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About programming exercises

 Exercise sessions on Mondays 14-16

* First session had plenty of room available

« Deadline for exercises is Monday evening on the following week
* You can still get help for the Exercise 01 in next week’s session
 Who has already returned the Exercise for Week 1?

 How much time did it take?
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Question from the exercise

 What are Tensors and why do we need them?
* In the first week exercise, everything was vectors and matrices
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Lecture overview

 What are Tensors?

« Tensors for representing images

« Multi-class classifiers and one-hot encoding
« Tensors for representing audio

« Audio as 1D vector (waveform)

« Audio as 2D matrix (spectrogram)
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What are tensors?

 Tensors are n-dimensional rectangular arrays

* Topic for this lecture: how to use tensors to represent structure
in data?
 Examples with
* Images
* Audio
» Classes (categorical)
« Text is also categorical, more on this later
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Tensor notation

« Scalar - 0D Tensor
« Vector — 1D Tensor

« Matrix — 2D Tensor
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Tensor notation

3D Tensor, e.g., multi-channel audio
BxCxT
r € R°*%~ (B,C,T)

4D Tensor, e.g., color images

T € RBXCXHXW (B,C,H,W)
« 5D Tensor, e.g, video

= RBXCXHXWXT (B,C,H,W,T)
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Images - monochrome
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MNIST hand-written digits
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MNIST hand-written digits

« 28 x 28 pixel grid

 What if our model can only handle flat

vector inputs, how to vectorise?

 ldea 1:

« Take every pixel value as a

dimension

« Rasterise the image to a 28 x 28 =

784 dimensional vector
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Flattened handwritten digits

* Pros: easy to do matrix multiplication to apply linear or DNN
classifiers

« Cons: structure was lost, no notion of neighbouring pixels in
vertical and horzontal directions

Batch element (100)
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Same data,

different representations
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DNN Classifier for MNIST digits

Wi (N pixels N hidden) (N hidden 5 LV, classes)
Linear layer: Linear layer:
I E Element-wise | Class probabilities
- xW1 + by activation xWs + by (un-normalized)
E(Ba Npixels — 784) (B, Nhidden) (B, Nhidden) (B7 Nclasses — ]-O)
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DNN Classifier for MNIST digits

 Works fine for MNIST but,
« What if we want to work on other image sizes?

« \What about color

« Very annoying for humans to inspect learned representations
for debugging

* Fragile and overparameterised

* Try it yourself in Exercise 2!
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Tensors for representing images

A

Height

' &
&

Width

\ 4

3D: (Batch, Height, Width)

4D: (Batch, Channels=1, Height, Width)
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Tensors for RGB color images

A?
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Categorigal distribution for
classifiers

Label with one hot encoding

« Let’s look at one 104
example of digit “3”

* Probability 1 for the
correct class

* Probability 0 for the
other classes 0.4-

0.8 1

0.6 1

 This is also called a
one-hot embedding

0.2 A

0.0
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Logits and Softmax

Logits at iteration 0

« Classifier initially

1.5~
outputs a vector of -
random numbers
]

0.5 A

* Normalize these to

probability distribution I B
with the Softmax |
function

—1.0

—1.51

softmax(z) = - e
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Cross-entropy loss for categorical
distribution

« Binary cross-entropy (Lecture 1)

Lpcg = —Elylogy + (1 —y)log(1 — §)]

« Categorical cross-entropy

K
Z yilog }A’z}
i=1

* Probability of other classes is zero!

Lceg = —E




Fitting softmax for one example

Logits at iteration 0 Class probablities at iteration 0

151 0.35
1.0
0.30 -
0.5
[]
" [ ]

—
—0.5 1
0.15 ~
_10 4
0.10 1
_15 4
0.05 A1
—2.0 1
T T T T T T T T T T 0.00 -
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
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Fitting softmax for one example

Logits at iteration 1 Class probablities at iteration 1

1.5 4

0.35 A

1.0 4
0.30 1

0.5 A1
] .

0.0 1
- T

_0.5 4
0.15 A

_10 4
0.10 1

_15 4

0.05

T 0.00 -
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
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Fitting softmax for one example

Logits at iteration 2 Class probablities at iteration 2

1.5 b 035 -

1.0 A
0.30 1

0.5 1
0.25 4

0.0 1
0.20 A

_05 -
0.15 A

_10 -
15 0.10 -
—2.0 A 0.05 A1
=2.51 T T T T T 0.00 -

O 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
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Fitting softmax for one example

Logits at iteration 5 Class probablities at iteration 5
1.0 1 0.30 -
0.5 + 0.25
0.0 A ]
0.20 A
_05 m
10 0.15
_1.5 7 010 -
_20 m
0.05
_25 -
T T T T T T T T T T 0.00 =
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
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Fitting softmax for one example

Logits at iteration 10 Class probablities at iteration 10
0.5 A
1 -
-
) _
0.3
_1 -
0.2 1
_2 -
0.1
—3
T T T T T T T T T T 0.0 =
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
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Fitting softmax for one example

Logits at iteration 10

0_

A?

0 1 2 3 4
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Class probablities at iteration 20

0.8

0.7 1

0.6

0.5 1

0.4

0.3 1

0.2 A

0.1 1

0.0 -
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Fitting softmax for one example

Logits at iteration 100 Class probablities at iteration 100

0 l 0.6 -

-2 I I I I I 0.4

e 0.2
; ; ; ; ; ; ; ; ; ; 0.0 ; ; ; ; ; ; ;
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
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Categorical distribution for text

* You can use similar one-hot embeddings to encode text or
other symbols

 More about this later on the language modeling Lecture 6
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Break

* Questions?
 Next: audio representations
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Audio - waveform

« Sequence of amplitude values sampled at regular intervals (e.g.,
48 kHz or 16 kHz)

 Monophonic (single channel) audio is a vector, where time
corresponds to dimension

o 0.5-
©
S
= 0.0-
3
< —0.5-

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time [seconds]



Audio - waveform

 For example, one second of audio at 16 kHz would be a 16 000
dimensional vector (remember the curse of dimensionality?)

* How to work on continous streams of audio?
 Hard to see anything on this zoom-level

o 0.5-
©
S
= 0.0-
3
< —0.5-

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time [seconds]



Audio and short-time frames

« Zoom in on 100ms of audio

* In this example, voiced speech is (quasi) periodic, we can do
Fourier analysis!

0.50 -
0.25 -

0.00 -

Amplitude

—-0.25 -

—0.50 -

0.60 0.62 0.64 0.66 0.68 0.70
Time [seconds]
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Audio and short-time frames

« Multiply with a tapered window (half cosine, Hann, etc.)
* Apply Discrete Fourier Transform (DFT)
 In practice, Fast Fourier Transform (FFT)

1.00 -

0.75 -

0.50 -

0.25 -

Amplitude

0.00 -

'w ‘L.

| | | | | |
0.60 0.62 0.64 0.66 0.68 0.70
Time [seconds]

—0.25 -

—0.50 -
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Audio and short-time spectrum

Plot frequency magnitudes on linear scale - harmonic overtone

series shows up!
« Remember: FFTs are complex-valued, phase information was

discarded
60 -

Amplitude
N TN
o (@)

o] U .
0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]
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Fourier transform and complex
numbers

* Fourier transform outputs sinusoids (i.e., complex numbers on
the unit circle)

« Remember phase when processing signals (synthesis, coding,
enhancement)

« Ignore phase for detection tasks (speech recognition, etc.)

Real Imaginary Amplitude Phase Frequency Initial phase
2=+ 1y z = Ae’ z = Ae?™ 1)
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Decibels and log-scale spectrum
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Audio spectrograms

 Short-Time Fourier Transform (STFT)
» Sliding window, apply FFT to each frame

 Log-magnitudes (dB-scale) are usually best for visualisation
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Audio spectrograms

* Spectrogram is a matrix, shape (T, F)

« T' = Number of time frames

« F' = Number of frequency bins

« Spectrogram is an image (you are looking at it)

+ For machine learning models: 4D tensor (B,C =1, F,T)
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Audio spectrograms - pitfalls

« Linear amplitude spectrogram (below) are correct shape, but
the dynamic range is too large to see much

« Logarithms of zeros are numerical trouble (remember to add a
small value)

0 25 50 75 100 125 150 175 200
Time [frames]
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Filtering in frequency domain

Filtering in the frequency domain corresponds to multiplying
STFT amplitudes

« Exercise 2: implement a low-pass filter
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Filtering in frequency domain

Filtering in the frequency domain corresponds to multiplying
STFT amplitudes

- Exercise 2: implement a band-pass filter
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End of Lecture 2

e Questions?



