
ELEC-C5220
Lecture 1: Introduction
Machine learning in information technology

Lauri Juvela

11.1.2024

Language issue – Finnish or
English?
• Materials are in English
• Finnish translations possible if time allows
• Lectures in whatever language the fewest participants don’t

understand (poll)
• Exercise and Project materials are in English, but you can give

solutions in Finnish, Swedish, or English
• How to program in Finnish? Python is basically plain English

anyway

Introduction to the course

• Motivation
• Lecturer: personal introduction
• Intended learning outcomes
• Teaching and learning activities: Lectures, Exercises, Project
• Assessement
• Content
• Assessment
• Schedule

Motivation

• ELEC-C5520 is a new course intended to give bachelor’s
students early exposure to practical deel learning

• Machine learning methods, especially Deep Learning, are
essential in IT applications and research

• Familiriaise students to topics related to ELEC Dept. of
Information and Communications Engineering (DICE)

Lauri Juvela – timeline
2015 2016 2017 2018 2019 2020 2021 2022 2023

NII
U-Tokyo Neural DSP, ML Researcher

Aalto Doctoral ResearcherAalto RA Aalto Prof.

Summary of publications

preference for natural-phase excitation over the modified ones. However,
the quality of vocoded speech still remains limited due to the simplistic
excitation method of using and modifying a single natural excitation pulse.

6.2 Publication II: “High-pitched excitation generation for glottal

vocoding in statistical parametric speech synthesis using a

deep neural network”

Fig. 2. To create a QCP-DNN output vector (bottom), a two-pitch-
period segment (middle) is extracted from the glottal flow deriva-
tive waveform (top), cosine windowed and zero-padded to desired
length. Respective zero-levels of the time domain waveforms are
represented by horizontal lines.

a given pitch. This was achieved by changing the IAIF-DNN train-
ing so that the target waveforms are not interpolated, but are rather
symmetrically zero padded to match the desired output length. The
process is illustrated in Fig. 2. Moreover, the Hann, or squared co-
sine, windowing required for the OLA synthesis is broken into two
cosine windowing parts: first before training and second time after
generating the waveform from the DNN. This procedure eliminates
any discontinuities caused by truncating the generated waveform to
pitch period length. Finally, QCP-DNN uses the SEDREAMS GCI
detection algorithm [23], which has been shown to perform well with
speakers with various f0 ranges [24], instead of the previously used
IAIF residual based method. The need for accurate GCI detection is
two-fold: the QCP inverse filtering algorithm requires reliable GCI
estimates to achieve best results, and the GCIs are used in extracting
the pulse waveforms for training.

3. TRAINING THE SYNTHESIS SYSTEMS

3.1. Speech material

In the experiment, we used the SLT-speaker from the CMU ARCTIC
database [25] sampled at 16 kHz. The speaker is an U.S. English
professional speaker commonly used in, for example, HTS speech
synthesis demonstrations. The entire speech dataset consists of 1132
utterances, 60 of which were reserved for testing and the rest were
used for training the speech synthesis system. The dataset is pro-
vided with context dependent phonetic labels with time alignment,
which we used in training the HMM synthesis system.

3.2. Training of the DNNs

The DNN used in [13] was a standard feed-forward multilayer per-
ceptron with sigmoid activation functions, random initialization and
MSE-backpropagation training. In this study, we use the same net-
work structure for both IAIF-DNN and QCP-DNN in order to focus
on differences between the inverse filtering techniques. However, we
modified the QCP-DNN error criterion to emphasize the main exci-
tation peak of the glottal flow derivative waveform to better retain
the high-frequency information carried by the peak.

In the experiments, two different DNN systems were trained:
IAIF-DNN and QCP-DNN. Both systems are speaker dependent and
the training data for the methods was derived from the same subset

109 Hz

135 Hz

161 Hz

186 Hz

212 Hz

238 Hz

263 Hz

289 Hz

(a) QCP-DNN output with varying f0 input

109 Hz

135 Hz

161 Hz

186 Hz

212 Hz

238 Hz

263 Hz

289 Hz

(b) Overlap-added waveform

Fig. 3. QCP-DNN generated pulses with varying the f0 at DNN in-
put while keeping other parameters constant. The resulting overlap-
added two-pitch-cycle waveform shows the effect more clearly.

of the SLT-speaker speech. An identical network topology was se-
lected for both methods: A fully connected feed-forward multilayer
perceptron with three hidden layers, sigmoid activation functions,
and random initial weights drawn from the Gaussian distribution.
The layer sizes were 47 for input, 100, 200, and 300 for the hidden
layers, and the output layer size differed between the methods. For
IAIF-DNN, the two pulses were stretched to 400 samples, whereas
only 300 samples were chosen for QCP-DNN (300 samples for a
two-cycle segment corresponds to a f0 of 106 Hz which was below
the f0 range of the female voice). As done previously in [13], initial-
ization was performed without any pre-training, and the input vec-
tors were scaled to lie between 0.1 and 0.9. Additionally for QCP-
DNN, a Hann window was used for error weighting to emphasize the
mid-signal excitation peak carrying important high-frequency com-
ponents. Both networks were trained using the GPU-based Theano
software [26, 27], which reduced the training time significantly com-
pared to the previously used MATLAB-implementation.

An example of QCP-DNN generated glottal flow derivative
waveforms is presented in Fig. 3. On top, 3(a) shows the DNN
output when the input f0 is varied while keeping the other input
parameters constant. The variation can be seen to affect not only the
generated pulse length, but also the sharpness of the main excitation
peak in the middle. The corresponding two-pitch-cycle overlap-
added waveforms are presented on bottom in 3(b) to better illustrate
the effect of varying pitch in the synthetic excitation waveform.

3.3. Training of the HMM synthesis systems

The three synthesis systems were trained using the HTS 2.3–
Beta1 HMM-synthesis toolkit [28], with the modification of the
STRAIGHT based demo to accommodate our feature vectors. All

1http://hts.sp.nitech.ac.jp/?Download (accessed Sept. 2015)

5122

Figure 6.2. A vectorized format of glottal excitation waveforms for use in neural networks.

This publication proposed a DNN glottal excitation model that clearly
outperformed a purely signal processing-based vocoder in HMM-based
text-to-speech. One component accounting for the improvements was the
proposed simplified vector representation for glottal excitation pulses as
neural network output features, as illustrated in figure 6.2. Another im-
provement was gained by switching the glottal inverse filtering method
from IAIF (Alku, 1992) to QCP (Airaksinen et al., 2014), which gave
more consistent inverse filtering results with a high-pitched voice. Fi-
nally, part of the improvement over previous DNN excitation models was
likely obtained by adopting a modern deep learning toolkit (i.e., the now
discontinued Theano) for training the models.

The long-standing contribution of the paper remains that it established
the pitch-synchronous waveform representation used throughout this dis-
sertation (and by others, with some modifications). Further, it was the first
instance of a neural network waveform generator clearly outperforming a
classical vocoder baseline.

67

4

Section4

Our logo is the most visible element of our brand,
a universal signature across all Neural DSP
communications. It’s a guarantee of quality that
unites our diverse products and services. The logo
is made up of two elements: the logo mark and
the logotype.

The logo should never be re-created.
Always use the master artwork, available
from our marketing team.

Neural DSP
Brand
Guidelines

– Our brand
– Visual identity
– Design examples

Logo

End-to-End Amp Modeling:

From Data to Controllable Guitar Amplifier Models

Lauri Juvela, Eero-Pekka Damskägg, Aleksi Peussa, Jaakko Mäkinen,

Thomas Sherson, Stylianos I. Mimilakis, Kimmo Rauhanen, Athanasios Gotsopoulos

Neural DSP Technologies, Helsinki, Finland

Introduction

• Neural network models for guitar amplifiers work well for static
control snapshots

• Problem: full range of control is often desirable, but simple grid-
ding of control snapshots leads to exponential scaling

• This work: data collection from real-world amplifiers result in
controllable neural net amp models

Data for controllable amp models

x(i) – an input audio segment, typically guitar or bass playing
y(i) – a recorded amplifier response to the input, used as a target
for the model output
c(i) – control values describing the amplifier settings

f(x, c; θ)

x

ŷ

yc

L

Dataset is the collection of these triples

D =
n≥

x(1),y(1),c(1)
¥
, . . . ,

≥
x(N),y(N),c(N)

¥oN

i=1
.

Data collection

• Random sampling of control positions allows the user to choose
how many samples to record

• Randomly choose 1-second input snippets from clean recordings
• Apply pathfinding to minimize wear-and-tear on physical devices

(city-block distance)
• Around 5 k samples (º4 hours) produces good models with full

control range

Random path Approximate Traveling
Salesman

Neural network model

• LSTM with 32 hidden units, concatenate controls as additional
input channels

• Train with error-to-signal ratio (ESR) loss for 1 M iterations
• Model runs in real time at 48 kHz rate on consumer-grade CPUs

Effect of controls

• Experiments on a boutique Matchless DC-30 amplifier
(similar to Vox AC-30)

• Varying the “Tone Cut” control in the model changes the
model response as expected

Listening test

• Amp controls were dialed to suitable positions to fit the
varying musical context in the test samples

• SPICE-based circuit simulation baseline is high quality but
needs off-line rendering

• Difference mean opinion score (DMOS) test for how closely
test samples resemble the reference

Samples available at
https://neural-dsp-publications.github.io/demo-page-2022/

Neural DSP Technologies

Helsinki, Finland

Contact:

lauri@neuraldsp.com

eero-pekka@neuraldsp.com

Lauri Juvela – current research

• Assistant Professor in Speech and Language Technology
• Speech Synthesis research group
• Intererests

• Deep generative methods, Generative AI
• Watermarking and deepfake detection
• Efficiency, control, and interpretability in speech synthesis
• Differentiable digital signal processing (DDSP)

Intended learning outcomes

After completing the course, the student can
• identify general principles and concepts of machine learning,

especially neural net-works and deep learning, and their most
essential methods.

• apply machine learning software to real-world applications of
information technology, including speech technology, signal
processing and communications.

• specify and implement machine learning problems and solutions in
speech technology, signal processing and communications.

Teaching and learning activities:
1) Lectures
• Lectures on Thursdays 14-16 at OK3, F175a
• Attendance is voluntary
• Lectures are designed to contain the information needed for

solving the exercises
• Books are nice-to-know background:

• Deep Learning https://www.deeplearningbook.org
• Speech Processing https://speechprocessingbook.aalto.fi

https://www.deeplearningbook.org/
https://speechprocessingbook.aalto.fi/

Teaching and learning activities
2) Exercises
• Exercise sessions on Mondays in Maari-A at 14, new exercise

published for each session
• Exercises are Python programming with the PyTorch library
• Points for passing unit tests, automatic grading with nbgrader
• Hosted on Aalto JupyterHub, can be done remotely
• Exercise deadline on Mondays before the next session

Teaching and learning activities
3) Project
• Build a small but practical deep learning system for speech

denoising
• Groups of 1-3 people with random member assignment

• There will be a poll about your preferred group size
• Two milestones with programming requirements (unit tests w)

• Data providers (DL 7.3.)
• Model functionality (DL 21.3.)

• Final report (DL 18.4.)

Assessment

• No exam
• 60% from Exercise points
• 40% from Project points
• Grade 1-5
• 50% points required to pass

Workload

• Lectures 10x2h + independent study = 40h
• Exercises: 10x2h sessions + independent work = 50h
• Project work (3x 10h programming + report 5h): 35h
• Total workload 135 hours = 5 ECTS credits

Course content

Lecture 1: Introduction
• Practical information about the course
• Binary classification with simple fully connected neural

networks

Course content

Lecture 2: Representations
• Tensors in PyTorch, how to represent structure in data
• Images, audio, text and other discrete data
• Audio-as-image – spectrograms (short-time Fourier transforms)

Course content

Lecture 3: Spoken digit recognition
• Convolution neural networks (CNNs)
• Multi-class classification
• Working with speech data

Course content

Lecture 4: Audio effect modeling
• Recurrent neural networks (RNNs)
• Regression tasks
• Guitar amplifier modeling with neural networks

Course content

Lecture 5: Losses, metrics and evaluation
• How to build expert knowledge into deep learning systems?
• Generic vs. specialised
• Perceptual metrics for speech and audio
• Why good metrics may not be good loss functions?

Course content

Lecture 6: Denoising and source separation
• Data augmentation
• U-Net architecture
• Speech denoising and enhancement
• Project Topic and Introduction

Course content

Lecture 7: Language modeling
• Simple character-based language models
• Transformers (or maybe RNNs)
• Autoregressive text generation

Course content

Lecture 8: Automatic speech recognition (ASR)
• Recognise the components and sub-problems in ASR

• Acoustic model
• Language model
• Decoding

• Inspect and experiment with a pre-trained system

Course content

Lecture 9: Text-to-Speech (TTS) synthesis
• Recognise the components and sub-problems in TTS

• Acoustic modeling
• Waveform synthesis

• Inspect and experiment with a pre-trained system

Course content

Lecture 10: Profiling and energy use
• Deep learning models are often expensive
• Learn how to measure and estimate computational cost
• Sustainability

Schedule

• Available on MyCourses

Break

Questions?

Introduction to
Neural Networks
• Linear separability and linear models for classification
• Motivation for non-linear models
• Simple neural networks
• Backpropagation

Linear classifier – Example 1

Define a linear classifier model
[163]: # Define the network

class Linear(torch.nn.Module):
def __init__(self, input_dim, output_dim):

super().__init__()
self.linear = torch.nn.Linear(input_dim, output_dim, bias=True)

def forward(self, x):
y_pred = self.linear(x)
return y_pred

Let’s fit a linear classifier model to our data
[164]: # Create the classifier

model = Linear(input_dim=2, output_dim=2)

Define the loss function
loss_fn = torch.nn.CrossEntropyLoss()

Define the optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

3

• Given x and y
coordinates, what is the
probability that data
point is blue?

• Separate two data
classes (blue and red) by
a straight line

Linear classifier – Example 1

Define a linear classifier model
[163]: # Define the network

class Linear(torch.nn.Module):
def __init__(self, input_dim, output_dim):

super().__init__()
self.linear = torch.nn.Linear(input_dim, output_dim, bias=True)

def forward(self, x):
y_pred = self.linear(x)
return y_pred

Let’s fit a linear classifier model to our data
[164]: # Create the classifier

model = Linear(input_dim=2, output_dim=2)

Define the loss function
loss_fn = torch.nn.CrossEntropyLoss()

Define the optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

3

• Label

• Data point

• Model

• Model parameters

• Loss function

Logistic sigmoid function

• Normalise model output to
range (0,1) using the sigmoid
function

• Use Logistic Regression to fit
a linear model

How to train a linear binary
classifier?
• Map input features to a scalar output prediction
• Normalise output probability to look like a probability
• Minimise loss function over data set, predictions should look

like ground truth labels
• Linear models usually have closed-form optimal solutions, but

we use gradient descent for everything on this course

Linear classifier – Example 1

• Problem is linearly
separable

• Separating line is called
the “decision boundary”

3 Return of the circles
[166]: # Create dataset

X, labels = datasets.make_circles(n_samples=1000, noise=0.01, factor=0.3)

Normalize the data
X = 0.5 * (X - X.mean(axis=0)) / X.std(axis=0)

colormap = plt.cm.RdYlBu
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap=colormap)
plt.show()

5

Linear classifier – Example 2

• Given x and y
coordinates, what is the
probability that data point
is blue?

• Separate two data classes
(blue and red) by a
straight line

[167]: # Create the classifier
model = Linear(input_dim=2, output_dim=2)

Define the loss function
loss_fn = torch.nn.CrossEntropyLoss()

Define the optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

Convert data to tensors
X_tensor = torch.from_numpy(X).float()
labels_tensor = torch.from_numpy(labels).long()

Train the network
iterations = 1000
for iter in range(iterations):

y_logits = model.forward(X_tensor)
loss = loss_fn(y_logits, labels_tensor)
loss.backward()

update parameters
optimizer.step()

6

Linear classifier – Example 2

• Best linear model is bad
• How can we do better?

optimizer.zero_grad()

[168]: # plot decision boundary
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = 0.01
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = model.forward(torch.from_numpy(np.c_[xx.ravel(), yy.ravel()]).float())
Z = np.argmax(Z.detach().numpy(), axis=1)
Z = Z.reshape(xx.shape)
plt.figure()
plt.contourf(xx, yy, Z, cmap=colormap, alpha=0.7)
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap=colormap)
plt.show()

4 Neural network classifier
[169]: class NeuralNet(torch.nn.Module):

def __init__(self, input_dim, hidden_size, output_dim):
super().__init__()
self.linear1 = torch.nn.Linear(input_dim, hidden_size, bias=True)

7

What can linear models do?

• Similar problem:
separate white and
grey squares on the
checkerboard

• Linear map: y = Ax
• Affine map: y = Ax + b

Scaling and stretching

Rotation

Shearing

Translation

Linear classifier – Example 2

• Can I fold the paper,
please?

[167]: # Create the classifier
model = Linear(input_dim=2, output_dim=2)

Define the loss function
loss_fn = torch.nn.CrossEntropyLoss()

Define the optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

Convert data to tensors
X_tensor = torch.from_numpy(X).float()
labels_tensor = torch.from_numpy(labels).long()

Train the network
iterations = 1000
for iter in range(iterations):

y_logits = model.forward(X_tensor)
loss = loss_fn(y_logits, labels_tensor)
loss.backward()

update parameters
optimizer.step()

6

End of linear classification

• Questions
• Next: a neural network

Neural networks

• Common visualisation: draw
every connection

• Scalar version is tedious to
draw and work with

• Matrix version is more
practical!

Neural networks

These weights and biases are adjusted based on a specified learning rule to
learn a mapping function between the domains of input x and output y. A
forward pass through the networks is described by the following equations:

h1 = tanh(W1x+b1), (3.1)

h2 = tanh(W2h1 +b2), (3.2)

y=W3h2 +b3. (3.3)

Given enough capacity, an MLP can act as a universal function approxima-
tor (Cybenko, 1989; Hornik, 1991). As such, these kinds of simple neural
networks can be powerful models when little is known about the problem
structure. Furthermore, a fully connected linear layer with non-linear
activations acts as a fundamental building block in more structured neural
networks.

Figure 3.1. A simple fully connected neural network. The input vector, x, is processed

through layers represented by weight matrices W1, W2, and W3, ultimately
producing an output vector, y.

3.2 Convolution neural networks

Convolution neural networks (CNNs) attempt to identify local correlations
in spatially (or temporally) structured data, such that the same process
can be applied in a translation (or time) invariant fashion. In speech
and audio signal processing, similar localized processing has traditionally
been implemented as finite impulse response (FIR) digital filters, which
are adjusted to produce a desired output response, given an input signal.
CNNs build on the idea of filters as feature extractors and attempt to learn
the jointly optimal filter coefficients for the task at hand.

36

Neural network block diagrams are
more friendly for ELEC students

• Vector variables: x (input), z (hidden activation), y (predicted
output)

• Affine layer: Weight W and bias b
• Non-linear activation function: g()

Neural net for Example 1

B = Batch size, number of datapoints in minibatch
H = Hidden size, network hyper parameter

Linear ReLU Linear

(B, 2)
(B, H) (B, H)

(B, 1)

Loss(B, 1)

Linear ReLU Linear

Loss

Neural network forward pass

Linear ReLU Linear

(B, 2)
(B, H) (B, H)

(B, 1)

Loss(B, 1)

Loss

Loss

Gradient descent

• Update algorithm for parameters (theta)

• PyTorch has automatic gradient estimation, you only ever need
to worry about the forward pass!

Linear ReLU Linear

(B, 2)
(B, H) (B, H)

(B, 1)

Loss(B, 1)

Loss

Loss

Neural network backward pass

Linear ReLU Linear

(B, 2)
(B, H) (B, H)

(B, 1)

Loss(B, 1)

Loss

Loss

How to train a neural net binary
classifier?
• Map input features to a scalar output prediction
• Normalise output probability to look like a probability
• Minimise loss function over data set, predictions should look

like ground truth labels
• Use stochastic gradient descent and backpropagation

Neural network decision boundary

• Classes are not linearly
separable, but the
decision boundary can
be constructed from
piece-wise linear
segments

[172]: # Plot where data points map to in the hidden layer
logits, hidden = net.forward(X_tensor)
plt.figure()
hidden_np = hidden.detach().numpy()
plt.scatter(hidden_np[:, 0], hidden_np[:, 1], c=labels, cmap=colormap)
plt.show()

9

End of Lecture 1

Questions?

