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Lecture 06 content

• Speech denoising and enhancement
• Autoencoders
• Denoising autoencoders
• Data augmentation
• U-Net architecture
• Course project



What can go wrong in a video call?

• Let’s share worst experiences



What can go wrong in a video call?
Fix it with enhancement
• Background noise
• Too much reverberation
• Distorting and clipping microphones
• Audio dropout
• Frame rate drops
• Pixelated and blurry video
• Poor lighting conditions



Denoising vs. enhancement

• Denoising is noise removal
• Enhancement includes noise removal



How to implement denoising?

• Classic approach: estimate 
what is signal and what is 
noise, filter out the noise

• Pure Deep Learning approach: 
use a Neural Network model, 
noisy signal goes in, clean 
signal comes out

• Hybrid approach: use a NN 
model to predict a filter mask
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Spectrograms
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Noise is commonly modeled as 
additive
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Different noise types
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Multiplication with a frequency 
mask is filtering
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Mask estimation in Exercise 05



Spectral subraction

• Works well for 
stationary noise

• Requires an estimate 
for noise power 
spectrum
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Wiener filtering

• Spectrogram masking
• Mask is close to zero 

when noise energy is 
large relative to signal

• Mask is close to on when 
signal energy is large 
relative to noise

• Compare with learning 
masks in Exercise 05
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Additivity and Fourier transforms

• Fourier transforms are 
linear – additivity is 
preserved

• Problem: transformed 
variables are complex 
valued!



Additivity and Fourier transforms

• Power spectrum of a sum 
includes a cross- correlation 
term

• Power spectra are additive for 
uncorrelated signals

• Spectrum magnitudes are not 
additive

• Often models that assume 
this work just fine, though 



Modeling phase is difficult

• Use original (noisy) 
phase, modify the 
magnitude

• We did this in 
Exercise 05
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What kind of models do we need?

Processing
network

Classifier
network 

  

 

• Previously, we have worked 
with classifiers for 
dimensionality reduction

• Now we need to output the 
same shape as the input

Processing
network

Classifier
network 

  

 



Encoder-Decoder models

• Learn to compress high dimensional data to a low-dimensional 
space and decompress it back to original data domain

• Similar idea to image, audio, and speech coding (JPEG, MP3, 
CELP)

• Information bottleneck principle: model uses its capacity to 
learn relevant features for the task and reject irrelevant features 
like noise



DNN Autoencoder
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• Data compression with neural 
networks

• Encoder reduces data 
dimensionality

• Decoder maps back to orignal 
data dimension

• Train to match reconstructed 
output with input



Original and Autoencoded digits



CNN Autoencoder

• Similar idea
• Encoder applies spatial 

dimensionality reduction by 
downsampling

• Decoder reconstructs the 
spatial dimensions by 
upsampling DownLayer

DownLayer

UpLayer

UpLayer

Input image

Reconstructed
image

Encoder

Decoder



Downsampling

Average
pooling
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• We have already used pooling 
layers for downsampling

• Convolution and pooling can be 
combined with strided 
convolution

• Strided convolution is weighted 
average pooling with learnable 
weigthts
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Upsampling

• Repeat values (nearest neighbor interpolation)
• Interpolation (linear, polynomial, sinc, etc.)
• Transposed Convolution



Transposed convolution

• Learnable upsampling
• Connectivity pattern is 

mirrored from regular 
convolution

• Convolution is a linear 
operator and can be 
represented by as a matrix

• Transposed convolution 
corresponds to the transpose 
of the convolution matrix
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General enhancement workflow
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• Add noise to clean data
• Encoder compresses
• Decoder decompresses
• Teach the system to remove 

noise
• Least-squares in pixel or 

waveform domain is 
common but not the best 
(see Exercise 05)

Denoising 
Autoencoder



Noisy inputs and denoising 
autoencoder outputs



Convolution Block with 
Downsampling
• Familiar from handwritten 

digit classification and 
spoken digit classification 
(Lecture and Exercise 02)

• Use this kind of blocks to 
build an encoder model
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Convolution Block with 
Upsampling
• Similar to encoder building 

blocks, just replace 
downsampling with 
upsampling and mirror the 
structure

• Use this kind of blocks to 
build a decoder model
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Data augmentation

• Data augmentation refers to applying transformations to input 
data to artificially increase data diversity

• Noise, cropping, rotation, distortion etc.
• Does not need to be differentiable (usually)

• In classification, corrupting the input can improve robustness 
and generalization

• In enhancement and denoising, data augmentation is used to 
construct the training data 



U-Net

• U-Net architectures add 
skip connections 
between matched 
resolutions in Encoder 
and Decoder

• Analogous to residual 
connections in ResNets
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Encoder – Decoder hourglass 

• Common visualisation for 
autoencoders

• Do the blocks refer to layer sizes 
or activation map sizes?

• Usually the reduction is 
exponential (e.g., repeated 
down/upsample by factor of two)

• Pictures often show a linear 
reduction



Generative models

• How to handle packet dropout 
and other corruptions that 
can not be filtered out?

• Generative models can fill in 
the gaps with plausible 
content

• Masked prediction is used as 
a training technique for GPTs 
and other generative models



Project: Speech Enhancement

• Part 1 – Experiments
• Implement a denoising neural net model
• Implement data providers and training
• Implement metrics
• Re-use of code from exercises helps
• Submit code and trained model for evaluation

• Part 2 – Report
• Describe experiments and results



Project timeline

• Python package template and project specs will be released on 
Week 9

• Milestones based on unit-tests
• Milestone 1: DL Week 11
• Milestone 2: DL Week 13
• Assemble code from exercises to build a system
• Probably autograded on JupyterHub

• Final report deadline 18.4.
• Submit a trained model, autograded metrics for bonus points



Lecture 06 - Summary

• Speech denoising and enhancement
• Autoencoders
• Denoising autoencoders
• Data augmentation
• U-Net architecture
• Course project


