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Lecture 8 content

• Automatic speech recognition (ASR)
• The sequence alignment problem
• Attention mechanism in neural networks
• Transformer neural net
• ASR with Transformers



Transformer neural network
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

⇤Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.

†Work performed while at Google Brain.
‡Work performed while at Google Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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Whisper ASR

Robust Speech Recognition via Large-Scale Weak Supervision

Alec Radford * 1 Jong Wook Kim * 1 Tao Xu 1 Greg Brockman 1 Christine McLeavey 1 Ilya Sutskever 1

Abstract
We study the capabilities of speech processing
systems trained simply to predict large amounts of
transcripts of audio on the internet. When scaled
to 680,000 hours of multilingual and multitask
supervision, the resulting models generalize well
to standard benchmarks and are often competitive
with prior fully supervised results but in a zero-
shot transfer setting without the need for any fine-
tuning. When compared to humans, the models
approach their accuracy and robustness. We are
releasing models and inference code to serve as
a foundation for further work on robust speech
processing.

1. Introduction
Progress in speech recognition has been energized by the
development of unsupervised pre-training techniques exem-
plified by Wav2Vec 2.0 (Baevski et al., 2020). Since these
methods learn directly from raw audio without the need for
human labels, they can productively use large datasets of un-
labeled speech and have been quickly scaled up to 1,000,000
hours of training data (Zhang et al., 2021), far more than the
1,000 or so hours typical of an academic supervised dataset.
When fine-tuned on standard benchmarks, this approach
has improved the state of the art, especially in a low-data
setting.

These pre-trained audio encoders learn high-quality repre-
sentations of speech, but because they are purely unsuper-
vised they lack an equivalently performant decoder mapping
those representations to usable outputs, necessitating a fine-
tuning stage in order to actually perform a task such as
speech recognition1. This unfortunately limits their use-
fulness and impact as fine-tuning can still be a complex
process requiring a skilled practitioner. There is an addi-
tional risk with requiring fine-tuning. Machine learning

*Equal contribution 1OpenAI, San Francisco, CA 94110, USA.
Correspondence to: Alec Radford <alec@openai.com>, Jong
Wook Kim <jongwook@openai.com>.

1Baevski et al. (2021) is an exciting exception - having devel-
oped a fully unsupervised speech recognition system

methods are exceedingly adept at finding patterns within a
training dataset which boost performance on held-out data
from the same dataset. However, some of these patterns are
brittle and spurious and don’t generalize to other datasets
and distributions. In a particularly disturbing example, Rad-
ford et al. (2021) documented a 9.2% increase in object
classification accuracy when fine-tuning a computer vision
model on the ImageNet dataset (Russakovsky et al., 2015)
without observing any improvement in average accuracy
when classifying the same objects on seven other natural
image datasets. A model that achieves “superhuman” per-
formance when trained on a dataset can still make many
basic errors when evaluated on another, possibly precisely
because it is exploiting those dataset-specific quirks that
humans are oblivious to (Geirhos et al., 2020).

This suggests that while unsupervised pre-training has im-
proved the quality of audio encoders dramatically, the lack
of an equivalently high-quality pre-trained decoder, com-
bined with a recommended protocol of dataset-specific fine-
tuning, is a crucial weakness which limits their usefulness
and robustness. The goal of a speech recognition system
should be to work reliably “out of the box” in a broad range
of environments without requiring supervised fine-tuning of
a decoder for every deployment distribution.

As demonstrated by Narayanan et al. (2018), Likhomanenko
et al. (2020), and Chan et al. (2021) speech recognition sys-
tems that are pre-trained in a supervised fashion across many
datasets/domains exhibit higher robustness and generalize
much more effectively to held-out datasets than models
trained on a single source. These works achieve this by
combining as many existing high-quality speech recogni-
tion datasets as possible. However, there is still only a
moderate amount of this data easily available. SpeechStew
(Chan et al., 2021) mixes together 7 pre-existing datasets
totalling 5,140 hours of supervision. While not insignifi-
cant, this is still tiny compared to the previously mentioned
1,000,000 hours of unlabeled speech data utilized in Zhang
et al. (2021).

Recognizing the limiting size of existing high-quality super-
vised datasets, recent efforts have created larger datasets for
speech recognition. By relaxing the requirement of gold-
standard human-validated transcripts, Chen et al. (2021) and
Galvez et al. (2021) make use of sophisticated automated
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Automatic Speech Recognition
(ASR)
• Task: transcribe text from 

speech
• Requires knowledge about 

speech signal – Acoustic Model
• Requires knowledge about 

language – Language Model
• How to combine the two? 

ASR

C A T



ASR applications

• Captioning and transcription
• Speech interfaces
• Voice chatbots for customer service
• Conversational AI 
• …



ASR related fields

• Language modeling
• Machine translation
• Speech synthesis
• Speaker recognition
• All these use neural networks for solving sequence-to-

sequence tasks!



Acoustic Model Encoder and 
Language Model Decoder in ASR

K

Phonemes  (ARPABET)

AE T SILSIL

Encoder
Acoustic Model

Decoder
Language Model
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C A T EOS



The alignment problem

• Phoneme duration is usually 
multiple time-frames

• Alignment is monotonic: 
both speech and text move 
forward in time

• Durations are variable
• How to align the two 

sequences?

Phonemes  (ARPABET)

C
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SOS

EOS

KSILSIL AE AE AE T T SIL

SOS AC T EOS

SIL

SIL

K AE
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d = 2 d = 1 d = 3 d = 2 d = 1

Acoustic frames

Characters / Phonemes



Hidden Markov Models (HMMs)
Phonemes  (ARPABET)
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d = 2 d = 1 d = 3 d = 2 d = 1• Classic model in ASR
• Phonemes (~letters if 

Finnish) emit acoustic 
frames

• Phoneme emits a frame 
on every time-step for it’s 
duration, then state 
moves to next phoneme

• Still useful in alignment



Predicting alignment with neural 
networks
• How to generate this 

kind of aligment 
matrix in general?

• Requires some kind of 
distance metric

• Attention mechanism 
does exactly this!

Phonemes  (ARPABET)
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Attention

• Embed each sequence in 
d-dimensional space

• Compute attention weights 
as dot products between 
each time step on both 
sequences

• Normalise with softmax
• Apply attention weights to 

map between the sequences

Attention

Attention

Attention

Attention



Attention weights visualised 
(machine translation example)

Attention coe�cients

• Weights ↵ij can be visualized. The x-axis and y-axis of each plot correspond to the words in the

source sentence and the generated translation, respectively.

9



Attention – Query, Key, Value

• Generalises self and cross attention
• Dot product measures similarity 

between key and query
• In cross attention, key and value are 

the same vector

Transformer: Scaled dot-product attention

• We can think of the scaled dot-product attention as finding

values vj = zj with keys kj = zj that are closest to query

qi = hi .

• Re-writing the scaled dot-product attention using keys, values

and query:

oi =
nX

j=1

↵ijzj

↵ij =
exp(z>j hi/

p
dk)P

n

j0=1 exp(z
>
j0 hi/

p
dk)

oi =
nX

j=1

↵ijvj

↵ij =
exp(k>j qi/

p
dk)P

n

j0=1 exp(k
>
j0 qi/

p
dk)

encoder decoder

(x1, ..., xn)

(z1, ..., zn)

(SOS, y1, ..., ym�1)

(y1, ..., ym)

attention
V K Q

26
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ASR with attention

• Decoder Language Model 
predicts next token given 
previous tokens using 
masked Self-Attention

• Decoder receives 
information about the 
speech signal from the 
Encoder Acoustic Model 
using Cross-Attention

Transformer architecture

• The general architecture is similar to

ConvS2S:

• The encoder converts input sequence
(x1, ..., xn) into continuous
representations (z1, ..., zn).

• The decoder processes all positions in
parallel using shifted output sequence
(y1, ..., ym) as input and output. The
autoregressive structure is preserved by
masking.

• The decoder attends to representations
(z1, ..., zn).

SOS y1 y2 y3

decoder layer

Attention

en
co
de
r

x1

x2

· · ·
xn

... ... ... ...
y1 y2 y3 y4

h1 h2 h3 h4

zn

· · ·
z2

z1

23



Scaled dot-product attention

• Scalar form

• Matrix form

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4
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Figure 1: The Transformer - model architecture.

The Transformer follows this overall architecture using stacked self-attention and point-wise, fully
connected layers for both the encoder and decoder, shown in the left and right halves of Figure 1,
respectively.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum

3

• Good general tool for 
sequence-to-sequence 
problems

• Backbone of LLMs, including 
the Generative Pretrained 
Transformer (GPT) family of 
models

Transformer 



Multi-Head Attention

• Transformers use multiple 
attention layers in parallel

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Multi-head attention

• Instead of doing a single scaled dot-product attention, the authors

found it beneficial to project keys, queries and values into

lower-dimensional spaces, perform scaled dot-product attention

there and concatenate the outputs:

headi = attention(QW Q

i ,KW K

i ,VW V

i )

MultiHead(Q,K ,V ) = Concat(head1, ..., headh)W
O

V 2 Rm⇥dv , Q 2 Rn⇥dk , K 2 Rm⇥dk ,

headi 2 Rn⇥di , output 2 Rn⇥dk .

multi-head attention

28



Whisper ASR architectureRobust Speech Recognition via Large-Scale Weak Supervision 4

⋯

⋯

2 × Conv1D + GELU

⋮

cr
os

s 
at

te
nt

io
n

Log-Mel Spectrogram

~
SOT EN TRANS- 

CRIBE 0.0 The quick

Tokens in Multitask Training Format

Transformer 
Encoder Blocks Transformer 

Decoder Blocks 

EN 0.0 The quick brown

⋮ ⋮

next-token 
prediction

Sinusoidal 
Positional 
Encoding

Learned 
Positional 
Encoding

Multitask training data (680k hours) Sequence-to-sequence learning

Multitask training format

English transcription
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 “언덕 위에 올라 내려다보면 너무나 넓고 넓은 ⋯” 
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Figure 1. Overview of our approach. A sequence-to-sequence Transformer model is trained on many different speech processing tasks,
including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. All of these
tasks are jointly represented as a sequence of tokens to be predicted by the decoder, allowing for a single model to replace many different
stages of a traditional speech processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or
classification targets, as further explained in Section 2.3.

2.4. Training Details

We train a suite of models of various sizes in order to study
the scaling properties of Whisper. Please see Table 1 for an
overview. We train with data parallelism across accelerators
using FP16 with dynamic loss scaling and activation check-
pointing (Griewank & Walther, 2000; Chen et al., 2016).
Models were trained with AdamW (Loshchilov & Hutter,
2017) and gradient norm clipping (Pascanu et al., 2013)
with a linear learning rate decay to zero after a warmup over
the first 2048 updates. A batch size of 256 segments was
used, and the models are trained for 220 updates which is
between two and three passes over the dataset. Due to only
training for a few epochs, over-fitting is not a large concern,
and we do not use any data augmentation or regularization
and instead rely on the diversity contained within such a

large dataset to encourage generalization and robustness.
Please see Appendix F for full training hyperparameters.3

During early development and evaluation we observed that
Whisper models had a tendency to transcribe plausible but
almost always incorrect guesses for the names of speakers.
This happens because many transcripts in the pre-training
dataset include the name of the person who is speaking,
encouraging the model to try to predict them, but this infor-
mation is only rarely inferable from only the most recent 30

3After the original release of Whisper, we trained an additional
Large model (denoted V2) for 2.5X more epochs while adding
SpecAugment (Park et al., 2019), Stochastic Depth (Huang et al.,
2016), and BPE Dropout (Provilkov et al., 2019) for regularization.
Reported results have been updated to this improved model unless
otherwise specified.



ASR is a search problem

Feature extraction

Global search process:

maximize 

 over 

Acoustic model

Language model

Speech signal

Recognised Word
Sequence

Samples

Feature vectors
(mel-spec)



Weekly exercise 

• Dissect a pre-trained Whisper ASR model
• Let’s try to visualise how cross attention between speech and 

text works
• Re-implement the language model decoder – Similar to last 

week’s autoregressive text generation!



Reading list: Transformer

Attention is All you Need
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, 
Llion Jones, Aidan N. Gomez, Łukasz Kaiser, Illia Polosukhin
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547de
e91fbd053c1c4a845aa-Abstract.html



Reading list: Whisper ASR

Robust Speech Recognition via Large-Scale Weak Supervision
Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine 
McLeavey, Ilya Sutskever
https://arxiv.org/abs/2212.04356



Reading list: Attention – explained 
well with historical context
Aalto Deep Learning Course (CS-E4890), Lecture 6: Attention-
based models
Alexander Ilin
https://mycourses.aalto.fi/mod/resource/view.php?id=1013764



Lecture 8 summary

• Automatic speech recognition (ASR)
• The sequence alignment problem
• Attention mechanism in neural networks
• Transformer neural net
• ASR with Transformers


