple diseases focusing on DYS, LAR, RDE, DYS-LAR, and LAR-RDE
patterns, as in Figs. 5(c) and 5(d).

Using two different PCAs from all classes, it was possible to explain
87% of variance for both feature sets. Observing the projection, it
was not possible to note dense regions or particular patterns, since
all classes presented spread samples over all projected space. This
behaviour leads us to employ the non-linear modelling provided by the
selected machine learning algorithms.

Analysing the selected classes grounded on multiple pathologies, as
in Figs. 5(c) and 5(d), we can state that there is no dense or particular
region of sample concentration, regardless of feature sets. In addition, it
is possible to highlight that the corresponding distribution corroborates
the usage of augmentation techniques, since it was possible to keep the
main characteristics of initial dataset without creating distribution of
minority classes over dense spots. Different from the computation of
all classes, these scenarios allow for a high variance, superior to 95%.

As observed in papers Orozco-Arroyave et al. (2015), Gómez-García
et al. (2019), Amami and Smiti (2017), Ankıshan (2019), Arji et al.
(2019), Cummins et al. (2018) and those cited in Section 2, ML algo-
rithms have been extensively adopted to solve traditional problems in
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Table 6
F1-scores of every MLC problem transformation method using RF as base learner and DNN for each label and for both the
sets of features.

Label LP BR DBR CC NS DNN

𝑆𝑒𝑡1 𝑆𝑒𝑡2 𝑆𝑒𝑡1 𝑆𝑒𝑡2 𝑆𝑒𝑡1 𝑆𝑒𝑡2 𝑆𝑒𝑡1 𝑆𝑒𝑡2 𝑆𝑒𝑡1 𝑆𝑒𝑡2 𝑆𝑒𝑡1 𝑆𝑒𝑡2
HEA 0.828 0.763 0.794 0.730 0.802 0.732 0.798 0.711 0.797 0.713 0.858 0.818

CLMD 0.962 0.801 0.950 0.778 0.943 0.763 0.945 0.705 0.949 0.666 0.982 0.971

DYS 0.810 0.766 0.776 0.735 0.785 0.742 0.754 0.708 0.737 0.700 0.905 0.856

LAR 0.810 0.784 0.778 0.712 0.778 0.732 0.789 0.710 0.793 0.722 0.893 0.861

RDE 0.868 0.760 0.820 0.717 0.825 0.740 0.829 0.706 0.830 0.711 0.936 0.927

VSE 0.857 0.798 0.861 0.786 0.872 0.779 0.853 0.779 0.866 0.751 0.919 0.934

Avg 0.856 0.779 0.830 0.743 0.834 0.748 0.828 0.720 0.829 0.711 0.916 0.897
Fig. 5. Bidimensional Principal Component spaces obtained from four different scenarios using the original dataset: (a) all classes with 𝑆𝑒𝑡1, (b) all classes with 𝑆𝑒𝑡2, (c) selected
pathologies with multiple cardinalities (DYS, LAR, RDE, DYS-LAR, and LAR-RDE) from 𝑆𝑒𝑡1 and (d) selected pathologies with multiple cardinalities (DYS, LAR, RDE, DYS-LAR,
and LAR-RDE) from 𝑆𝑒𝑡2.
11
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medicine, where, particularly for voice disorders sorting, the existing
classification strategies are commonly used to identify the subject’s
condition non-invasively. From all those papers, we can learn that
promising results depend on the discriminative capacity of the se-
lected features. Thus, many features have been proposed and inten-
sively experimented to describe temporal, spectral or time–frequency
characteristics from voice data.

In this paper, we employed the features suggested in previous pieces
of research, as documented in papers Al-Nasheri et al. (2018), Shilaskar
et al. (2017), Hegde et al. (2019) and Guido (2016a). Consequently, our
feature vectors were designed to achieve suitable results, where some
detection scenarios, such as IoT, m-Health, and big data environments
demand either a reduced usage of resources or the processing of a
massive amount of voice data. For those cases, features as proposed
in paper Ankıshan (2019) work similarly to those we adopted: based
on Fibonacci space representation, they reduce data requirements and
produce meaningful information for the classification tasks.

By exploring speech pathology as a binary problem (Muhammad
et al., 2012b; Vikram and Umarani, 2013; Akbari and Arjmandi, 2014;
Hemmerling et al., 2016; Martinez et al., 2012; Mekyska et al., 2015;
Ali et al., 2016; Markaki and Stylianou, 2011; Sasou, 2017; Verde
et al., 2018b; Lachhab et al., 2014; Zhong et al., 2016; Amami and
Smiti, 2017; Ankıshan, 2019; Cummins et al., 2018), as a multi-class
strategy (Gómez-García et al., 2019) or both (Arji et al., 2019), current
literature focuses on bringing insights involving signal quality and
accuracy improvement. Accordingly, the straightforward adoption of
a machine learning model trained with suitable features capable of
describing noisy information, as in this paper and in papers Orozco-
Arroyave et al. (2015) and Gómez-García et al. (2019), avoids the
overhead of heavy algorithms and their hyperparameters tuning. Par-
ticularly, the existence of multiple disorders had been neglected until
the proposal found in paper Orozco-Arroyave et al. (2015), where the
authors study three different sources for pathologically-affected voices:
laryngeal, functional, and neurological, reporting accuracies within the
ange 81% ∼ 98% depending on the pronounced vowel and idiom.

SVM, which is one of the classifiers we tested, was also used
n papers Al-Naheri et al. (2017), Muhammad and Melhem (2014),
aeedi and Almasganj (2013), Pranav and Sabarimalai (2017), Fon-
eca and Pereira (2008), and particularly in paper Amami and Smiti
2017) to handle noise features when discriminating normal from
athologically-affected voices. The authors of that paper reported im-
ortant achievements, however, restricted to a binary classification
roblem assessed over a modest dataset. Differently, the combination
f LP and RF assessed over SVD dataset for multi-label classifica-
ion, which provided the best accuracies according to our experi-
ents, were not reported in previous pieces of work. Complemen-

arily, it is very important to highlight that the combination of SE,
CRs, and SH, obtained based on methods 𝐴3, 𝐵3, and 𝐶2 which
ere defined in papers Guido (2016a), Guido (2016b), and Guido

2018), respectively, with the base-learners and classifiers tested in this
aper had never been reported in the literature. Thus, to our best

knowledge, our results provide an original contribution, advancing the
state-of-the-art.

Finally, it is important to note we focused on evaluating a vast
type of MLC algorithms from problem-transformation and algorithm
adaptation. DNN superiority was obtained considering the usage of
synthetic samples to balance the training set and handcrafted features.
This result was important to validate our proposal of handcrafted
features and find the best combination of descriptors. However, it is
relevant to discuss the usage of handcrafted features in a deep learning
solution. The abstraction capacity provided by DNN when handling
signals directly is well-known, requiring massive data resources to fit
its models. We applied DNN on handcrafted features considering the
scarcity of a real-life dataset and examples to support studies regarding
pathologically-affected voices, even more when addressing multiple
12
voice disorders in one individual. In addition, our most interesting find-
ing of most false negative for laryngitis may have more deeper relation
with speaker recognition tasks (Doddington et al., 2000), remaining
an open research problem. Thus, DNN capacity to process raw data
directly was not employed in this work to match our dataset size and
to provide a fair comparison among all MLC methods and also, besides
to study the handcrafted features.

6. Conclusions

In this paper, we investigated handcrafted features and ML methods
for assessing multiple incidences of voice disorders in the same subject.
More precisely, multi-label classification methods were successfully
employed to identify subjects with healthy or pathologically-affected
voices, i.e., Laryngitis, Dysphonia, Reinke Edema, Vox Senilis, Central
Laryngeal Motion Disorder, both Laryngitis and Dysphonia, or both
Laryngitis and Reinke Edema. The results have showed that all MLC
methods were statistically superior to Random and Majority. The

ost complex prediction was related to the disorders that occur at
he same time, however, all the disorders have superior predictive
erformance when compared to healthy subjects.

Particularly, the DNN-based approach presented the best values of
1-score among the tested methods, i.e., 0.943 as the averaged value
rom all balancing scenarios, justifying label dependencies. Further
omparisons revealed that the critical level of energy 𝐶 = 1% used
o compute feature vectors composed by SE, ZCR, and SH is the best
ption, i.e., a more refined analysis is relevant. Last but not least, recent
eature learning strategies, such as those based on auto-encoders or
eep learning, addressing the raw samples directly, were not consid-
red in this paper because one of our intentions was the possibility
o interpret the features, allowing for a clearer understanding of the
roblem.

Notably, one of the limitations readers might find in this paper is
elated to the cross-validation procedures applied to a high-balanced
ate dataset. Indeed, the 13 multi-labelled samples were hundred times
versampled, causing a low variance in the dataset and, thus, degrading
he statistical significance of the accuracies we reported. Nevertheless,
s explained above, we adopted the only existing dataset to perform
he experiments. In addition, we believe that SMOTE, as we adopted,
llows for F1-score to be sufficiently convincing in view of the restricted
riginal data.

As a future work, we suggest applying MLC to a database that
resents the co-occurrence of additional voice pathologies, especially
he complex ones. Lastly, we would like to emphasize that we are
ot proposing a single method, but rather exploring a range of multi-

label techniques from different families; we are leveraging handcrafted
features to provide a robust model. After an extensive literature review,
we were unable to find other particular methods that specifically
address our scenario and could be used as an additional competitor
in our experimental study. Thus, additional comparisons would not
be meaningful and would distort the main objective of our paper.
By exploring a range of multi-label techniques, we are sure we have
already provided a comprehensive assessment of their effectiveness for
the detection of multiple voice disorders: this is our main goal and,
thus, we believe that our current results will enable us to identify the
most promising techniques for future research and clinical applications.

Acronyms

BR Binary Relevance.

CC Classifier Chains.

CLMD Central Laryngeal Motion Disorder.

DBR Dependent Binary Relevance.
DNN Deep Neural Network.
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DYS Dysphonia.

LAR Laryngitis.

LP Label Powerset.

LC Multi-label Classification.

S Nested Stacking.

DE Reinke Edema.

F Random Forest.

LC Single-label Classification.

VM Support Vector Machine.

SE Vox Senilis.
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