ELEC-C5220 Lecture 2:

Tensors for data representation

Machine learning in information technology

Lauri Juvela

18.1.2024

About programming exercises

- Exercise sessions on Mondays 14-16
- First session had plenty of room available
- Deadline for exercises is Monday evening on the following week
- You can still get help for the Exercise 01 in next week's session
- Who has already returned the Exercise for Week 1?
- How much time did it take?

Question from the exercise

- What are Tensors and why do we need them?
- In the first week exercise, everything was vectors and matrices

Lecture overview

- What are Tensors?
- Tensors for representing images
- Multi-class classifiers and one-hot encoding
- Tensors for representing audio
- Audio as 1D vector (waveform)
- Audio as 2D matrix (spectrogram)

What are tensors?

- Tensors are n-dimensional rectangular arrays
- Topic for this lecture: how to use tensors to represent structure in data?
- Examples with
 - Images
 - Audio
 - Classes (categorical)
 - Text is also categorical, more on this later

Tensor notation

- Scalar 0D Tensor $x \in \mathbb{R}$ ()
- Vector 1D Tensor $\mathbf{x} \in \mathbb{R}^D$ (D)
- Matrix 2D Tensor $\mathbf{X} \in \mathbb{R}^{N imes M}$ (N, M)

Tensor notation

• 3D Tensor, e.g., multi-channel audio

 $x \in \mathbb{R}^{B imes C imes T}$ (B, C, T)

• 4D Tensor, e.g., color images

$$x \in \mathbb{R}^{B imes C imes H imes W}$$
 (B,C,H,W)

• 5D Tensor, e.g, video

$$x \in \mathbb{R}^{B imes C imes H imes W imes T}$$
 (B, C, H, W, T)

Images - monochrome

MNIST hand-written digits

MNIST hand-written digits

MNIST hand-written digits

- 28 x 28 pixel grid
- What if our model can only handle flat vector inputs, how to vectorise?
- Idea 1:
 - Take every pixel value as a dimension
 - Rasterise the image to a 28 x 28 = 784 dimensional vector

Flattened handwritten digits

- Pros: easy to do matrix multiplication to apply linear or DNN classifiers
- Cons: structure was lost, no notion of neighbouring pixels in vertical and horzontal directions

Batch element (100)

-			n em hisiolard	phine of the second	purint line in t	Speric Kurry	and the second	Survey and	A STREET STORE		「おんちんちちょう	「大学の大学	Anternation of	ANIANA ANA	A SALANA				(international)	i)plenkkjirrij	ومعدد والمساولان	No. of the second	-	:	
	· · · ·	, hire, ,		1123415	まいままであ	A CHARACTER ST	ないますたみ	方と言うない	のともつけて	がかってい	ないである	AND SALES	NAN) - 2010 -	~#~~~~	NHAN LINE	NAL-2000	N. M. A. M.	N. A. A. A.	to industry		1. J.J.J.H.H	N. (Analain	÷ - -	:-	-

Pixel intensity (784)

Same data, different representations

	-		والمرابعة المراجع	hellowich in the	hip while while	(tiphter) (taring the	State States	いたななな		No. of the second se	「おんちまた	王をうちたろう	A the second second	Anthen with the	And the second s	「うちょう		の大手が	いいまたする	i (Hendulare)	والإيداء والإستادا و	har an		-	
:	· · ·	art dates.	(Antipatrice)	17.8 # \$\j.18	いいたがいた	くそうかん	イモーカンド	が世界になる	などうない	1944011	ないない	ANY ANY	WWW.AUGW	#WARKA	4 X-1 K-	A. A. A. MAN	ALC: NO.	***	1944 A.		H. H. L. L. L.	d the data	: 	:	-

5	0	Ч	1	9	2	۱	3	1	4
3	5	3	6	١	7	Ъ	8	6	9
Ч	O	9	1	1	г	Ч	3	2	7
З	8	6	9	0	5	6	0	7	6
1	8	7	9	3	9	8	5	3	3
3	0	7	¢	9	8	0	9	4	7
4	4	6	Ø	4	5	6	1	0	0
1	7)	6	3	0	2	1)	1
ອ	0	2	6	7	8	3	9	Ô	4
6	7	4	6	8	0	7	8	3	1

DNN Classifier for MNIST digits

DNN Classifier for MNIST digits

• Works fine for MNIST but,

- What if we want to work on other image sizes?
- What about color
- Very annoying for humans to inspect learned representations for debugging
- Fragile and overparameterised
- Try it yourself in Exercise 2!

Tensors for representing images

3D: (Batch, Height, Width)

4D: (Batch, Channels=1, Height, Width)

Tensors for RGB color images

(Channel, Height, Width)

Categorigal distribution for classifiers

- Let's look at one example of digit "3"
- Probability 1 for the correct class
- Probability 0 for the other classes
- This is also called a one-hot embedding

1.0 0.8 0.6 0.4 0.2 0.0 2 5 0 1 3 Δ 6 7 8 9

Logits and Softmax

 e^{z_i}

- Classifier initially outputs a vector of random numbers
- Normalize these to probability distribution with the Softmax function

$$\operatorname{softmax}(\mathbf{z}) =$$

Cross-entropy loss for categorical distribution

• Binary cross-entropy (Lecture 1)

$$L_{ ext{BCE}} = -\mathbb{E}[\mathbf{y}\log\hat{\mathbf{y}} + (1-\mathbf{y})\log(1-\hat{\mathbf{y}})]$$

Categorical cross-entropy

$$L_{ ext{CCE}} = -\mathbb{E}\left[\sum_{i=1}^{K} \mathbf{y}_i \log \hat{\mathbf{y}}_i
ight]$$

• Probability of other classes is zero!

Class probablities at iteration 0 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 5 6 0 1 2 3 4 7 8

0.00

0

1

2

3

4

0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 -

5

6

7

8

9

Class probablities at iteration 1

■ Engineering

Class probablities at iteration 5

Class probablities at iteration 10

Aalto University School of Electrical Engineering

Categorical distribution for text

- You can use similar one-hot embeddings to encode text or other symbols
- More about this later on the language modeling Lecture 6

Break

- Questions?
- Next: audio representations

Audio - waveform

- Sequence of amplitude values sampled at regular intervals (e.g., 48 kHz or 16 kHz)
- Monophonic (single channel) audio is a vector, where time corresponds to dimension

Audio - waveform

- For example, one second of audio at 16 kHz would be a 16 000 dimensional vector (remember the curse of dimensionality?)
- How to work on continous streams of audio?
- Hard to see anything on this zoom-level

Audio and short-time frames

- Zoom in on 100ms of audio
- In this example, voiced speech is (quasi) periodic, we can do Fourier analysis!

Audio and short-time frames

- Multiply with a tapered window (half cosine, Hann, etc.)
- Apply Discrete Fourier Transform (DFT)
- In practice, Fast Fourier Transform (FFT)

aineerina

Audio and short-time spectrum

- Plot frequency magnitudes on linear scale harmonic overtone series shows up!
- Remember: FFTs are complex-valued, phase information was discarded

Fourier transform and complex numbers

- Fourier transform outputs sinusoids (i.e., complex numbers on the unit circle)
- Remember phase when processing signals (synthesis, coding, enhancement)
- Ignore phase for detection tasks (speech recognition, etc.)

Decibels and log-scale spectrum

Audio spectrograms

- Short-Time Fourier Transform (STFT)
- Sliding window, apply FFT to each frame
- Log-magnitudes (dB-scale) are usually best for visualisation

Audio spectrograms

- Spectrogram is a matrix, shape (T,F)
- T = Number of time frames
- F = Number of frequency bins
- Spectrogram is an image (you are looking at it)
- For machine learning models: 4D tensor (B, C = 1, F, T)

Audio spectrograms - pitfalls

- Linear amplitude spectrogram (below) are correct shape, but the dynamic range is too large to see much
- Logarithms of zeros are numerical trouble (remember to add a small value)

Filtering in frequency domain

- Filtering in the frequency domain corresponds to multiplying STFT amplitudes
- Exercise 2: implement a low-pass filter

Filtering in frequency domain

- Filtering in the frequency domain corresponds to multiplying STFT amplitudes
- Exercise 2: implement a band-pass filter

End of Lecture 2

• Questions?

