ELEC-C5220 Lecture 6: Speech Enhancement with Denoising Autoencoders

Machine learning in information technology

Lauri Juvela

15.2.2024

Lecture 06 content

- Speech denoising and enhancement
- Autoencoders
- Denoising autoencoders
- Data augmentation
- U-Net architecture
- Course project

What can go wrong in a video call?

• Let's share worst experiences

What can go wrong in a video call? Fix it with enhancement

- Background noise
- Too much reverberation
- Distorting and clipping microphones
- Audio dropout
- Frame rate drops
- Pixelated and blurry video
- Poor lighting conditions

Denoising vs. enhancement

- Denoising is noise removal
- Enhancement includes noise removal

How to implement denoising?

- Classic approach: estimate what is signal and what is noise, filter out the noise
- Pure Deep Learning approach: use a Neural Network model, noisy signal goes in, clean signal comes out
- Hybrid approach: use a NN model to predict a filter mask

Spectrograms

Waveform

(Batch, Channels, Time)

(1, 1, 24800)

Spectrogram

(Batch, Channels, Frequency, Time)

(1, 1, 257, 194)

Noise is commonly modeled as additive

Different noise types

Clean speech Speech in pink noise

Speech in babble noise

_ A?

Mask estimation in Exercise 05

Aalto University School of Electrical Engineering

Spectral subraction

- Works well for stationary noise
- Requires an estimate for noise power spectrum

$$|\hat{S}(\omega)|^2 = |Y(\omega)|^2 - |N(\omega)|^2$$

Clean Noisy speech estimate Noisy Noise

Wiener filtering

- Spectrogram masking
- Mask is close to zero when noise energy is large relative to signal
- Mask is close to on when signal energy is large relative to noise
- Compare with learning masks in Exercise 05

$$H_{ ext{Wiener}}(\omega) = rac{|S(\omega)|^2}{|S(\omega)|^2 + |N(\omega)|^2}$$

$$|\hat{S}(\omega)|^2 = H_{ ext{Wiener}}(\omega)|Y(\omega)|^2$$

Additivity and Fourier transforms

- Fourier transforms are linear – additivity is preserved
- Problem: transformed variables are complex valued!

$$x(t) + y(t) = z(t)$$

$$X(z) + Y(z) = Z(z)$$

Additivity and Fourier transforms

- Power spectrum of a sum includes a cross- correlation term
- Power spectra are additive for uncorrelated signals
- Spectrum magnitudes are not additive
 - Often models that assume this work just fine, though

$$|X(z)|^2 + |Y(z)|^2 + 2X^*(z)Y(z) = |Z(z)|^2$$

$$|X(z)|^2 + |Y(z)|^2 \hat{=} |Z(z)|^2$$

$$|X(z)|+|Y(z)|\neq |Z(z)|$$

Modeling phase is difficult

- Use original (noisy) phase, modify the magnitude
- We did this in Exercise 05

What kind of moc Jo we ne

- Previously, we have worked with classifiers for dimensionality reduction
- Now we need to output the same shape as the input

Encoder-Decoder models

- Learn to compress high dimensional data to a low-dimensional space and decompress it back to original data domain
- Similar idea to image, audio, and speech coding (JPEG, MP3, CELP)
- Information bottleneck principle: model uses its capacity to learn relevant features for the task and reject irrelevant features like noise

DNN Autoencoder

- Data compression with neural networks
- Encoder reduces data dimensionality
- Decoder maps back to orignal data dimension
- Train to match reconstructed
 output with input

Original and Autoencoded digits

CNN Autoencoder

- Similar idea
- Encoder applies spatial dimensionality reduction by downsampling
- Decoder reconstructs the spatial dimensions by upsampling

(Batch, Channels, Height, Width)

Downsampling

- We have already used pooling layers for downsampling
- Convolution and pooling can be combined with strided convolution
- Strided convolution is weighted average pooling with learnable weigthts

Upsampling

- Repeat values (nearest neighbor interpolation)
- Interpolation (linear, polynomial, sinc, etc.)
- Transposed Convolution

Transposed convolution

- Learnable upsampling
- Connectivity pattern is mirrored from regular convolution
- Convolution is a linear operator and can be represented by as a matrix
- Transposed convolution corresponds to the transpose of the convolution matrix

General enhancement workflow

Denoising Autoencoder

- Add noise to clean data
- Encoder compresses
- Decoder decompresses
- Teach the system to remove noise
- Least-squares in pixel or waveform domain is common but not the best (see Exercise 05)

Noisy inputs and denoising autoencoder outputs

Aalto University School of Electrical Engineering

Convolution Block with Downsampling

- Familiar from handwritten digit classification and spoken digit classification (Lecture and Exercise 02)
- Use this kind of blocks to build an encoder model

Convolution Block with Upsampling

- Similar to encoder building blocks, just replace downsampling with upsampling and mirror the structure
- Use this kind of blocks to build a decoder model

Data augmentation

- Data augmentation refers to applying transformations to input data to artificially increase data diversity
 - Noise, cropping, rotation, distortion etc.
 - Does not need to be differentiable (usually)
- In classification, corrupting the input can improve robustness and generalization
- In enhancement and denoising, data augmentation is used to construct the training data

- U-Net architectures add skip connections between matched resolutions in Encoder and Decoder
- Analogous to residual connections in ResNets

Encoder – Decoder hourglass

- Common visualisation for autoencoders
- Do the blocks refer to layer sizes or activation map sizes?
- Usually the reduction is exponential (e.g., repeated down/upsample by factor of two)
- Pictures often show a linear reduction

Generative models

- How to handle packet dropout and other corruptions that can not be filtered out?
- Generative models can fill in the gaps with plausible content
- Masked prediction is used as a training technique for GPTs and other generative models

Project: Speech Enhancement

• Part 1 – Experiments

- Implement a denoising neural net model
- Implement data providers and training
- Implement metrics
- Re-use of code from exercises helps
- Submit code and trained model for evaluation

• Part 2 – Report

• Describe experiments and results

Project timeline

- Python package template and project specs will be released on Week 9
- Milestones based on unit-tests
 - Milestone 1: DL Week 11
 - Milestone 2: DL Week 13
 - Assemble code from exercises to build a system
 - Probably autograded on JupyterHub
- Final report deadline 18.4.
 - Submit a trained model, autograded metrics for bonus points

Lecture 06 - Summary

- Speech denoising and enhancement
- Autoencoders
- Denoising autoencoders
- Data augmentation
- U-Net architecture
- Course project

