ELEC-C5220 Lecture 5: Metrics and loss functions

Machine learning in information technology

Lauri Juvela

8.2.2024

Clarifications to Exercise 04

- Do not use the state parameters self.c0 and self.h0 for anything (these should have been removed)
- LSTM uses a default all-zero initial state when passed None

```
class LSTMModel(torch.nn.Module):
   def __init__(self, input_size, hidden_size, output_size):
        super(LSTMModel, self).__init__()
       self.lstm = torch.nn.LSTM(input_size, hidden_size, batch_first=False)
        self.linear = torch.nn.Linear(hidden_size, output_size)
        self.c0 = torch.nn.Parameter(torch.zeros(1, 1, hidden_size))
       self.h0 = torch.nn.Parameter(torch.zeros(1, 1, hidden size))
   def forward(self, x, state 0=None):
        .....
       Args:
            x: input tensor of shape (batch_size, input_size, timesteps)
            state
       Returns:
            y: output tensor of shape (batch size, output size, timesteps)
            state_out: tuple containing (h_out, c_out)
        .....
        # YOUR CODE HERE
        raise NotImplementedError()
        return out, state_out
```


Clarifications to Exercise 04

 Process the frame one time-step at a time

(batch, C=1, frame_len)

 Processing the whole frame as single time-step is possible, but don't

(batch, frame_len, T=1)

```
model = torch.compile(model)
iteration = 0
losses_ma = []
while iteration < max_iterations:
    state = None # initial state
    for j in range(segment_len // frame_len):
        # create input_frame by slicing waveform_input
        # create target_frame by slicing waveform_target
        # YOUR CODE HERE
        raise NotImplementedError()</pre>
```

output_frame, (h_0, c_0) = model(input_frame, state)
detach gradient tracking from state for next iteration
YOUR CODE HERE
raise NotImplementedError()

if j == 0:
 continue

loss = criterion(output_frame, target_frame)

Lecture 05 content

- Metrics and loss functions
- Differentiable programs and requirements for useful gradients
- Subjetive evaluation
- Objective metrics and loss functions for speech and audio

Metrics and loss functions

- Both are used for evaluating how well the a machine learning method performs
- Sometimes they can be the same, but now always.
- What is the difference?
- Loss function needs to provide useful learning signals to adjust parameters
- Metric should be somehow easy to interpret by humans

Metrics requirements

- Intuitive and interpretable for humans
- Correlates with human perception
- Numerically stable computation

Loss function requirements

- Intuitive and interpretable for humans
- Correlates with human perception
- Numerically stable for forward and *backward* computation
- Differentiable and has useful gradients
- Fast to compute! Needs to be computed at every iteration

Accuracy as a metric

- Make classifications and count the number of correct $\mbox{Accuracy} = \frac{TP+TN}{TP+TN+FP+FN}$ classifications
 - Easy to interpret
 - Compare this to the crossentropy numbers we saw in the Accuracy = $\frac{\# \text{ correct classifications}}{\# \text{ total classifications}}$

Accuracy as a loss-function?

- A binary decision function outputs class value 1 when its input is above the decision boundary (0.5 in this case)
- These outputs are needed for counting!

$$f(x) = egin{cases} 1 & , \ x > 0.5 \ 0 & , \ x \le 0.5 \end{cases}$$

Accuracy as a loss-function?

- The decision function does
 not have useful gradients
- This problem extends to sampling from binary and categorical distributions: what if we want to use the outcome of a coin-flip as input to another model?

$$f(x) = egin{cases} 1 & , \ x > 0.5 \ 0 & , \ x \le 0.5 \end{cases}$$

$$rac{\partial f(x)}{\partial x} = egin{cases} 0 & , \ x > 0.5 \ 0 & , \ x < 0.5 \ ? & , \ x = 0.5 \end{cases}$$

Max operation is differentiable

$$\max(x) = x_i, ext{ if } x_i >= x_j, orall j$$

$$rac{\partial \mathrm{max}(x)}{\partial x_j} = egin{cases} 1 & j=i \ 0 & \mathrm{otherwise} \end{cases}$$

Argmax is not differentiable

- Argmax is used when picking the most likely class from class probabities
- Decisions, decoding and sampling from categorical distributions is not generally differentiable

$$\max(x) = x_i, ext{ if } x_i >= x_j, orall j$$

$$rac{\partial \mathrm{max}(x)}{\partial x_j} = egin{cases} 1 & j=i \ 0 & \mathrm{otherwise} \end{cases}$$

$$\operatorname{argmax}(x) = i, ext{ if } x_i \geq x_j, orall j$$

$$rac{\partial {
m argmax}(x)}{\partial x_j} = egin{cases} 0 & j=i \ 0 & {
m otherwise} \end{cases}$$

Word Error Rate

- Common metric in Automatic Speech Recognition (ASR)
- Intuitive: compare model output to reference text and count the number of correctly recognised words
- No useful gradient not directly usable as a loss function

$$N =$$
Number of words in reference

- $S = ext{Number of substitutions}$
- D =Number of deletions
- I =Number of insertions

$$\mathrm{WER} = rac{S+D+I}{N}$$

Character Error Rate (CER)

- Same distance metric as WER, but on characters
- Also known as the Levenshtein edit distance

Character Error Rate (CER)

- Same distance metric as WER, but on characters
- Also known as the Levenshtein edit distance

Subjective evaluation

- Gold standard for measuring system performance in many deep learning applications: only humans can judge when the model is good enough
- Very expensive and noisy to measure; not differentiable
- Applications: speech synthesis, coding, enhancement, audio effects modeling etc.
- Evaluating generative model outputs is also subjective
 - RLHF ChatGPT is trained using reinforcement learning from human feedback

Subjective quality depends on the context and question

A-B preference testing

- Which do prefer A or B?
- Number of pairings grows quickly when comparing multiple systems

ABX testing

- Version 1:
 - Here is a test sample X and reference samples A and B
 - Is X the same as A or B?
- Version 2:
 - Here are three samples, find which on is the odd one out?

Mean opinion score (MOS)

- Rate the quality (naturalness) of the following sample on a five level scale
 - 5: Excellent
 - 4: Good
 - 3: Fair
 - 2: Poor
 - 1: Bad
- Mean opinion scores are averaged over multiple subjects and test items

MUSHRA tests

- Multiple stimulus
- Hidden reference
- Hidden anchor

Objective metrics

- Emulate the preceptual relevance of subjective evaluation
- Can be actually computed
 - Differentiable?

Signal-to-Noise Ratio (SNR)

- Classic signal processing metric
- Compare the signal energy
 with noise energy
- In deep learning loss functions, noise is equivalent to model error

$$ext{SNR} = rac{\sum_t x^2[t]}{\sum_t n^2[t]}$$

$$n[t]=e[t]=x[t]-\hat{x}[t]$$

Clean speech

Noisy speech at 10dB SNR

Speech shaped noise at 10dB SNR is perceptually masked

Noisy speech at 10 dB SNR, complementary noise spectrum

Perceptual loss functions for audio

- Mel spectrum is differentiable and has useful gradients
- Steps
 - Framing
 - Windowing
 - FFT
 - Magnitude
 - Mel filterbank
 - log

Framing and windowing

- Slice waveform into short-time frames
- Multiply with a cosine window to taper the edges

Short-time spectrum with FFT

- FFT is linear and differentiable
- Magnitude of complex number (absolute value)

Magnitude spectrum (dB)

Aalto University School of Electrical Engineering

Mel filterbank

- Represented by a 40 x 257 matrix, where 40 is the number of mel filter channels and 257 is the number of FFT frequency bins
- Linear and differentiable

Mel spectrum (dB)

Aalto University School of Electrical Engineering

Multiply linear spectrum with mel filterbank to get mel spectrum

Mel spectral distance

- Compute mel spectrogram from model output and reference signals
- Use simple distances (MSE, MAE) to compare the spectrograms
- Pros:
 - Differentiable
 - Cheap to compute
- Cons
 - No phase sensitivity
 - No perceptual masking model

Perceptual evaluation of speech quality (PESQ)

PESQ

- Pros:
 - Accurate perceptual model
 - Interpretable output (MOS score from 1 (bad) to 5 (excellent)
 - Differentiable!
- Cons:
 - Heavy to compute
 - Requires expert knowledge to judge when PESQ is applicable

Recommended reading

Chapter 6 in the speech processing book

- 6.1. on subjective quality evaluation
- 6.2. on objective quality evaluation
- 6.4. on analysis of evaluation results

https://speechprocessingbook.aalto.fi/Evaluation_of_speech_processing_methods.html

Lecture 05 recap

- Metrics and loss functions
- Subjective evaluation
- Objective evaluation
- Requirements and trade-offs

