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About programming exercises

• Exercise sessions on Mondays 14-16
• First session had plenty of room available
• Deadline for exercises is Monday evening on the following week
• You can still get help for the Exercise 01 in next week’s session
• Who has already returned the Exercise for Week 1?
• How much time did it take?



Question from the exercise

• What are Tensors and why do we need them?
• In the first week exercise, everything was vectors and matrices



Lecture overview

• What are Tensors?
• Tensors for representing images
• Multi-class classifiers and one-hot encoding
• Tensors for representing audio
• Audio as 1D vector (waveform)
• Audio as 2D matrix (spectrogram)



What are tensors?

• Tensors are n-dimensional rectangular arrays
• Topic for this lecture: how to use tensors to represent structure 

in data?
• Examples with

• Images
• Audio
• Classes (categorical)
• Text is also categorical, more on this later



Tensor notation

• Scalar – 0D Tensor

• Vector – 1D Tensor

• Matrix – 2D Tensor
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Tensor notation
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Images - monochrome



MNIST hand-written digits



MNIST hand-written digits



MNIST hand-written digits

• 28 x 28 pixel grid
• What if our model can only handle flat 

vector inputs, how to vectorise?
• Idea 1: 

• Take every pixel value as a 
dimension

• Rasterise the image to a 28 x 28 = 
784 dimensional vector



Flattened handwritten digits

Batch element (100)

Pixel intensity (784)

• Pros: easy to do matrix multiplication to apply linear or DNN 
classifiers

• Cons: structure was lost, no notion of neighbouring pixels in 
vertical and horzontal directions



Same data,
different representations 



DNN Classifier for MNIST digits

Linear layer: Linear layer:
Element-wise

activation
Class probabilities

(un-normalized)



DNN Classifier for MNIST digits

• Works fine for MNIST but,
• What if we want to work on other image sizes?
• What about color
• Very annoying for humans to inspect learned representations 

for debugging
• Fragile and overparameterised

• Try it yourself in Exercise 2!



Tensors for representing images

(Batch, Height, Width)

Batc
h

Height

Width

(Batch, Height, Width)

Batc
h

Height

Width

3D: (Batch, Height, Width)

4D: (Batch, Channels=1, Height, Width)

3D: (Batch, Height, Width)

4D: (Batch, Channels=1, Height, Width)



Tensors for RGB color images
=
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Categorigal distribution for 
classifiers
• Let’s look at one 

example of digit “3”
• Probability 1 for the 

correct class 
• Probability 0 for the 

other classes
• This is also called a 

one-hot embedding



Logits and Softmax

• Classifier initially 
outputs a vector of 
random numbers

• Normalize these to 
probability distribution 
with the Softmax
function

3D: (Batch, Height, Width)

4D: (Batch, Channels=1, Height, Width)



Cross-entropy loss for categorical 
distribution
• Binary cross-entropy (Lecture 1)

• Categorical cross-entropy

• Probability of other classes is zero! 



Fitting softmax for one example
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Fitting softmax for one example



Fitting softmax for one example



Categorical distribution for text

• You can use similar one-hot embeddings to encode text or 
other symbols

• More about this later on the language modeling Lecture 6



Break 

• Questions?
• Next: audio representations



Audio - waveform
• Sequence of amplitude values sampled at regular intervals (e.g., 

48 kHz or 16 kHz)
• Monophonic (single channel) audio is a vector, where time 

corresponds to dimension



Audio - waveform
• For example, one second of audio at 16 kHz would be a 16 000 

dimensional vector (remember the curse of dimensionality?)
• How to work on continous streams of audio?
• Hard to see anything on this zoom-level 



Audio and short-time frames
• Zoom in on 100ms of audio
• In this example, voiced speech is (quasi) periodic, we can do 

Fourier analysis!



Audio and short-time frames
• Multiply with a tapered window (half cosine, Hann, etc.)
• Apply Discrete Fourier Transform (DFT)
• In practice, Fast Fourier Transform (FFT)



Audio and short-time spectrum

• Plot frequency magnitudes on linear scale - harmonic overtone 
series shows up!

• Remember: FFTs are complex-valued, phase information was 
discarded



Fourier transform and complex 
numbers

Amplitude Phase

Real Imaginary

Frequency Initial phase

• Fourier transform outputs sinusoids (i.e., complex numbers on 
the unit circle)

• Remember phase when processing signals (synthesis, coding, 
enhancement)

• Ignore phase for detection tasks (speech recognition, etc.)

Amplitude Phase

Real Imaginary

Frequency Initial phase

Amplitude Phase

Real Imaginary

Frequency Initial phase



Decibels and log-scale spectrumAmplitude Phase
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Amplitude Phase

Real Imaginary

Frequency Initial phase



Audio spectrograms

• Short-Time Fourier Transform (STFT)
• Sliding window, apply FFT to each frame
• Log-magnitudes (dB-scale) are usually best for visualisation



Audio spectrograms

• Spectrogram is a matrix, shape
• = Number of time frames
• = Number of frequency bins
• Spectrogram is an image (you are looking at it)
• For machine learning models: 4D tensor 
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Audio spectrograms - pitfalls
• Linear amplitude spectrogram (below) are correct shape, but 

the dynamic range is too large to see much
• Logarithms of zeros are numerical trouble (remember to add a 

small value) 



Filtering in frequency domain
• Filtering in the frequency domain corresponds to multiplying 

STFT amplitudes
• Exercise 2: implement a low-pass filter



Filtering in frequency domain
• Filtering in the frequency domain corresponds to multiplying 

STFT amplitudes
• Exercise 2: implement a band-pass filter



End of Lecture 2

• Questions?


