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Lecture 3 - content

• Filtering revisited
• Convolution for audio 
• Convolution for images
• Convolution layers
• Residual networks
• Pooling
• Convolution Neural Networks (CNNs)



Exercise 01 – Analysis
• Average score was high
• Submissions by deadline: 70
• Main lessons

• Remember to add a non-linearity between layers
• Remember to normalise output distribution (keep the sigmoid)
• It it doesn’t work, try changing the hyperparameters (network 

depth, hidden size, learning rate, etc.) 



Exercise 01 – Analysis
• What went wrong here?



Exercise 01 – Analysis
• What went wrong here? 
• Hidden size 3 and sigmoid activation function



Exercise 01 – Analysis
• Hidden size 1 with sigmoid activation function



What will be in the Exercise next 
week?
• MNIST handwritten digit recognition with CNNs
• Spoken digit recognition with spectrograms and CNNs
• No filter design
• No manually implementation of convolution layers



Filtering revisited

• Filters are convenient 
to design and 
implement in the 
frequency domain



Filtering and convolution

• Frequency domain implementation 
requires FFTs and zero-padding

• For short filters, it is often more efficient 
to implement the filter in time domain 
using convolution

• Typically, filter order P < 100
• This type of filter is called Finite Impulse 

Response (FIR) filter



Low-pass filter design

• Draw the prototype 
filter response in 
frequency domain

• Inverse Fourier 
transform gives the 
filter impulse respose

• In deep learning, the 
impulse response is 
called “convolution 
kernel”



Filter design involves trade-offs

• Truncate the impulse 
response to reduce 
computation cost and 
latency

• Truncation in time 
causes ripples and side-
lobes in the frequency 
response

• Time-frequency 
uncertainty principle



Filters for feature extraction

• Various filters are useful for different detection tasks
• Low pass filters can be used for energy estimation
• Band-pass filters can be used for Fourier analysis
• High-pass filters can be used for edge detection
• Etc…



Mel-frequency filterbank



Spectrogram (is also a filter bank)



Mel-spectrogram



Feature-based classification

• Step 1: Extract features,
• For example, with filterbanks

• Step 2: Aggregate features over time
• For example, long term average spectrograms,

• Step 3: Build a DNN classifier on time-aggregated feature 
vectors
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Feature-based classification

• Step 1: Extract features,
• for example, with filterbanks

• Step 2: Build a DNN classifier on sequence time elements 
individually

• Step 3: Decode probability sequence to a single decision (using 
Viterbi search or 
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Towards convolution neural 
networks

• Feature design is hard, including filterbanks
• We don’t know what kind of filters or filterbanks provide optimal 

features for our task
• Step one: let’s make the front-end filter parameters part of a 

neural network and optimise them jointly
• Step two: let’s make the whole network out of filters to capture 

long-term temporal dependencies



Convolution



Convolution animated

Animation source: 
https://en.wikipedia.org/wiki/Convolution#Visual_explanation



Convolution animated 

Animation source: 
https://en.wikipedia.org/wiki/Convolution#Visual_explanation



Convolution and cross-correlation

• What deep learning toolkits call convolution is actually cross-
correlation!

• Convolution time-reverses the filter coefficients
• Cross-correlation is otherwise the same, but the filters are the 

same



Convolution and cross-correlation



Convolution for images

• Let’s apply a Gaussian 
blur low-pass filter

• Filter kernel on the right: 
top view of a 2D 
Gaussian bell shape

• For each pixel:
• Choose a patch 

around the pixel
• Multiply with kernel
• Sum over patch 



Convolution for images



Convolution for images



Convolution for images



Convolution for images



Convolution for images



Convolution for images



Convolution for images



Convolution for images



Convolution layers in PyTorch



Minimal convolution net

• At each time-step, the 
output depends on the 
input values at current and 
previous time-steps

• Same dependency for all 
time values: weight sharing 
across time



Convolution is filtering

• Input dimension – 4 time steps
• Output dimension – 1 time step



Convolution is fully connected 

• Channels in CNNs are fully 
connected

• Fully connected DNNs are 
a special case of 
Convolution networks

• Kernel width = 1
• Input dim. = input channels
• Output dim. = output 

channels



Convolution layer

• Fully connected over 
channels

• Fully connected over 
kernel width in time

• Slide the connectivity 
pattern over the input 
to compute output 
values for the whole 
sequence



Padding and valid convolution

• “Same” padding mode zero-pads input so that the 
convolution output has the same number of timesteps as 
the input

• In this example, the filter width is 3

Padding
Padding

"Valid" padding mode "Same" padding mode



Padding and valid convolution

• “Valid” convolution does not zero pad and invalid values 
are dropped at the output edges

• In this example, the filter width is 3, which drops 1 sample 
at both ends

• This can be useful for spatial reduction

Padding
Padding

"Valid" padding mode "Same" padding mode



Receptive field

• The number of input nodes (i.e., time-steps) an output sees 
depends on the filter widths and network depth



Task defines input and output 
shapes
• Processing tasks often 

have the same size for 
input and output

• Classification tasks 
require dimensionality 
reduction on spatial or 
time-frequency axes
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Spatial dimensionality reduction 
by pooling
• Option 1: No pooling, flatten and apply fully connected layer

• Pros: simple concept
• Cons: sequence length must be fixed

• Option 2: Global pooling
• Pros: works for any sequence length
• Cons: all pooling is done at the same time, poor temporal 

resolution
• Option 3: Pool and downsample with sliding windows

• Pros: works for arbitrary sequence lenghts, good resolution
• Cons: more design choices to make



Average pooling

• Sliding window size (2, 2)
• Stride determines the downsampling factor, (2,2) in this case
• Output is the average of values within a window
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Max pooling

• Sliding window size (2, 2)
• Stride determines the downsampling factor, (2,2) in this case
• Output is the maximum of value within a window
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Residual connections

• Deep and narrow 
networks are often 
more parameter-
efficient

• Deep nets suffer from
vanishing gradients

• Residual connections 
help in training very 
deep networks
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Residual connection adds a direct 
shortcut for gradients +
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Convolution Block

• Typical convolution layers 
(aka Blocks) contain

• Convolutions
• Activations (ReLU)
• Residual connections
• Pooling (Max or Avg.)
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CNN classifier model

• Input layer embeds the data to 
hidden dimension

• Convolution layers learn 
representations and gradually 
downsample the input

• Global pooling deals with whatever
sequence length remains

• Output layer projects to number of 
classes
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End of Lecture 3

• Questions?


