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A book
recommendation

« Chris Bishop has a new

book on Deep Learning!
(2024)

* Not freely available, but this
might be an official course
book for next year

* Not required
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Forward function in
torch.nn.Module

input_dim = 10
output_dim = 3
batch_size 5

# Create a random input tensor
x =-torch.randn(batch_size, input_dim)

# Define a linear layer
layer = torch.nn.Linear(in_features=input_dim, out_features=output_dim)

# Three ways to call the forward method
yl = layer(x)

y2 = layer.forward(x)

y3 = layer.__call__(x)
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In-place functions in PyTorch

a = torch.ones(1)

# four ways to increment a by 1
a = a.add(1)

.add_(1)

=-a+1

+=-1

QU 0 o

# one way to not increment a by 1
a.add(1)

Aalto University
School of Electrical

| Engineering



Time limit in NGrader validation

« Some were getting timeouts when running Validate assignment

« Sometimes with useful error messages, sometimes not (invalid
json character, etc.)

* This is mostly a problem in Exercise 02, previous exercises are
faster

« Limit was set to 4 minutes by default
 Increased validation time limit to 10 minutes since 31.1.2024
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Lecture 4 content

 Virtual analog modeling
* Recurrent neural networks
 Regression loss functions
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Virtual Analog Modeling

* Replicate the tonal characteristics of analog audio effects in the
digital domain
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White-box Virtual Analog Modeling

* Analyse analog circuit schematics

« Implement software emulation using digital signal processing
(DSP) techniques

« If model runs too slowly for real-time, approximate
* Next: let’s look at some circuits to appreciate the problem
* No circuit analysis needed on this course
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Tube Screamer schematic
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Tube Screamer clipping stage
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Mesa/Boogie Dual Rectifier
schematic
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Black-box Virtual Analog Modeling

Neural
Network

v

Loss
function




First order lIR filter

1.0 A

« Adding feedback to filters
makes them much more
expressive

o
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* First order Infinite Impulse
Response (lIR)

Amplitude

©
D
1

 Exponential decay in
impulse response

0.2 4

0.0

« Response can be . . . . . .
. . 0 200 400 600 800 1000
approximated with FIR Time [samples]

Aalto Un yt — alyt_l —I_ mt
A? srooieci



First order IIR unrolled In time

* For each time step, the
filter output depends on

the current input and Yi_o Yi1 Yy Yir Yo
previous state of the T
filter h} h» h» h’
IR IR IR IR IR
 Apply the same Filter Filter Filter Filter Filter
operation on every time ) ) 1 1 1

Lt—2 Lt-1 Lt Lt+1 Lt+2

step (weight sharing)
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Damped oscillator

y(z) = e sin(wz + ¢)

damping oscillator / f \

A Aalto uni mass damping spring

lEg lllllll g



Damped oscillator
with lIR filters

 Damping is exponential
decay (first order IIR)

« Single frequency oscillation
requires two filter poles
placed on the unit circle
(second orded IIR)
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General IIR filter

* Filter output is a linear combination of current and previous
input values, and previous output samples

« Expressive but still linear
 Parameter estimation is complicated

p M
Yt = Z a;Yi—i + Z bt
i=1 j=0
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Recurrent Neural Networks

* Neural networks designed for time series processing
« A non-linear analogue of multi-channel first order IR filters
 Related to state-space models and Markov chains

 RNN output at each time step depends on the current input, the
previous state of the RNN, and the network

hy = f(iI?t, hi_1; 9)
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Elman RNN, aka Vanilla RNN

« Output of the network hy = tanh(Wipz; + bip, + Whphi—1 + bpp)

is the same as the
updated state yr = hy

« Cell applies a Linear | RNN Cell T
first order filtering ' :

step and saturating R +bhh—>(?—>@ —
non-linearity
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Unrolled RNNs

Forward pass requires sequential left-to-right processing

Backward pass requires sequential right-to-left processing, aka
backpropagation through time (BPTT)

 Network is deep in time and suffers from vanishing gradients

Yt—2 Yt—1 Yt Yt+1 Yt+1
hes  heo Byt By A B, 1
RNN|  JJRNN|  JRNN|  IRNN|  IRNN
cell cell cell cell cell
0 0 0 0 0
Lt—2 Lt—1 Lt Lt4+1 Lt42
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Graphical notation for RNNs

hy = tanh(Wirzs + bip, + Wrnhi—1 + bpp)
 Tanh layer includes

yr = hy
weights that are correctly T R T
sized for the expected
n t,1—5—> hhlt—1 hh anh —E) ht
input Per e+ b0 |

* In this case, the layer
input sizeis H + D,,

« These are often called
hidden cells, I’'ll call them
hidden channels
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Gated activation
functions

« So far all the network
structures we have seen
have been additive

 Gated structures enable
multiplication!

« Used extensively in RNNs,
Gated CNNs (like WaveNet)
and Attention in Tranformers . | ____________
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Gated RNNs

« Gated RNNs are designed for passing and modulating the
network state through time to prevent issues with vanishing
gradients

e Next: LSTM and GRU

 For more detailed analysis, see Chris Olah’s blog post at
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory (LSTM)

e LSTM Cell implements ’it = O'(Wz'z'a?t + bz'z' + Whiht—l + bhz‘)

this set of equations
a _ fi =oc(Wisxy 4+ big + Whhi_1 + bry)
« Useful for programming
not so intuitive for g+ = tanh(Wi,xs + big + Wighi—1 + bpy)

many
Ot = J(Wiomt + bio + Whoht—l + bho)

ct=Jft©ci_1+ 1 © gy

hi = oy ® tanh(c;)
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Long Short Term Memory (LSTM)

_____________________________________________________ it = o(Wyxs + by + Whihi—1 + bp;)
Ci_1 — )@ + Ct > ¢y fr = o(Wigzs 4+ big + Whehe—1 + bry)

: 5 g+ = tanh(Wigxs + big + Wighi—1 + bpg)
i . O¢ i 0t = U(Wioxt + bio + Whohi—1 + bho)
: ¢ ft gt X ! .
: ! ct=ftOc1+1: Ogs
; o o tanh o :
E A T T T E ht = O¢ ® tanh(ct)
h;_1 ——>{concat >k

z; O

NN Layer Element-wise
operation
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Gated Recurrent Unit (GRU)

hy

ettt st T’: Ty = U(Wirmt + bir + Whrhtfl + bhr)
—

ht—l i
Lin ny = tanh(Win: + b, + 1¢ © (Whphi—1 + bry))
Tt
z X zt = o(Wi e + biy + Whohi—1 + bpy)
» concat hi =(1—2)®ns+ 2t © hy_1
A
—>» Lin —»
Lt

O

NN Layer Element-wise
operation
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RNN Layer vs RNN Cell

 RNN Layer processes as sequence in single forward call

 RNN Cell processes a single time step, you have to write a for
loop over time

« Cells are useful for development and custom RNN design

« PyTorch has efficient implementations for LSTM and GRU
layers that process the full sequence in a C++/CUDA backend
without need to communicate with Python
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LSTM in PyTorch

LSTM

CLASS torch.nn.LSTM(self, input_size, hidden_size, num_layers=1, bias=True,
batch_first=False, dropout=0.0, bidirectional=False, proj_size=0, device=None,
dtype=None) [SOURCE]

Apply a multi-layer long short-term memory (LSTM) RNN to an input sequence. For each element in the input
sequence, each layer computes the following function:
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LSTM in PyTorch

Inputs: input, (h_0, c_0)

* input: tensor of shape (L, H;;,) for unbatched input, (L, N, H;, ) when batch_first=False
or (N, L, H;;,) when batch_first=True containing the features of the input sequence. The
input can also be a packed variable length sequence. See
torch.nn.utils.xnn.pack_padded_sequence() or torch.nn.utils.rnn.pack_sequence() for
details.

* h_0: tensor of shape (D * num_layers, H,,;) for unbatched input or (D *
num_layers, N, Hout) containing the initial hidden state for each element in the input
sequence. Defaults to zeros if (h_0, c_0) is not provided.

* ¢_0: tensor of shape (D * num_layers, Hceu) for unbatched input or (D
num_layers, N, Hceu) containing the initial cell state for each element in the input sequence.
Defaults to zeros if (h_0, c_0) is not provided.
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LSTM in PyTorch

Inputs: input, (h_0, c_0)

* input: tensor of shape (L, H;;,) for unbatched input, (L, N, H;, ) when batch_first=False
or (N, L, H;;,) when batch_first=True containing the features of the input sequence. The
input can also be a packed variable length sequence. See
torch.nn.utils.xnn.pack_padded_sequence() or torch.nn.utils.rnn.pack_sequence() for
details.

* h_0: tensor of shape (D * num_layers, H,,;) for unbatched input or (D *
num_layers, N, Hout) containing the initial hidden state for each element in the input
sequence. Defaults to zeros if (h_0, c_0) is not provided.

* ¢_0: tensor of shape (D * num_layers, Hceu) for unbatched input or (D
num_layers, N, Hceu) containing the initial cell state for each element in the input sequence.
Defaults to zeros if (h_0, c_0) is not provided.
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LSTM in PyTorch

A?

Outputs: output, (h_n, c_n)

* output: tensor of shape (L, D * H,;) for unbatched input, (L, N, D % H,,;) when

batch_first=False or (N, L, D x H(mt) when batch_first=True containing the output
features (h_t) from the last layer of the LSTM, for each t. If a
torch.nn.utils.rnn.PackedSequence has been given as the input, the output will also be a
packed sequence. When bidirectional=True, output will contain a concatenation of the forward
and reverse hidden states at each time step in the sequence.

h_n: tensor of shape (D * num_layers, H ;) for unbatched input or (D *

num_layers, N, H,,;) containing the final hidden state for each element in the sequence.
When bidirectional=Tzue, h_n will contain a concatenation of the final forward and reverse
hidden states, respectively.

c_n: tensor of shape (D * num_layers, H.;) for unbatched input or (D *

num_layers, N, H_.j;) containing the final cell state for each element in the sequence. When
bidirectional=True, ¢c_n will contain a concatenation of the final forward and reverse cell states,

respectively.



LSTM guitar amplifier model

« Linear layer projects from T
LSTM hidden dimension to _ T
Linear Y (B,T,1)

B = Batch size (B, T, H) T
T = Timesteps LSTM
H = Number of hidden channels
(cells) 1

(B, T,1) x
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Loss functions

A?

the familiar L2 regression MSE(y,9) =
loss

Error to Signal Ratio (ESR)
normalises the error energy 1 ZB T(@ _ y)z

Mean squared error (MSE) is 1
BT 20"

by signal energy ESR(y,y) =
BT > .pry’

Comparable to Signal-to-
Noise Ratio (SNR)
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Exercise this week

* Implement and test LSTM and GRU cells
 Implement and train a RNN guitar amp model
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Lecture 4 summary

 Virtual analog modeling
* Recurrent neural networks
 PyTorch programming tips

Aalto University
School of Electrical

| Engineerin g



