
ELEC-C5220
Lecture 4:
Virtual Analog modeling with
Recurrent Neural Networks
Machine learning in information technology

Lauri Juvela

1.2.2024

• Chris Bishop has a new
book on Deep Learning!
(2024)

• Not freely available, but this
might be an official course
book for next year

• Not required

A book
recommendation

Forward function in
torch.nn.Module

In-place functions in PyTorch

Time limit in NGrader validation

• Some were getting timeouts when running Validate assignment
• Sometimes with useful error messages, sometimes not (invalid

json character, etc.)
• This is mostly a problem in Exercise 02, previous exercises are

faster
• Limit was set to 4 minutes by default
• Increased validation time limit to 10 minutes since 31.1.2024

Lecture 4 content

• Virtual analog modeling
• Recurrent neural networks
• Regression loss functions

Virtual Analog Modeling

• Replicate the tonal characteristics of analog audio effects in the
digital domain

White-box Virtual Analog Modeling

• Analyse analog circuit schematics
• Implement software emulation using digital signal processing

(DSP) techniques
• If model runs too slowly for real-time, approximate
• Next: let’s look at some circuits to appreciate the problem
• No circuit analysis needed on this course

Tube Screamer schematic

Tube Screamer clipping stage

Vox AC15 Schematic

Ercarsnone
gutrmI

Mesa/Boogie Dual Rectifier
schematic

Neural
Network

Loss
function

Black-box Virtual Analog Modeling

First order IIR filter

• Adding feedback to filters
makes them much more
expressive

• First order Infinite Impulse
Response (IIR)

• Exponential decay in
impulse response

• Response can be
approximated with FIR

IIR
Filter

IIR
Filter

IIR
Filter

IIR
Filter

IIR
Filter

First order IIR unrolled in time

IIR
Filter

IIR
Filter

IIR
Filter

IIR
Filter

IIR
Filter

• For each time step, the
filter output depends on
the current input and
previous state of the
filter

• Apply the same
operation on every time
step (weight sharing)

Damped oscillatorDamped oscillator
Simple example on feedback

oscillatordamping oscillatordamping mass damping springmass damping spring

Damped oscillator
Simple example on feedback

oscillatordamping oscillatordamping mass damping springmass damping spring

Damped oscillator
with IIR filtersDamped oscillator

With digital IIR filters

• Oscillator is a conjugate pole-pair on the unit
circle

• Damping is a pole on the real-axis (leaky
integrator)

• Feedback implementation with IIR filters is very
efficient

• Feedforward implementation with impulse
response is somewhat annoying

• Damping is exponential
decay (first order IIR)

• Single frequency oscillation
requires two filter poles
placed on the unit circle
(second orded IIR)

Damped oscillator
With digital IIR filters

• Oscillator is a conjugate pole-pair on the unit
circle

• Damping is a pole on the real-axis (leaky
integrator)

• Feedback implementation with IIR filters is very
efficient

• Feedforward implementation with impulse
response is somewhat annoying

General IIR filter

• Filter output is a linear combination of current and previous
input values, and previous output samples

• Expressive but still linear
• Parameter estimation is complicated

IIR
Filter

IIR
Filter

IIR
Filter

IIR
Filter

IIR
Filter

Recurrent Neural Networks

• Neural networks designed for time series processing
• A non-linear analogue of multi-channel first order IIR filters
• Related to state-space models and Markov chains
• RNN output at each time step depends on the current input, the

previous state of the RNN, and the network

RNN Cell

NN Layer

concat

Elman RNN, aka Vanilla RNN

• Output of the network
is the same as the
updated state

• Cell applies a Linear
first order filtering
step and saturating
non-linearity

RNN Cell

NN Layer

concat

RNN Cell

NN Layer

concat

Unrolled RNNs
• Forward pass requires sequential left-to-right processing
• Backward pass requires sequential right-to-left processing, aka

backpropagation through time (BPTT)
• Network is deep in time and suffers from vanishing gradients

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Graphical notation for RNNs

• Tanh layer includes
weights that are correctly
sized for the expected
input

• In this case, the layer
input size is +

• These are often called
hidden cells, I’ll call them
hidden channels

RNN Cell

NN Layer

concat

RNN Cell

NN Layer

concat

RNN Cell

NN Layer

concat

concat NN Layer Element-wise
operation

Gates: Input, forget,
cell, output

RNN Cell

NN Layer

concat

RNN Cell

NN Layer

concat

• So far all the network
structures we have seen
have been additive

• Gated structures enable
multiplication!

• Used extensively in RNNs,
Gated CNNs (like WaveNet)
and Attention in Tranformers

Gated activation
functions

Gated RNNs

• Gated RNNs are designed for passing and modulating the
network state through time to prevent issues with vanishing
gradients

• Next: LSTM and GRU
• For more detailed analysis, see Chris Olah’s blog post at

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory (LSTM)

concat

NN Layer Element-wise
operation

Gates: Input, forget,
cell, output

• LSTM Cell implements
this set of equations

• Useful for programming
not so intuitive for
many

Long Short Term Memory (LSTM)

concat

NN Layer Element-wise
operation

Gates: Input, forget,
cell, output

concat NN Layer Element-wise
operation

Gates: Input, forget,
cell, output

concat NN Layer Element-wise
operation

Gates: Input, forget,
cell, output

Gated Recurrent Unit (GRU)

concat

NN Layer Element-wise
operation

concat

Lin

Lin

concat

NN Layer Element-wise
operation

concat

Lin

Lin

concat NN Layer Element-wise
operation

Gates: Input, forget,
cell, output

RNN Layer vs RNN Cell

• RNN Layer processes as sequence in single forward call
• RNN Cell processes a single time step, you have to write a for

loop over time
• Cells are useful for development and custom RNN design
• PyTorch has efficient implementations for LSTM and GRU

layers that process the full sequence in a C++/CUDA backend
without need to communicate with Python

LSTM in PyTorch

LSTM in PyTorch

LSTM in PyTorch

LSTM in PyTorch

LSTM guitar amplifier model

• One LSTM layer
• Linear layer projects from

LSTM hidden dimension to

B = Batch size
T = Timesteps
H = Number of hidden channels
(cells)

LSTM

Loss

Linear

Loss functions

LSTM

Loss

Linear

• Mean squared error (MSE) is
the familiar L2 regression
loss

• Error to Signal Ratio (ESR)
normalises the error energy
by signal energy

• Comparable to Signal-to-
Noise Ratio (SNR)

LSTM

Loss

Linear

Exercise this week

• Implement and test LSTM and GRU cells
• Implement and train a RNN guitar amp model

Lecture 4 summary

• Virtual analog modeling
• Recurrent neural networks
• PyTorch programming tips

