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Lecture 9 content

• Speech synthesis
• Acoustic model

• Text to mel-spectrogram
• Tacotron 2

• Waveform model
• Mel-spectrogram to speech 
• Neural vocoders
• HiFi-GAN

• Voice cloning



Speech synthesis and recognition

• Automatic Speech Recognition (ASR) – many-to-one mapping
• Text-to-speech synthesis (TTS) – one-to-many mapping
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Attributes in speech signal
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One-to-many mapping problems

• The same text can be read in 
many equally acceptable ways 
even by the same speaker

• Synthesis by averaging over 
all possible conditions gives 
unrealistic results

• Conditioning helps if you 
have labels

• Generative models help
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Speech synthesis applications

• Screen readers and assistive devices
• Voice prostheses
• Speech interfaces
• Voice chatbots for customer service
• Conversational AI 
• Voice cloning for entertainment, virtual avatars, DeepFakes
• …



Speech synthesis - related fields 
and technology transfer
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Text-to-speech systems
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TTS front-end

• Pronounciation dictionary with letter-to-sound rules
• Very necessary in English, not so necessary in Finnish
• G2P: grapheme-to-phoneme

• Text normalisation, spell out numbers and abbreviations etc.
• Mr. -> Mister
• Etc. -> et cetera
• Today is March 14th -> Today is March fourteenth 



TTS acoustic model

• Map text sequences to acoustic feature sequences
• Acoustic model has to somehow solve the sequence alignment 

problem
• Mel-spectograms are commonly used the acoustic features 

nowadays
• Previously common: pitch and vocal tract envelope features for 

parametric synthesis
• Often used in tandem with a duration model (how long should 

each text token last in seconds / acoustic frames)



Autoregressive acoustic model

Acoustic
modelFeedback

Acoustic features
(current frame) 

Acoustic features
(previous frames) 

Alignment

Text

• Use cross-attention to 
align text with 
spectrogram

• Predict current 
spectrogram frame frame 
from previous frames

• Similar concept to 
Whisper ASR (L8) and 
LSTM Language model 
(L7)



TTS acoustic modeling with 
Tacotron 2
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ABSTRACT

This paper describes Tacotron 2, a neural network architecture for
speech synthesis directly from text. The system is composed of a
recurrent sequence-to-sequence feature prediction network that maps
character embeddings to mel-scale spectrograms, followed by a mod-
ified WaveNet model acting as a vocoder to synthesize time-domain
waveforms from those spectrograms. Our model achieves a mean
opinion score (MOS) of 4.53 comparable to a MOS of 4.58 for profes-
sionally recorded speech. To validate our design choices, we present
ablation studies of key components of our system and evaluate the im-
pact of using mel spectrograms as the conditioning input to WaveNet
instead of linguistic, duration, and F0 features. We further show that
using this compact acoustic intermediate representation allows for a
significant reduction in the size of the WaveNet architecture.

Index Terms— Tacotron 2, WaveNet, text-to-speech

1. INTRODUCTION

Generating natural speech from text (text-to-speech synthesis, TTS)
remains a challenging task despite decades of investigation [1]. Over
time, different techniques have dominated the field. Concatenative
synthesis with unit selection, the process of stitching small units
of pre-recorded waveforms together [2, 3] was the state-of-the-art
for many years. Statistical parametric speech synthesis [4, 5, 6, 7],
which directly generates smooth trajectories of speech features to be
synthesized by a vocoder, followed, solving many of the issues that
concatenative synthesis had with boundary artifacts. However, the
audio produced by these systems often sounds muffled and unnatural
compared to human speech.

WaveNet [8], a generative model of time domain waveforms, pro-
duces audio quality that begins to rival that of real human speech and
is already used in some complete TTS systems [9, 10, 11]. The inputs
to WaveNet (linguistic features, predicted log fundamental frequency
(F0), and phoneme durations), however, require significant domain
expertise to produce, involving elaborate text-analysis systems as
well as a robust lexicon (pronunciation guide).

Tacotron [12], a sequence-to-sequence architecture [13] for pro-
ducing magnitude spectrograms from a sequence of characters, sim-
plifies the traditional speech synthesis pipeline by replacing the pro-
duction of these linguistic and acoustic features with a single neural
network trained from data alone. To vocode the resulting magnitude
spectrograms, Tacotron uses the Griffin-Lim algorithm [14] for phase
estimation, followed by an inverse short-time Fourier transform. As

⇤Work done while at Google.

the authors note, this was simply a placeholder for future neural
vocoder approaches, as Griffin-Lim produces characteristic artifacts
and lower audio quality than approaches like WaveNet.

In this paper, we describe a unified, entirely neural approach to
speech synthesis that combines the best of the previous approaches:
a sequence-to-sequence Tacotron-style model [12] that generates mel
spectrograms, followed by a modified WaveNet vocoder [10, 15].
Trained directly on normalized character sequences and correspond-
ing speech waveforms, our model learns to synthesize natural sound-
ing speech that is difficult to distinguish from real human speech.

Deep Voice 3 [11] describes a similar approach. However, unlike
our system, its naturalness has not been shown to rival that of human
speech. Char2Wav [16] describes yet another similar approach to
end-to-end TTS using a neural vocoder. However, they use different
intermediate representations (traditional vocoder features) and their
model architecture differs significantly.

2. MODEL ARCHITECTURE

Our proposed system consists of two components, shown in Figure 1:
(1) a recurrent sequence-to-sequence feature prediction network with
attention which predicts a sequence of mel spectrogram frames from
an input character sequence, and (2) a modified version of WaveNet
which generates time-domain waveform samples conditioned on the
predicted mel spectrogram frames.

2.1. Intermediate Feature Representation

In this work we choose a low-level acoustic representation: mel-
frequency spectrograms, to bridge the two components. Using a
representation that is easily computed from time-domain waveforms
allows us to train the two components separately. This representation
is also smoother than waveform samples and is easier to train using a
squared error loss because it is invariant to phase within each frame.

A mel-frequency spectrogram is related to the linear-frequency
spectrogram, i.e., the short-time Fourier transform (STFT) magnitude.
It is obtained by applying a nonlinear transform to the frequency
axis of the STFT, inspired by measured responses from the human
auditory system, and summarizes the frequency content with fewer
dimensions. Using such an auditory frequency scale has the effect of
emphasizing details in lower frequencies, which are critical to speech
intelligibility, while de-emphasizing high frequency details, which
are dominated by fricatives and other noise bursts and generally do
not need to be modeled with high fidelity. Because of these properties,
features derived from the mel scale have been used as an underlying
representation for speech recognition for many decades [17].

1
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https://google.github.io/tacotron/publications/tacotron2/



Tacotron 2 architecture

• LSTM text encoder on 
characters or 
phonemes

• Cross-attention to 
align text and 
spectrogram (one 
head, one layer)

• Autoregressive LSTM 
spectrogram decoder

While linear spectrograms discard phase information (and are
therefore lossy), algorithms such as Griffin-Lim [14] are capable of
estimating this discarded information, which enables time-domain
conversion via the inverse short-time Fourier transform. Mel spectro-
grams discard even more information, presenting a challenging in-
verse problem. However, in comparison to the linguistic and acoustic
features used in WaveNet, the mel spectrogram is a simpler, lower-
level acoustic representation of audio signals. It should therefore
be straightforward for a similar WaveNet model conditioned on mel
spectrograms to generate audio, essentially as a neural vocoder. In-
deed, we will show that it is possible to generate high quality audio
from mel spectrograms using a modified WaveNet architecture.

2.2. Spectrogram Prediction Network

As in Tacotron, mel spectrograms are computed through a short-
time Fourier transform (STFT) using a 50 ms frame size, 12.5 ms
frame hop, and a Hann window function. We experimented with a
5 ms frame hop to match the frequency of the conditioning inputs
in the original WaveNet, but the corresponding increase in temporal
resolution resulted in significantly more pronunciation issues.

We transform the STFT magnitude to the mel scale using an 80
channel mel filterbank spanning 125 Hz to 7.6 kHz, followed by log
dynamic range compression. Prior to log compression, the filterbank
output magnitudes are clipped to a minimum value of 0.01 in order
to limit dynamic range in the logarithmic domain.

The network is composed of an encoder and a decoder with atten-
tion. The encoder converts a character sequence into a hidden feature
representation which the decoder consumes to predict a spectrogram.
Input characters are represented using a learned 512-dimensional
character embedding, which are passed through a stack of 3 convolu-
tional layers each containing 512 filters with shape 5⇥ 1, i.e., where
each filter spans 5 characters, followed by batch normalization [18]
and ReLU activations. As in Tacotron, these convolutional layers
model longer-term context (e.g., N -grams) in the input character
sequence. The output of the final convolutional layer is passed into a
single bi-directional [19] LSTM [20] layer containing 512 units (256
in each direction) to generate the encoded features.

The encoder output is consumed by an attention network which
summarizes the full encoded sequence as a fixed-length context vector
for each decoder output step. We use the location-sensitive attention
from [21], which extends the additive attention mechanism [22] to
use cumulative attention weights from previous decoder time steps
as an additional feature. This encourages the model to move forward
consistently through the input, mitigating potential failure modes
where some subsequences are repeated or ignored by the decoder.
Attention probabilities are computed after projecting inputs and lo-
cation features to 128-dimensional hidden representations. Location
features are computed using 32 1-D convolution filters of length 31.

The decoder is an autoregressive recurrent neural network which
predicts a mel spectrogram from the encoded input sequence one
frame at a time. The prediction from the previous time step is first
passed through a small pre-net containing 2 fully connected layers
of 256 hidden ReLU units. We found that the pre-net acting as an
information bottleneck was essential for learning attention. The pre-
net output and attention context vector are concatenated and passed
through a stack of 2 uni-directional LSTM layers with 1024 units.
The concatenation of the LSTM output and the attention context
vector is projected through a linear transform to predict the target
spectrogram frame. Finally, the predicted mel spectrogram is passed
through a 5-layer convolutional post-net which predicts a residual
to add to the prediction to improve the overall reconstruction. Each
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Layers

Bidirectional 
LSTMInput Text
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Linear 
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Waveform 
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Fig. 1. Block diagram of the Tacotron 2 system architecture.

post-net layer is comprised of 512 filters with shape 5⇥ 1 with batch
normalization, followed by tanh activations on all but the final layer.

We minimize the summed mean squared error (MSE) from before
and after the post-net to aid convergence. We also experimented
with a log-likelihood loss by modeling the output distribution with
a Mixture Density Network [23, 24] to avoid assuming a constant
variance over time, but found that these were more difficult to train
and they did not lead to better sounding samples.

In parallel to spectrogram frame prediction, the concatenation of
decoder LSTM output and the attention context is projected down
to a scalar and passed through a sigmoid activation to predict the
probability that the output sequence has completed. This “stop token”
prediction is used during inference to allow the model to dynamically
determine when to terminate generation instead of always generating
for a fixed duration. Specifically, generation completes at the first
frame for which this probability exceeds a threshold of 0.5.

The convolutional layers in the network are regularized using
dropout [25] with probability 0.5, and LSTM layers are regularized
using zoneout [26] with probability 0.1. In order to introduce output
variation at inference time, dropout with probability 0.5 is applied
only to layers in the pre-net of the autoregressive decoder.

In contrast to the original Tacotron, our model uses simpler build-
ing blocks, using vanilla LSTM and convolutional layers in the en-
coder and decoder instead of “CBHG” stacks and GRU recurrent
layers. We do not use a “reduction factor”, i.e., each decoder step
corresponds to a single spectrogram frame.

2.3. WaveNet Vocoder

We use a modified version of the WaveNet architecture from [8] to
invert the mel spectrogram feature representation into time-domain
waveform samples. As in the original architecture, there are 30
dilated convolution layers, grouped into 3 dilation cycles, i.e., the
dilation rate of layer k (k = 0 . . . 29) is 2k (mod 10). To work with
the 12.5 ms frame hop of the spectrogram frames, only 2 upsampling
layers are used in the conditioning stack instead of 3 layers.

Instead of predicting discretized buckets with a softmax layer,
we follow PixelCNN++ [27] and Parallel WaveNet [28] and use a 10-
component mixture of logistic distributions (MoL) to generate 16-bit
samples at 24 kHz. To compute the logistic mixture distribution, the
WaveNet stack output is passed through a ReLU activation followed



Tacotron 2 evaluation

by a linear projection to predict parameters (mean, log scale, mixture
weight) for each mixture component. The loss is computed as the
negative log-likelihood of the ground truth sample.

3. EXPERIMENTS & RESULTS

3.1. Training Setup

Our training process involves first training the feature prediction
network on its own, followed by training a modified WaveNet inde-
pendently on the outputs generated by the first network.

To train the feature prediction network, we apply the standard
maximum-likelihood training procedure (feeding in the correct output
instead of the predicted output on the decoder side, also referred to
as teacher-forcing) with a batch size of 64 on a single GPU. We use
the Adam optimizer [29] with �1 = 0.9,�2 = 0.999, ✏ = 10�6 and
a learning rate of 10�3 exponentially decaying to 10�5 starting after
50,000 iterations. We also apply L2 regularization with weight 10�6.

We then train our modified WaveNet on the ground truth-aligned

predictions of the feature prediction network. That is, the prediction
network is run in teacher-forcing mode, where each predicted frame
is conditioned on the encoded input sequence and the corresponding
previous frame in the ground truth spectrogram. This ensures that
each predicted frame exactly aligns with the target waveform samples.

We train with a batch size of 128 distributed across 32 GPUs with
synchronous updates, using the Adam optimizer with �1 = 0.9,�2 =
0.999, ✏ = 10�8 and a fixed learning rate of 10�4. It helps quality to
average model weights over recent updates. Therefore we maintain
an exponentially-weighted moving average of the network parameters
over update steps with a decay of 0.9999 – this version is used for
inference (see also [29]). To speed up convergence, we scale the
waveform targets by a factor of 127.5 which brings the initial outputs
of the mixture of logistics layer closer to the eventual distributions.

We train all models on an internal US English dataset[12], which
contains 24.6 hours of speech from a single professional female
speaker. All text in our datasets is spelled out. e.g., “16” is written as
“sixteen”, i.e., our models are all trained on normalized text.

3.2. Evaluation

When generating speech in inference mode, the ground truth targets
are not known. Therefore, the predicted outputs from the previous
step are fed in during decoding, in contrast to the teacher-forcing
configuration used for training.

We randomly selected 100 fixed examples from the test set of
our internal dataset as the evaluation set. Audio generated on this set
are sent to a human rating service similar to Amazon’s Mechanical
Turk where each sample is rated by at least 8 raters on a scale from
1 to 5 with 0.5 point increments, from which a subjective mean
opinion score (MOS) is calculated. Each evaluation is conducted
independently from each other, so the outputs of two different models
are not directly compared when raters assign a score to them.

Note that while instances in the evaluation set never appear in
the training set, there are some recurring patterns and common words
between the two sets. While this could potentially result in an inflated
MOS compared to an evaluation set consisting of sentences generated
from random words, using this set allows us to compare to the ground
truth. Since all the systems we compare are trained on the same data,
relative comparisons are still meaningful.

Table 1 shows a comparison of our method against various prior
systems. In order to better isolate the effect of using mel spectrograms
as features, we compare to a WaveNet conditioned on linguistic

features[8] with similar modifications to the WaveNet architecture
as introduced above. We also compare to the original Tacotron that
predicts linear spectrograms and uses Griffin-Lim to synthesize audio,
as well as concatenative [30] and parametric [31] baseline systems,
both of which have been used in production at Google. We find that
the proposed system significantly outpeforms all other TTS systems,
and results in an MOS comparable to that of the ground truth audio. †

System MOS

Parametric 3.492± 0.096
Tacotron (Griffin-Lim) 4.001± 0.087
Concatenative 4.166± 0.091
WaveNet (Linguistic) 4.341± 0.051
Ground truth 4.582± 0.053

Tacotron 2 (this paper) 4.526± 0.066

Table 1. Mean Opinion Score (MOS) evaluations with 95% confi-
dence intervals computed from the t-distribution for various systems.

We also conduct a side-by-side evaluation between audio synthe-
sized by our system and the ground truth. For each pair of utterances,
raters are asked to give a score ranging from -3 (synthesized much
worse than ground truth) to 3 (synthesized much better than ground
truth). The overall mean score of �0.270± 0.155 shows that raters
have a small but statistically significant preference towards ground
truth over our results. See Figure 2 for a detailed breakdown. The
comments from raters indicate that occasional mispronunciation by
our system is the primary reason for this preference.

Fig. 2. Synthesized vs. ground truth: 800 ratings on 100 items.

We ran a separate rating experiment on the custom 100-sentence
test set from Appendix E of [11], obtaining a MOS of 4.354. In a
manual analysis of the error modes of our system, counting errors in
each category independently, 0 sentences contained repeated words,
6 contained mispronunciations, 1 contained skipped words, and 23
were subjectively decided to contain unnatural prosody, such as em-
phasis on the wrong syllables or words, or unnatural pitch. End-point
prediction failed in a single case, on the input sentence containing the
most characters. These results show that while our system is able to
reliably attend to the entire input, there is still room for improvement
in prosody modeling.

Finally, we evaluate samples generated from 37 news headlines to
test the generalization ability of our system to out-of-domain text. On
this task, our model receives a MOS of 4.148±0.124 while WaveNet
conditioned on linguistic features receives a MOS of 4.137± 0.128.
A side-by-side evaluation comparing the output of these systems also
shows a virtual tie – a statistically insignificant preference towards our

†Samples available at https://google.github.io/tacotron/publications/tacotron2.



Tacotron 2: generated mel-
spectrogram and attention plot

"The quick brown fox jumps over the lazy dog."



Tacotron 2: 
example of attention failure

"The the the the the the the the the the"



TTS waveform model

• We can’t listen to mel spectrograms directly, but need some 
way to generate waveforms

• Magnitude spectrograms are missing phase information and 
phase is difficult to invent from scratch

• Waveform synthesis models are also known as Vocoders (from 
voice coders)



Mel-spectrum to waveform
Waveform model

Mel-spectrogram Speech

(Batch, Channels=Freq-bins, Frames) (Batch, Channels=1, Samples)

Samples = Hop-size (stride)   Frames

• Model needs to upsample from frame rate (around 100 Hz) to 
sample rate (around 20 000 Hz), total factor of 200!

• Usually done in multiple stages (progressive upsampling)

Waveform model

Mel-spectrogram Speech

(Batch, Channels=Freq-bins, Frames) (Batch, Channels=1, Samples)

Samples = Hop-size (stride)   Frames



Autoregressive waveform models

• Predict the distribution of next 
sample amplitude, given 
previous amplitude values

• Similar to the LSTM language 
model in Lecture 6!

• Use dilated convolutions to 
deal with long sequences (1s 
is 16 000 samples at 16kHz 
rate)

Sample

Feedback

Model



Autoregressive waveform models

• Condition on mel 
spectrograms to make 
the model useful in TTS 

• WaveNet and WaveRNN 
were were the first big 
success stories

Waveform
modelFeedback

Conditioning

Speech
(current sample) 

Speech
(previous sample) 

Upsample

Acoustic
features



Parallel waveform synthesis

• It’s more convenient to 
generate the full waveform 
sequence in a single 
forward pass

• Modern systems can do 
parallel syntehesis using 
diffusion models, GANs or 
neural flows

• We use HiFi-GAN in the 
exercise

Waveform
model

Conditioning

Speech

Noise

Upsample

Acoustic
features



TTS waveform synthesis with
HiFi-GAN 

HiFi-GAN: Generative Adversarial Networks for
Efficient and High Fidelity Speech Synthesis

Jungil Kong
Kakao Enterprise

henry.k@kakaoenterprise.com

Jaehyeon Kim
Kakao Enterprise

jay.xyz@kakaoenterprise.com

Jaekyoung Bae
Kakao Enterprise

storm.b@kakaoenterprise.com

Abstract

Several recent work on speech synthesis have employed generative adversarial
networks (GANs) to produce raw waveforms. Although such methods improve the
sampling efficiency and memory usage, their sample quality has not yet reached
that of autoregressive and flow-based generative models. In this work, we propose
HiFi-GAN, which achieves both efficient and high-fidelity speech synthesis. As
speech audio consists of sinusoidal signals with various periods, we demonstrate
that modeling periodic patterns of an audio is crucial for enhancing sample quality.
A subjective human evaluation (mean opinion score, MOS) of a single speaker
dataset indicates that our proposed method demonstrates similarity to human quality
while generating 22.05 kHz high-fidelity audio 167.9 times faster than real-time
on a single V100 GPU. We further show the generality of HiFi-GAN to the mel-
spectrogram inversion of unseen speakers and end-to-end speech synthesis. Finally,
a small footprint version of HiFi-GAN generates samples 13.4 times faster than
real-time on CPU with comparable quality to an autoregressive counterpart.

1 Introduction

Voice is one of the most frequent and naturally used communication interfaces for humans. With
recent developments in technology, voice is being used as a main interface in artificial intelligence
(AI) voice assistant services such as Amazon Alexa, and it is also widely used in automobiles, smart
homes and so forth. Accordingly, with the increase in demand for people to converse with machines,
technology that synthesizes natural speech like human speech is being actively studied.

Recently, with the development of neural networks, speech synthesis technology has made a rapid
progress. Most neural speech synthesis models use a two-stage pipeline: 1) predicting a low resolution
intermediate representation such as mel-spectrograms (Shen et al., 2018, Ping et al., 2017, Li et al.,
2019) or linguistic features (Oord et al., 2016) from text, and 2) synthesizing raw waveform audio
from the intermediate representation (Oord et al., 2016, 2018, Prenger et al., 2019, Kumar et al.,
2019). The first stage is to model low-level representations of human speech from text, whereas the
second stage model synthesizes raw waveforms with up to 24,000 samples per second and up to 16
bit fidelity. In this work, we focus on designing a second stage model that efficiently synthesizes high
fidelity waveforms from mel-spectrograms.

Various work have been conducted to improve the audio synthesis quality and efficiency of second
stage models. WaveNet (Oord et al., 2016) is an autoregressive (AR) convolutional neural network that
demonstrates the ability of neural network based methods to surpass conventional methods in quality.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.
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HiFi-GAN generator architecture



HiFi-GAN evaluation

Table 1: Comparison of the MOS and the synthesis speed. Speed of n kHz means that the model can
generate n⇥ 1000 raw audio samples per second. The numbers in () mean the speed compared to
real-time.

Model MOS (CI) Speed on CPU
(kHz)

Speed on GPU
(kHz)

# Param
(M)

Ground Truth 4.45 (±0.06) � � �
WaveNet (MoL) 4.02 (±0.08) � 0.07 (⇥0.003) 24.73
WaveGlow 3.81 (±0.08) 4.72 (⇥0.21) 501 (⇥22.75) 87.73
MelGAN 3.79 (±0.09) 145.52 (⇥6.59) 14,238 (⇥645.73) 4.26

HiFi-GAN V 1 4.36 (±0.07) 31.74 (⇥1.43) 3,701 (⇥167.86) 13.92
HiFi-GAN V 2 4.23 (±0.07) 214.97 (⇥9.74) 16,863 (⇥764.80) 0.92
HiFi-GAN V 3 4.05 (±0.08) 296.38 (⇥13.44) 26,169 (⇥1,186.80) 1.46

4.2 Ablation Study

We performed an ablation study of MPD, MRF, and mel-spectrogram loss to verify the effect of each
HiFi-GAN component on the quality of the synthesized audio. V 3 that has the smallest expressive
power among the three generator variations was used as a generator for the ablation study, and the
network parameters were updated up to 500k steps for each configuration.

The results of the MOS evaluation are shown in Table 2, which show all three components contribute
to the performance. Removing MPD causes a significant decrease in perceptual quality, whereas
the absence of MSD shows a relatively small but noticeable degradation. To investigate the effect
of MRF, one residual block with the widest receptive field was retained in each MRF module. The
result is also worse than the baseline. The experiment on the mel-spectrogram loss shows that it
helps improve the quality, and we observed that the quality improves more stably when the loss is
applied.

To verify the effect of MPD in the settings of other GAN models, we introduced MPD in MelGAN.
MelGAN trained with MPD outperforms the original one by a gap of 0.47 MOS, which shows
statistically significant improvement.

We experimented with periods of powers of 2 to verify the effect of periods set to prime num-
bers. While the period 2 allows signals to be processed closely, it results in statistically significant
degradation with a difference of 0.20 MOS from the baseline.

Table 2: Ablation study results. Comparison of the effect of each component on the synthesis quality.
Model MOS (CI)

Ground Truth 4.57 (±0.04)

Baseline (HiFi-GAN V 3) 4.10 (±0.05)

w/o MPD 2.28 (±0.09)
w/o MSD 3.74 (±0.05)
w/o MRF 3.92 (±0.05)
w/o Mel-Spectrogram Loss 3.25 (±0.05)
MPD p=[2,4,8,16,32] 3.90 (±0.05)

MelGAN 2.88 (±0.08)
MelGAN with MPD 3.35 (±0.07)

4.3 Generalization to Unseen Speakers

We used 50 randomly selected utterances of nine unseen speakers in the VCTK dataset that were
excluded from the training set for the MOS test. Table 3 shows the experimental results for the
mel-spectrogram inversion of the unseen speakers. The three generator variations scored 3.77, 3.69,
and 3.61. They were all better than AR and flow-based models, indicating that the proposed models

7



Generator

Generated
sampleNoise

Discriminator

Real
sample

Real or
Fake?

Generative adversarial networks 
(GANs)

• Generator transforms noise to look like it came from the real 
data distribution

• Discriminator attempts to classify between real and generated 
samples



Discriminator design

• Classifier model architectures are generally suitable for 
Discriminator use

• Generator applies progressive upsampling
• Discriminator applies progressive downsampling
• Recap: Spoken Digit Classification from Lecture 3



Convolution Block

• Typical convolution layers 
(aka Blocks) contain

• Convolutions
• Activations (ReLU)
• Residual connections
• Pooling (Max or Avg.)
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CNN classifier model

• Input layer embeds the data to 
hidden dimension

• Convolution layers learn 
representations and gradually 
downsample the input

• Global pooling deals with whatever 
sequence length remains

• Output layer projects to number of 
classes
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More courses on generative 
models
• Training GANs is out-of-scope for this course, let’s use a pre-

trained generator model and skip the training
• CS-E4890 Deep Learning D

• Currently includes generative topics, will focus on DL basics 
from 2025

• CS-E4891 Deep Generative Models D
• New course starting in spring 2025
• Covers generative topics, including GANs, Autoregressive 

models, Diffusion, Variational autoencoders, etc.



Weekly exercise 

• Dissect a pre-trained TTS system made from a Tacotron 2 
acoustic model and a HiFi-GAN vocoder

• Visualise how cross attention between speech and text works
• Track how the signal flows in the system



Voice cloning with TTS



Voice cloning system

• Extract speaker embeddings 
from a speaker recognition 
system

• TTS system is trained on 
multiple speakers and 
conditioned on speaker 
embeddings

• Embeddings are content-
agnostic – easy to enroll 
new speakers
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Reading list: Tacotron 2

Natural TTS Synthesis by Conditioning WaveNet on Mel 
Spectrogram Predictions

Paper: https://arxiv.org/abs/1712.05884

Demo: https://google.github.io/tacotron/publications/tacotron2/

Code: https://github.com/NVIDIA/tacotron2

https://arxiv.org/abs/1712.05884
https://google.github.io/tacotron/publications/tacotron2/
https://github.com/NVIDIA/tacotron2


Reading list: HiFi-GAN

HiFi-GAN: Generative Adversarial Networks for Efficient and High 
Fidelity Speech Synthesis

Paper: https://arxiv.org/abs/2010.05646

Demo: https://jik876.github.io/hifi-gan-demo/

Code: https://github.com/jik876/hifi-gan

https://arxiv.org/abs/2010.05646
https://jik876.github.io/hifi-gan-demo/
https://github.com/jik876/hifi-gan


Lecture 9 summary

• Speech synthesis
• Acoustic model

• Text to mel-spectrogram
• Tacotron 2

• Waveform model
• Mel-spectrogram to speech 
• Neural vocoders
• HiFi-GAN

• Voice cloning


