ELEC-C5220 Lecture 9: Speech synthesis

Machine learning in information technology

Lauri Juvela

14.3.2024

Lecture 9 content

- Speech synthesis
- Acoustic model
 - Text to mel-spectrogram
 - Tacotron 2
- Waveform model
 - Mel-spectrogram to speech
 - Neural vocoders
 - HiFi-GAN
- Voice cloning

Speech synthesis and recognition

- Automatic Speech Recognition (ASR) many-to-one mapping
- Text-to-speech synthesis (TTS) one-to-many mapping

Attributes in speech signal

One-to-many mapping problems

- The same text can be read in many equally acceptable ways even by the same speaker
- Synthesis by averaging over all possible conditions gives unrealistic results
- Conditioning helps if you have labels
- Generative models help

 $ext{speech} = f(ext{text}, ext{speaker}, ext{emotion}, \dots; heta)$

Speech synthesis applications

- Screen readers and assistive devices
- Voice prostheses
- Speech interfaces
- Voice chatbots for customer service
- Conversational AI
- Voice cloning for entertainment, virtual avatars, DeepFakes
- • •

Speech synthesis - related fields and technology transfer

Text-to-speech systems

TTS front-end

- Pronounciation dictionary with letter-to-sound rules
 - Very necessary in English, not so necessary in Finnish
 - G2P: grapheme-to-phoneme
- Text normalisation, spell out numbers and abbreviations etc.
 - Mr. -> Mister
 - Etc. -> et cetera
 - Today is March 14th -> Today is March fourteenth

TTS acoustic model

- Map text sequences to acoustic feature sequences
- Acoustic model has to somehow solve the sequence alignment problem
- Mel-spectograms are commonly used the acoustic features nowadays
- Previously common: pitch and vocal tract envelope features for parametric synthesis
- Often used in tandem with a duration model (how long should each text token last in seconds / acoustic frames)

Autoregressive acoustic model

- Use cross-attention to align text with spectrogram
- Predict current spectrogram frame frame from previous frames
- Similar concept to Whisper ASR (L8) and LSTM Language model (L7)

TTS acoustic modeling with Tacotron 2

NATURAL TTS SYNTHESIS BY CONDITIONING WAVENET ON MEL SPECTROGRAM PREDICTIONS

Jonathan Shen¹, Ruoming Pang¹, Ron J. Weiss¹, Mike Schuster¹, Navdeep Jaitly¹, Zongheng Yang^{*2}, Zhifeng Chen¹, Yu Zhang¹, Yuxuan Wang¹, RJ Skerry-Ryan¹, Rif A. Saurous¹, Yannis Agiomyrgiannakis¹, and Yonghui Wu¹

¹Google, Inc., ²University of California, Berkeley, {jonathanasdf,rpang,yonghui}@google.com

https://google.github.io/tacotron/publications/tacotron2/

Tacotron 2 architecture

- LSTM text encoder on characters or phonemes
- Cross-attention to align text and spectrogram (one head, one layer)
- Autoregressive LSTM spectrogram decoder

Tacotron 2 evaluation

System	MOS
Parametric	3.492 ± 0.096
Tacotron (Griffin-Lim)	4.001 ± 0.087
Concatenative	4.166 ± 0.091
WaveNet (Linguistic)	4.341 ± 0.051
Ground truth	4.582 ± 0.053
Tacotron 2 (this paper)	4.526 ± 0.066

Table 1. Mean Opinion Score (MOS) evaluations with 95% confidence intervals computed from the t-distribution for various systems.

Tacotron 2: generated melspectrogram and attention plot

"The quick brown fox jumps over the lazy dog."

Tacotron 2: example of attention failure

"The the the the the the the the the"

TTS waveform model

- We can't listen to mel spectrograms directly, but need some way to generate waveforms
- Magnitude spectrograms are missing phase information and phase is difficult to invent from scratch
- Waveform synthesis models are also known as Vocoders (from voice coders)

Mel-spectrum to waveform

Samples = Hop-size (stride) \times Frames

- Model needs to upsample from frame rate (around 100 Hz) to sample rate (around 20 000 Hz), total_xfactor of 200!
- Usually done in multiple stages (progressive upsampling)

Autoregressive waveform models

- Predict the distribution of next sample amplitude, given previous amplitude values
- Similar to the LSTM language model in Lecture 6!
- Use dilated convolutions to deal with long sequences (1s is 16 000 samples at 16kHz rate)

Autoregressive waveform models

- Condition on mel spectrograms to make the model useful in TTS
- WaveNet and WaveRNN were were the first big success stories

Parallel waveform synthesis

Noise

- It's more convenient to generate the full waveform Speech sequence in a single forward pass
- Modern systems can do parallel syntehesis using diffusion models, GANs or neural flows
- We use HiFi-GAN in the exercise

TTS waveform synthesis with HiFi-GAN

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

Jungil Kong Kakao Enterprise henry.k@kakaoenterprise.com Jaehyeon Kim Kakao Enterprise jay.xyz@kakaoenterprise.com

Jaekyoung Bae Kakao Enterprise storm.b@kakaoenterprise.com

HiFi-GAN generator architecture

Figure 1: The generator upsamples mel-spectrograms up to $|k_u|$ times to match the temporal resolution of raw waveforms. A MRF module adds features from $|k_v|$ residual blocks of different kernel sizes and dilation rates. Lastly, the *n*-th residual block with kernel size $k_v[n]$ and dilation rates $D_v[n]$ in a MRF module is depicted.

Aalto University School of Electrical Engineering

HiFi-GAN evaluation

Table 1: Comparison of the MOS and the synthesis speed. Speed of n kHz means that the model can generate $n \times 1000$ raw audio samples per second. The numbers in () mean the speed compared to real-time.

Model	MOS (CI)	Speed on CPU (kHz)	Speed on GPU (kHz)	# Param (M)
Ground Truth	4.45 (±0.06)	—	_	_
WaveNet (MoL) WaveGlow MelGAN	$\begin{array}{c} 4.02 \ (\pm 0.08) \\ 3.81 \ (\pm 0.08) \\ 3.79 \ (\pm 0.09) \end{array}$	$\begin{array}{c} - \\ 4.72 (\times 0.21) \\ 145.52 (\times 6.59) \end{array}$	$\begin{array}{rrr} 0.07 & (\times 0.003) \\ 501 & (\times 22.75) \\ 14,238 & (\times 645.73) \end{array}$	24.73 87.73 4.26
HiFi-GAN V1 HiFi-GAN V2 HiFi-GAN V3	4.36 (±0.07) 4.23 (±0.07) 4.05 (±0.08)	31.74 (×1.43) 214.97 (×9.74) 296.38 (× 13.44)	3,701 (×167.86) 16,863 (×764.80) 26,169 (× 1,186.80)	13.92 0.92 1.46

Generative adversarial networks (GANs)

- Generator transforms noise to look like it came from the real data distribution
- Discriminator attempts to classify between real and generated samples

Discriminator design

- Classifier model architectures are generally suitable for Discriminator use
- Generator applies progressive upsampling
- Discriminator applies progressive downsampling
- Recap: Spoken Digit Classification from Lecture 3

Convolution Block

- Typical convolution layers (aka Blocks) contain
 - Convolutions
 - Activations (ReLU)
 - Residual connections
 - Pooling (Max or Avg.)

CNN classifier model

- Input layer embeds the data to hidden dimension
- Convolution layers learn representations and gradually downsample the input
- Global pooling deals with whatever sequence length remains
- Output layer projects to number of classes

More courses on generative models

- Training GANs is out-of-scope for this course, let's use a pretrained generator model and skip the training
- CS-E4890 Deep Learning D
 - Currently includes generative topics, will focus on DL basics from 2025
- CS-E4891 Deep Generative Models D
 - New course starting in spring 2025
 - Covers generative topics, including GANs, Autoregressive models, Diffusion, Variational autoencoders, etc.

Weekly exercise

- Dissect a pre-trained TTS system made from a Tacotron 2 acoustic model and a HiFi-GAN vocoder
- Visualise how cross attention between speech and text works
- Track how the signal flows in the system

Voice cloning with TTS

Voice cloning system

- Extract speaker embeddings from a speaker recognition system
- TTS system is trained on multiple speakers and conditioned on speaker embeddings
- Embeddings are contentagnostic – easy to enroll new speakers

Reading list: Tacotron 2

Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions

Paper: https://arxiv.org/abs/1712.05884

Demo: <u>https://google.github.io/tacotron/publications/tacotron2/</u>

Code: <u>https://github.com/NVIDIA/tacotron2</u>

Reading list: HiFi-GAN

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

Paper: https://arxiv.org/abs/2010.05646

Demo: https://jik876.github.io/hifi-gan-demo/

Code: <u>https://github.com/jik876/hifi-gan</u>

Lecture 9 summary

- Speech synthesis
- Acoustic model
 - Text to mel-spectrogram
 - Tacotron 2
- Waveform model
 - Mel-spectrogram to speech
 - Neural vocoders
 - HiFi-GAN
- Voice cloning

