
ELEC-C5220 
Lecture 2:
Tensors for data representation
Machine learning in information technology

Lauri Juvela

18.1.2024



About programming exercises

• Exercise sessions on Mondays 14-16
• First session had plenty of room available
• Deadline for exercises is Monday evening on the following week
• You can still get help for the Exercise 01 in next week’s session
• Who has already returned the Exercise for Week 1?
• How much time did it take?



Question from the exercise

• What are Tensors and why do we need them?
• In the first week exercise, everything was vectors and matrices



Lecture overview

• What are Tensors?
• Tensors for representing images
• Multi-class classifiers and one-hot encoding
• Tensors for representing audio
• Audio as 1D vector (waveform)
• Audio as 2D matrix (spectrogram)



What are tensors?

• Tensors are n-dimensional rectangular arrays
• Topic for this lecture: how to use tensors to represent structure 

in data?
• Examples with

• Images
• Audio
• Classes (categorical)
• Text is also categorical, more on this later



Tensor notation

• Scalar – 0D Tensor

• Vector – 1D Tensor

• Matrix – 2D Tensor

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video



Tensor notation

• 3D Tensor, e.g., multi-channel audio

• 4D Tensor, e.g., color images

• 5D Tensor, e.g, video

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video



Images - monochrome



MNIST hand-written digits



MNIST hand-written digits



MNIST hand-written digits

• 28 x 28 pixel grid
• What if our model can only handle flat 

vector inputs, how to vectorise?
• Idea 1: 

• Take every pixel value as a 
dimension

• Rasterise the image to a 28 x 28 = 
784 dimensional vector



Flattened handwritten digits

Batch element (100)

Pixel intensity (784)

• Pros: easy to do matrix multiplication to apply linear or DNN 
classifiers

• Cons: structure was lost, no notion of neighbouring pixels in 
vertical and horzontal directions



Same data,
different representations 



DNN Classifier for MNIST digits

Linear layer: Linear layer:
Element-wise

activation
Class probabilities

(un-normalized)



DNN Classifier for MNIST digits

• Works fine for MNIST but,
• What if we want to work on other image sizes?
• What about color
• Very annoying for humans to inspect learned representations 

for debugging
• Fragile and overparameterised

• Try it yourself in Exercise 2!



Tensors for representing images

(Batch, Height, Width)

Batc
h

Height

Width

(Batch, Height, Width)

Batc
h

Height

Width

3D: (Batch, Height, Width)

4D: (Batch, Channels=1, Height, Width)

3D: (Batch, Height, Width)

4D: (Batch, Channels=1, Height, Width)



Tensors for RGB color images
=

(Channel, Height, Width)

Cha
nn

el

Height

Width

=

(Channel, Height, Width)

Cha
nn

el

Height

Width

=

(Channel, Height, Width)

Cha
nn

el

Height

Width=

(Channel, Height, Width)

Cha
nn

el

Height

Width



Categorigal distribution for 
classifiers
• Let’s look at one 

example of digit “3”
• Probability 1 for the 

correct class 
• Probability 0 for the 

other classes
• This is also called a 

one-hot embedding



Logits and Softmax

• Classifier initially 
outputs a vector of 
random numbers

• Normalize these to 
probability distribution 
with the Softmax
function

3D: (Batch, Height, Width)

4D: (Batch, Channels=1, Height, Width)



Cross-entropy loss for categorical 
distribution
• Binary cross-entropy (Lecture 1)

• Categorical cross-entropy

• Probability of other classes is zero! 



Fitting softmax for one example



Fitting softmax for one example



Fitting softmax for one example



Fitting softmax for one example



Fitting softmax for one example



Fitting softmax for one example



Fitting softmax for one example



Categorical distribution for text

• You can use similar one-hot embeddings to encode text or 
other symbols

• More about this later on the language modeling Lecture 6



Break 

• Questions?
• Next: audio representations



Audio - waveform
• Sequence of amplitude values sampled at regular intervals (e.g., 

48 kHz or 16 kHz)
• Monophonic (single channel) audio is a vector, where time 

corresponds to dimension



Audio - waveform
• For example, one second of audio at 16 kHz would be a 16 000 

dimensional vector (remember the curse of dimensionality?)
• How to work on continous streams of audio?
• Hard to see anything on this zoom-level 



Audio and short-time frames
• Zoom in on 100ms of audio
• In this example, voiced speech is (quasi) periodic, we can do 

Fourier analysis!



Audio and short-time frames
• Multiply with a tapered window (half cosine, Hann, etc.)
• Apply Discrete Fourier Transform (DFT)
• In practice, Fast Fourier Transform (FFT)



Audio and short-time spectrum

• Plot frequency magnitudes on linear scale - harmonic overtone 
series shows up!

• Remember: FFTs are complex-valued, phase information was 
discarded



Fourier transform and complex 
numbers

Amplitude Phase

Real Imaginary

Frequency Initial phase

• Fourier transform outputs sinusoids (i.e., complex numbers on 
the unit circle)

• Remember phase when processing signals (synthesis, coding, 
enhancement)

• Ignore phase for detection tasks (speech recognition, etc.)

Amplitude Phase

Real Imaginary

Frequency Initial phase

Amplitude Phase

Real Imaginary

Frequency Initial phase



Decibels and log-scale spectrumAmplitude Phase

Real Imaginary

Frequency Initial phase
Amplitude Phase

Real Imaginary

Frequency Initial phase



Audio spectrograms

• Short-Time Fourier Transform (STFT)
• Sliding window, apply FFT to each frame
• Log-magnitudes (dB-scale) are usually best for visualisation



Audio spectrograms

• Spectrogram is a matrix, shape
• = Number of time frames
• = Number of frequency bins
• Spectrogram is an image (you are looking at it)
• For machine learning models: 4D tensor 

Amplitude Phase

Real Imaginary

Frequency Initial phase

Amplitude Phase

Real Imaginary

Frequency Initial phase

Amplitude Phase

Real Imaginary

Frequency Initial phase

Amplitude Phase

Real Imaginary

Frequency Initial phase



Audio spectrograms - pitfalls
• Linear amplitude spectrogram (below) are correct shape, but 

the dynamic range is too large to see much
• Logarithms of zeros are numerical trouble (remember to add a 

small value) 



Filtering in frequency domain
• Filtering in the frequency domain corresponds to multiplying 

STFT amplitudes
• Exercise 2: implement a low-pass filter



Filtering in frequency domain
• Filtering in the frequency domain corresponds to multiplying 

STFT amplitudes
• Exercise 2: implement a band-pass filter



End of Lecture 2

• Questions?


