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• Chris Bishop has a new 
book on Deep Learning! 
(2024)

• Not freely available, but this 
might be an official course 
book for next year

• Not required 

A book 
recommendation



Forward function in 
torch.nn.Module



In-place functions in PyTorch



Time limit in NGrader validation

• Some were getting timeouts when running Validate assignment
• Sometimes with useful error messages, sometimes not (invalid 

json character, etc.)
• This is mostly a problem in Exercise 02, previous exercises are 

faster
• Limit was set to 4 minutes by default
• Increased validation time limit to 10 minutes since 31.1.2024



Lecture 4 content

• Virtual analog modeling
• Recurrent neural networks
• Regression loss functions



Virtual Analog Modeling

• Replicate the tonal characteristics of analog audio effects in the 
digital domain



White-box Virtual Analog Modeling

• Analyse analog circuit schematics
• Implement software emulation using digital signal processing 

(DSP) techniques
• If model runs too slowly for real-time, approximate
• Next: let’s look at some circuits to appreciate the problem
• No circuit analysis needed on this course



Tube Screamer schematic



Tube Screamer clipping stage



Vox AC15 Schematic

Ercarsnone
gutrmI



Mesa/Boogie Dual Rectifier 
schematic



Neural
Network

Loss
function

Black-box Virtual Analog Modeling



First order IIR filter

• Adding feedback to filters 
makes them much more 
expressive

• First order Infinite Impulse 
Response (IIR)

• Exponential decay in 
impulse response

• Response can be 
approximated with FIR
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First order IIR unrolled in time
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• For each time step, the 
filter output depends on 
the current input and 
previous state of the 
filter

• Apply the same 
operation on every time 
step (weight sharing)



Damped oscillatorDamped oscillator
Simple example on feedback

oscillatordamping oscillatordamping mass damping springmass damping spring
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Damped oscillator 
with IIR filtersDamped oscillator

With digital IIR filters

• Oscillator is a conjugate pole-pair on the unit 
circle


• Damping is a pole on the real-axis (leaky 
integrator)


• Feedback implementation with IIR filters is very 
efficient


• Feedforward implementation with impulse 
response is somewhat annoying

• Damping is exponential 
decay (first order IIR)

• Single frequency oscillation 
requires two filter poles 
placed on the unit circle 
(second orded IIR)
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General IIR filter

• Filter output is a linear combination of current and previous 
input values, and previous output samples

• Expressive but still linear
• Parameter estimation is  complicated
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Recurrent Neural Networks

• Neural networks designed for time series processing
• A non-linear analogue of multi-channel first order IIR filters 
• Related to state-space models and Markov chains
• RNN output at each time step depends on the current input, the 

previous state of the RNN, and the network

RNN Cell

NN Layer

concat



Elman RNN, aka Vanilla RNN

• Output of the network 
is the same as the 
updated state

• Cell applies a Linear 
first order filtering 
step and saturating 
non-linearity

RNN Cell

NN Layer

concat
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Unrolled RNNs
• Forward pass requires sequential left-to-right processing
• Backward pass requires sequential right-to-left processing, aka 

backpropagation through time (BPTT)
• Network is deep in time and suffers from vanishing gradients

RNN
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Graphical notation for RNNs

• Tanh layer includes 
weights that are correctly 
sized for the expected 
input

• In this case, the layer 
input size is       + 

• These are often called 
hidden cells, I’ll call them 
hidden channels

RNN Cell

NN Layer

concat
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concat NN Layer Element-wise
operation

Gates: Input, forget,
cell, output
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• So far all the network 
structures we have seen 
have been additive

• Gated structures enable 
multiplication!

• Used extensively in RNNs, 
Gated CNNs (like WaveNet) 
and Attention in Tranformers

Gated activation 
functions



Gated RNNs

• Gated RNNs are designed for passing and modulating the 
network state through time to prevent issues with vanishing 
gradients

• Next: LSTM and GRU
• For more detailed analysis, see Chris Olah’s blog post at 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Long Short Term Memory (LSTM)

concat

NN Layer Element-wise
operation

Gates: Input, forget,
cell, output

• LSTM Cell implements 
this set of equations

• Useful for programming 
not so intuitive for 
many
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Gated Recurrent Unit (GRU)
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RNN Layer vs RNN Cell

• RNN Layer processes as sequence in single forward call
• RNN Cell processes a single time step, you have to write a for 

loop over time
• Cells are useful for development and custom RNN design
• PyTorch has efficient implementations for LSTM and GRU 

layers that process the full sequence in a C++/CUDA backend 
without need to communicate with Python



LSTM in PyTorch



LSTM in PyTorch



LSTM in PyTorch



LSTM in PyTorch



LSTM guitar amplifier model

• One LSTM layer
• Linear layer projects from 

LSTM hidden dimension to 

B = Batch size
T = Timesteps
H = Number of hidden channels  
(cells)

LSTM

Loss

Linear



Loss functions

LSTM

Loss

Linear

• Mean squared error (MSE) is 
the familiar L2 regression 
loss

• Error to Signal Ratio (ESR) 
normalises the error energy 
by signal energy

• Comparable to Signal-to-
Noise Ratio (SNR)

LSTM

Loss

Linear



Exercise this week

• Implement and test LSTM and GRU cells
• Implement and train a RNN guitar amp model 



Lecture 4 summary

• Virtual analog modeling
• Recurrent neural networks
• PyTorch programming tips


