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Clarifications to Exercise 04

Do not use the state
parameters self.cO
and self.hO for
anything (these
should have been
removed)

e LSTM uses a default
all-zero initial state
when passed None
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class LSTMModel(torch.nn.Module):

def

def

__init__(self, input_size, hidden_size, output_size):

super(LSTMModel, self).__init__ ()
self.lstm = torch.nn.LSTM(input_size, hidden_size, batch_first=False)
self.linear = torch.nn.Linear(hidden_size, output_size)

self.c0O
self.h@

torch.nn.Parameter(torch.zeros(1, 1, hidden_size))
torch.nn.Parameter(torch.zeros(1, 1, hidden_size))

forward(self, x, state_0=None):

Args:
x: input tensor of shape (batch_size, input_size, timesteps)
state_

Returns:
y: output tensor of shape (batch_size, output_size, timesteps)
state_out: tuple containing (h_out, c_out)

# YOUR CODE HERE

raise NotImplementedError()

return out, state_out



Clarifications to Exercise 04

* Process the frame
one time-step at a
time

(batch, C=1, frame _len)

* Processing the
whole frame as
single time-step is
possible, but don’t

(batch, frame_len, T=1)
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model = torch.compile(model)
iteration = 0
losses_ma = []
while iteration < max_iterations:
state = None # initial state
for j in range(segment_len // frame_len):
# create input_frame by slicing waveform_input
# create target_frame by slicing waveform_target
# YOUR CODE HERE
raise NotImplementedError()

output_frame, (h_0, c_0) = model(input_frame, state)

# detach gradient tracking from state for next iteration
# YOUR CODE HERE

raise NotImplementedError()

if j = 0:
continue

loss = criterion(output_frame, target_frame)



Lecture 05 content

« Metrics and loss functions
- Differentiable programs and requirements for useful gradients

« Subjetive evaluation
« Objective metrics and loss functions for speech and audio
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Metrics and loss functions

- Both are used for evaluating how well the a machine learning
method performs

« Sometimes they can be the same, but now always.
 What is the difference?

* Loss function needs to provide useful learning signals to adjust
parameters

* Metric should be somehow easy to interpret by humans

Aalto University
School of Electrical

| Engineerin g



Metrics requirements

 Intuitive and interpretable for humans
« Correlates with human perception
 Numerically stable computation
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Loss function requirements

Intuiti Lint table for )
. lat ith | r

* Numerically stable for forward and backward computation

- Differentiable and has useful gradients

 Fast to compute! Needs to be computed at every iteration
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Accuracy as a metric

« Make classifications and count
the number of correct Accuracy =
classifications

TP+ TN
TP+TN+ FP+ FN

« Easy to interpret

Compare this to the cross- # correct classifications

entropy numbers we saw in the Accuracy =

) . # total classifications
exercises previously
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Accuracy as a loss-function?

« A binary decision function f(z) = {1 , € > 0.5
outputs class value 1 when 0 ,z2<05
its input is above the

decision boundary (0.5 in
this case)

 These outputs are needed
for counting!

0.2 A
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Accuracy as a loss-function?

* The decision function does f(z) = {1 , > 0.9
not have useful gradients 0 ,z<05
* This problem extends to
sampling from binary and
categorical distributions: Of(z) g ! i z gg
what if we want to use the or )., . 0'5

outcome of a coin-flip as
input to another model?
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Max operation is differentiable

31 | 15 | 28 | 184 max(z) = x;, if ©; >=z;,Vj
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Argmax is not differentiable

A?

Argmax is used when
picking the most likely
class from class
probabities

Decisions, decoding
and sampling from
categorical
distributions is not
generally
differentiable
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Omax(x) _ {1 j=1

0z 0 otherwise

argmax(z) =i, if z; > z;,Vj
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Oz |10 otherwise



Word Error Rate

« Common metric in Automatic Speech Recognition (ASR)

 Intuitive: compare model output to reference text and count the
number of correctly recognised words

* No useful gradient — not directly usable as a loss function

N = Number of words in reference
S+D+1 S = Number of substitutions
N D = Number of deletions

I = Number of insertions

WER =
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Character Error Rate (CER)

« Same distance metric as WER, but on characters

« Also known as the Levenshtein edit distance

Delete

l

P|A|R|T]|Y
P|A|R]|K
Substitute
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Character Error Rate (CER)

« Same distance metric as WER, but on characters
 Also known as the Levenshtein edit distance

Delete Insert

I N | T]|E N [T | O | N _
Distance: 5
E|X|E|C|U|T | O | N
Substitute Substitute
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Subjective evaluation

* Gold standard for measuring system performance in many deep
learning applications: only humans can judge when the model
is good enough

* Very expensive and noisy to measure; not differentiable

« Applications: speech synthesis, coding, enhancement, audio
effects modeling etc.

- Evaluating generative model outputs is also subjective

 RLHF — ChatGPT is trained using reinforcement learning from
human feedback
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Subjective quality depends on the
context and question
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A-B preference testing

 Which do prefer A or B?

 Number of pairings grows quickly when comparing multiple
systems
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ABX testing

 Version 1:
« Here is a test sample X and reference samples A and B
* Is Xthe same as A or B?
 Version 2:
* Here are three samples, find which on is the odd one out?
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Mean opinion score (MOS)

« Rate the quality (naturalness) of the following sample on a five
level scale

5: Excellent

4: Good

3: Fair

2: Poor

 1:Bad

 Mean opinion scores are averaged over multiple subjects and
test items
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MUSHRA tests

C D)

Mono Trial

* Multiple stimulus
 Hidden reference
« Hidden anchor

Reference Cond.1 Cond.2 Cond.3 Cond.4 Cond.5
C1 c2 C3 reference  anchor35
Play Play Pause Play Play Play
100
Excellent
80
Good
60
Fair
40
Poor ]
20
Bad
0
40
Next
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Objective metrics

 Emulate the preceptual relevance of subjective evaluation

« Can be actually computed
« Differentiable?
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Signal-to-Noise Ratio (SNR)

« Classic signal processing Zt ;1;2[t]
metric SNR = Z nz[t]
« Compare the signal energy '
with noise energy

* In deep learning loss
functions, noise is n[t] — e[t] — gc[t] — ;ﬁ[t]
equivalent to model error



Clean speech
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Noisy speech at 10dB SNR
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Speech shaped noise at 10dB SNR
Is perceptually masked

Clean speech Noisy speech Shaped noise

0 100 200 300 400
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Noisy speech at 10 dB SNR,
complementary noise spectrum

Clean speech Noisy speech Complementary shaped noise
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Perceptual loss functions for
audio

« Mel spectrum is differentiable and has useful gradients

« Steps
* Framing
« Windowing
« FFT
« Magnitude
« Mel filterbank
* log
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Framing and windowing

« Slice waveform into 031 f
short-time frames 0o 1 |
« Multiply with a - | P,\
. . AN
cosine window to | o fr\
0.0 V | | v
taper the edges | |
—0.1 A
—0.2 A
—0.3 A
—0.4 A
A’ /éz:;;:.;i%,g:%ical (I) 5IO 1(|)0 15;0 2C|)O 25|'>0 360 3_%0 460
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Short-time spectrum with FFT

 FFT is linear and differentiable
« Magnitude of complex number (absolute value)

Magnitude spectrum
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Magnitude spectrum (dB)

Log magnitude spectrum
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Mel filterbank

 Represented by a 40 x 257 matrix, where 40 is the number of
mel filter channels and 257 is the number of FFT frequency bins

 Linear and differentiable
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Mel spectrum (dB)

Mel spectrum
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Multiply linear spectrum with mel
filterbank to get mel spectrum

Log magnitude spectrum
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Mel spectral distance

« Compute mel spectrogram from model output and reference
signals

« Use simple distances (MSE, MAE) to compare the spectrograms

* Pros:
« Differentiable
 Cheap to compute

« Cons

* No phase sensitivity

* No perceptual masking model
A? ettt

| Engineerin g



Perceptual evaluation of speech
quality (PESQ)

Reference Level | | Input | = Auditory
i align filter transform
v Prediction of
Time . » perceived
align and Dlsturba_nce 5 Cognlqve —> speech
. processing modelling .
equalise t \ quality
Degraded Level | | Input | | —* Auditory Identify bad
signal align filter transform intervals

L Re-align bad intervals l
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PESQ

* Pros:
* Accurate perceptual model
 Interpretable output (MOS score from 1 (bad) to 5 (excellent)
« Differentiable!

« Cons:
 Heavy to compute
« Requires expert knowledge to judge when PESQ is applicable
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Recommended reading

« Chapter 6 in the speech processing book
* 6.1. on subjective quality evaluation
* 6.2. on objective quality evaluation
* 6.4. on analysis of evaluation results

https://speechprocessingbook.aalto.fi/Evaluation_of speech_proc
essing_methods.htmi
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Lecture 05 recap

« Metrics and loss functions

« Subjective evaluation

* Objective evaluation
 Requirements and trade-offs
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