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Lecture 10 content

• Computation in deep learning models
• Parameter counting
• Operation counting – FLOPs and MACs
• Parallel and sequential computation

• Recap on model architectures
• Linear layers, fully connected networks (MLPs)
• Convolution networks
• Recurrent networks
• Attention
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1. Excellence #@REL-EVA-RE@#   
 
1.1 Quality and pertinence of the project’s research and innovation objectives (and the extent 

to which they are ambitious, and go beyond the state of the art) 
 

1.1.1 Introduction, objectives and overview of the research programme.  
Conversational-AI refers to machine learning (ML) technology that enables human-machine 
communication in a similar way to how humans communicate with each other. The area of 
Conversation-AI covers large language models (LLMs), automatic speech recognition (ASR), text-to-
speech synthesis (TTS), multimodal communication (facial expressions, sign-language) and related 
topics. There is an ongoing trend in Conversational AI to create very large ML models. Training just 
one 65B-parameters LLM emits 173 tCO2eq (tons) of carbon emission [4] (some of the largest models 
are 500B+). For comparison, just one passenger taking a popular flight between Berlin and Paris 
generates 0.196 tCO2eq [5], which is 800 times less compared to the aforementioned LLM model. A 
large number of conversational-AI models (LLM, ASR, TTS, Vision, etc.) are trained daily by 
researchers and practitioners around the world, and then serve millions of users in various applications, 
e.g., chatbots, translation, summarization, content generation. As a result, generating huge amounts of 
carbon emission (Figure 1).  
 

    
 

Figure 1: Training time and the amount of compute [petaFLOPS] is growing significantly over the recent 
years, contributing to increased carbon emission. 
 
In this research program, we will aim to create energy-efficient Deep Learning (DL) architectures that 
can significantly reduce carbon emission and mitigate climate change. The EnECAI consortium consists 
of six partners: four European universities - Eindhoven University of Technology (TUE) in the 
Netherlands, Aalto University in Finland, Aalborg University in Denmark, Universidad Politecnica de 
Madrid (UPM) in Spain - and three industry partners: ASML in the Netherlands, NVIDIA in Germany, 
and Mellanox Technologies LTD in Denmark. All partners bring the relevant expertise necessary for 
the successful execution of the proposal, in the following topics: DL, speech and language processing, 
generative AI, human-machine interaction and evaluation, AI hardware design and manufacturing. 

 
[4] Touvron et al. "Llama: Open and efficient foundation language models.". arXiv preprint arXiv:2302.13971 (2023) 
[5] https://de.myclimate.org/en/ (accessed on 22 September 2023) 



Quantifying compute cost

Theoretical: depends on assumptions, not implementation
• Traditional big-O complexity analysis
• Parameter counting
• Operation counting (FLOPs and MACs)

Empirical: depends on specific implementation and hardware
• Profiling
• Wall-clock CPU/GPU hours (or years depending on the scale)
• Energy use kWh



Parameter counting

• How many floating-point parameters does and NN model have?
• Parameters are usually tensors, need to count tensor sizes
• Useful proxy for computational complexity, easy to calculate
• Parameter count is sometimes the same as operation count, but 

not always
• RNNs, Convolutions and Attention-based models share 

parameters over time



Operation counting –
FLOPs and MACs
• FLOPs – Floating point operations

• Scalar multiplication and addition cost ~FLOP 
• Division is more expensive, depends on implementation
• Simple elementwise non-linearity cost ~FLOP
• Exponentials are more expensive, (incl. tanh and sigmoids)



Operation counting –
FLOPs and MACs
• MACs - Multiply and accumulate operations

• Many processors can multiply and accumulate in a single 
processor cycle

• Many DSP applications (i.e., filtering) rely on MAC operations
• Matrix multiplication is pure MAC



OP counting: matrix multiplication

• 2 x 2 matrix dot product with 2 x 1 vector
• How many multiplications? (FLOPs)
• How many additions? (FLOPs)
• How many MACs? 

 

 

 



OP counting: matrix multiplication

• Linear layer in neural net (actually Affine)
• How many multiplications? (FLOPs)
• How many additions? (FLOPs)
• How many MACs? 

 

 

 

 

 

 

 

 

 



Tensor parameter counts

• Scalar – 0D Tensor

• Vector – 1D Tensor

• Matrix – 2D Tensor

• Parameter count of a tensor variable is the product of its 
dimensions

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video



Tensor parameter counts

• 3D Tensor, 1D Convolution kernel

• 4D Tensor, color images

• Parameter count of a tensor variable is the product of its 
dimensions

3D Tensor, Conv1D kernel

4D Tensor, Conv2D kernel

3D Tensor, Conv1D kernel

4D Tensor, Conv2D kernel



DNN Classifier for MNIST digits

Linear layer: Linear layer:
Element-wise

activation
Class probabilities

(un-normalized)



DNN Classifier –
How many parameters?

Linear layer: Linear layer:
Element-wise

activation
Class probabilities

(un-normalized)



Minimal convolution net

• At each time-step, the 
output depends on the 
input values at current and 
previous time-steps

• Same dependency for all 
time values: weight sharing 
across time



Convolution is filtering

• Input dimension – 4 time steps
• Output dimension – 1 time step
• Complexity: filter length x 

input length MACs
• Typically filters are much 

shorter than input sequences!



Convolution is fully connected 

• Channels in CNNs are fully 
connected

• Kernel width = 1
• Input dim. = input channels
• Output dim. = output channels
• Complexity: 

prod(W.shape) * T



Convolution layer

• Fully connected over 
channels

• Fully connected over 
kernel width in time

• Apply the compute 
output values for the 
whole sequence

• Complexity: 
prod(W.shape) * T



Max pooling and strided ops

• Sliding window size (2, 2)
• Stride determines the downsampling factor, (2,2) in this case
• Complexity 

Average
pooling

Max
pooling 100 184

12 45

31 15 28 184

0 100 70 38

12 12 7 2

12 12 45 6

31 15 28 184

0 100 70 38

12 12 7 2

12 12 45 6

36 80

12 15



First order IIR unrolled in time

IIR
Filter

IIR
Filter

IIR
Filter

IIR
Filter

IIR
Filter

• For each time step, the 
filter output depends on 
the current input and 
previous state of the 
filter

• Apply the same 
operation on every time 
step (weight sharing)



Recurrent Neural Networks

• Neural networks designed for time series processing
• A non-linear analogue of multi-channel first order IIR filters 
• RNN output at each time step depends on the current input, the 

previous state of the RNN (and the network parameters)

RNN Cell

NN Layer

concat



Elman RNN

• Two matrix 
multiplications per 
time-step

• Complexity: 
(I x H + H x H) * T

• Ignore biases?
• Ignore activations?

RNN Cell

NN Layer

concat

RNN Cell

NN Layer

concat



Unrolled RNNs
• Forward pass requires sequential left-to-right processing
• Backward pass requires sequential right-to-left processing, aka 

backpropagation through time (BPTT)
• Forward and backward complexity is usually similar (focus on 

forward)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell



Long Short Term Memory (LSTM)

concat

NN Layer Element-wise
operation

Gates: Input, forget,
cell, output

concat NN Layer Element-wise
operation

Gates: Input, forget,
cell, output

concat NN Layer Element-wise
operation

Gates: Input, forget,
cell, output



Gated Recurrent Unit (GRU)

concat

NN Layer Element-wise
operation

concat

Lin

Lin

concat

NN Layer Element-wise
operation

concat

Lin

Lin

concat NN Layer Element-wise
operation

Gates: Input, forget,
cell, output



DNN Autoencoder

NN Layer

NN Layer

NN Layer

NN Layer

Flattened
image

Reconstructed
image

Encoder

Decoder

Bottleneck

• Data compression with neural 
networks

• Encoder reduces data 
dimensionality

• Decoder maps back to orignal 
data dimension

• Fully connected net: 
parameter count and 
computation match



CNN Autoencoder
• Encoder applies spatial 

dimensionality reduction by 
downsampling

• Decoder reconstructs the 
spatial dimensions by 
upsampling

• Convolution net - weight 
sharing over time

• Parameter count & FLOPS vs 
fully connected?

DownLayer

DownLayer

UpLayer

UpLayer

Input image

Reconstructed
image

Encoder

Decoder



Language model training 
(full sequence is known)

The quick brown fox jumped ___

RNN RNN RNN RNNRNN

The quick brown fox jumped

quick brown fox jumped overTarget:

Input:



Autoregressive sampling

The quick brown fox jumped ___

RNN RNN RNN RNNRNN

The quick brown fox jumped

quick brown fox jumped over

Input:

Sample Sample Sample Sample Sample

Output:



Generated mel-spectrogram and 
attention plot

"The quick brown fox jumps over the lazy dog."



Attention weights visualised 
(machine translation example)

Attention coe�cients

• Weights ↵ij can be visualized. The x-axis and y-axis of each plot correspond to the words in the

source sentence and the generated translation, respectively.

9



Attention
• No parameters! Attention is 

calculated on activations
• Dot product of two d-dim 

vectors for each time-step 
pairing

• N time-steps on the “cross” 
sequence

• M time-steps on the “self” 
sequence

• Total operations: D x N x M

Attention

Attention

Attention

Attention



Tracking FLOPs in complex 
systemsRobust Speech Recognition via Large-Scale Weak Supervision 4
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Encoding
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Multitask training data (680k hours) Sequence-to-sequence learning

Multitask training format

English transcription

Any-to-English speech translation

Non-English transcription

No speech

  “Ask not what your country can do for ⋯” 

  Ask not what your country can do for ⋯

  “El rápido zorro marrón salta sobre ⋯” 

  The quick brown fox jumps over ⋯

 “언덕 위에 올라 내려다보면 너무나 넓고 넓은 ⋯” 

  언덕 위에 올라 내려다보면 너무나 넓고 넓은 ⋯
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Figure 1. Overview of our approach. A sequence-to-sequence Transformer model is trained on many different speech processing tasks,
including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. All of these
tasks are jointly represented as a sequence of tokens to be predicted by the decoder, allowing for a single model to replace many different
stages of a traditional speech processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or
classification targets, as further explained in Section 2.3.

2.4. Training Details

We train a suite of models of various sizes in order to study
the scaling properties of Whisper. Please see Table 1 for an
overview. We train with data parallelism across accelerators
using FP16 with dynamic loss scaling and activation check-
pointing (Griewank & Walther, 2000; Chen et al., 2016).
Models were trained with AdamW (Loshchilov & Hutter,
2017) and gradient norm clipping (Pascanu et al., 2013)
with a linear learning rate decay to zero after a warmup over
the first 2048 updates. A batch size of 256 segments was
used, and the models are trained for 220 updates which is
between two and three passes over the dataset. Due to only
training for a few epochs, over-fitting is not a large concern,
and we do not use any data augmentation or regularization
and instead rely on the diversity contained within such a

large dataset to encourage generalization and robustness.
Please see Appendix F for full training hyperparameters.3

During early development and evaluation we observed that
Whisper models had a tendency to transcribe plausible but
almost always incorrect guesses for the names of speakers.
This happens because many transcripts in the pre-training
dataset include the name of the person who is speaking,
encouraging the model to try to predict them, but this infor-
mation is only rarely inferable from only the most recent 30

3After the original release of Whisper, we trained an additional
Large model (denoted V2) for 2.5X more epochs while adding
SpecAugment (Park et al., 2019), Stochastic Depth (Huang et al.,
2016), and BPE Dropout (Provilkov et al., 2019) for regularization.
Reported results have been updated to this improved model unless
otherwise specified.

• Elementary modules know 
their complexity for given 
input size

• Complex modules can ask 
their submodules for 
FLOPS counts

• Forward pass already has a 
suitable recursive logic for 
FLOPs counting, just 
include the count in return



Complexity vs. parameter count

T = time, H = hidden channels,
I = input channels, K = kernel width

Model Complexity Parameter count Time scaling

DNN

CNN (1D)

CNN (2D)

RNN

Attention 

Fixed
Fixed
Fixed
Fixed
Fixed

FixedFixed Fixed
Fixed
FixedFixed

Fixed

Fixed

Fixed

Fixed



Lecture 10 summary

• Computation in deep learning models
• Parameter counting
• Operation counting – FLOPs and MACs
• Parallel and sequential computation

• Recap on model architectures
• Linear layers, fully connected networks (MLPs)
• Convolution networks
• Recurrent networks
• Attention


