
ELEC-C5220
Lecture 10:
Computational cost in
Deep Learning
Machine learning in information technology

Lauri Juvela

21.3.2024

Lecture 10 content

• Computation in deep learning models
• Parameter counting
• Operation counting – FLOPs and MACs
• Parallel and sequential computation

• Recap on model architectures
• Linear layers, fully connected networks (MLPs)
• Convolution networks
• Recurrent networks
• Attention

Computational resources in AI

Call: HORIZON-MSCA-2023-DN-01 [DN-ID] — SEP-210996723 EnECAI

EU Grants: Application form (HE MSCA DN): V2.2 – 18.04.2023

Part B - Page 5 of 45

START PAGE COUNT – MAX 30 PAGES

1. Excellence #@REL-EVA-RE@#

1.1 Quality and pertinence of the project’s research and innovation objectives (and the extent

to which they are ambitious, and go beyond the state of the art)

1.1.1 Introduction, objectives and overview of the research programme.
Conversational-AI refers to machine learning (ML) technology that enables human-machine
communication in a similar way to how humans communicate with each other. The area of
Conversation-AI covers large language models (LLMs), automatic speech recognition (ASR), text-to-
speech synthesis (TTS), multimodal communication (facial expressions, sign-language) and related
topics. There is an ongoing trend in Conversational AI to create very large ML models. Training just
one 65B-parameters LLM emits 173 tCO2eq (tons) of carbon emission [4] (some of the largest models
are 500B+). For comparison, just one passenger taking a popular flight between Berlin and Paris
generates 0.196 tCO2eq [5], which is 800 times less compared to the aforementioned LLM model. A
large number of conversational-AI models (LLM, ASR, TTS, Vision, etc.) are trained daily by
researchers and practitioners around the world, and then serve millions of users in various applications,
e.g., chatbots, translation, summarization, content generation. As a result, generating huge amounts of
carbon emission (Figure 1).

Figure 1: Training time and the amount of compute [petaFLOPS] is growing significantly over the recent
years, contributing to increased carbon emission.

In this research program, we will aim to create energy-efficient Deep Learning (DL) architectures that
can significantly reduce carbon emission and mitigate climate change. The EnECAI consortium consists
of six partners: four European universities - Eindhoven University of Technology (TUE) in the
Netherlands, Aalto University in Finland, Aalborg University in Denmark, Universidad Politecnica de
Madrid (UPM) in Spain - and three industry partners: ASML in the Netherlands, NVIDIA in Germany,
and Mellanox Technologies LTD in Denmark. All partners bring the relevant expertise necessary for
the successful execution of the proposal, in the following topics: DL, speech and language processing,
generative AI, human-machine interaction and evaluation, AI hardware design and manufacturing.

[4] Touvron et al. "Llama: Open and efficient foundation language models.". arXiv preprint arXiv:2302.13971 (2023)
[5] https://de.myclimate.org/en/ (accessed on 22 September 2023)

Quantifying compute cost

Theoretical: depends on assumptions, not implementation
• Traditional big-O complexity analysis
• Parameter counting
• Operation counting (FLOPs and MACs)

Empirical: depends on specific implementation and hardware
• Profiling
• Wall-clock CPU/GPU hours (or years depending on the scale)
• Energy use kWh

Parameter counting

• How many floating-point parameters does and NN model have?
• Parameters are usually tensors, need to count tensor sizes
• Useful proxy for computational complexity, easy to calculate
• Parameter count is sometimes the same as operation count, but

not always
• RNNs, Convolutions and Attention-based models share

parameters over time

Operation counting –
FLOPs and MACs
• FLOPs – Floating point operations

• Scalar multiplication and addition cost ~FLOP
• Division is more expensive, depends on implementation
• Simple elementwise non-linearity cost ~FLOP
• Exponentials are more expensive, (incl. tanh and sigmoids)

Operation counting –
FLOPs and MACs
• MACs - Multiply and accumulate operations

• Many processors can multiply and accumulate in a single
processor cycle

• Many DSP applications (i.e., filtering) rely on MAC operations
• Matrix multiplication is pure MAC

OP counting: matrix multiplication

• 2 x 2 matrix dot product with 2 x 1 vector
• How many multiplications? (FLOPs)
• How many additions? (FLOPs)
• How many MACs?

OP counting: matrix multiplication

• Linear layer in neural net (actually Affine)
• How many multiplications? (FLOPs)
• How many additions? (FLOPs)
• How many MACs?

Tensor parameter counts

• Scalar – 0D Tensor

• Vector – 1D Tensor

• Matrix – 2D Tensor

• Parameter count of a tensor variable is the product of its
dimensions

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video

Scalar = 0D Tensor

Vector = 1D Tensor

Matrix = 2D Tensor

3D Tensor, e.g., multi-channel audio

4D Tensor, e.g., color images

5D Tensor, e.g., video

Tensor parameter counts

• 3D Tensor, 1D Convolution kernel

• 4D Tensor, color images

• Parameter count of a tensor variable is the product of its
dimensions

3D Tensor, Conv1D kernel

4D Tensor, Conv2D kernel

3D Tensor, Conv1D kernel

4D Tensor, Conv2D kernel

DNN Classifier for MNIST digits

Linear layer: Linear layer:
Element-wise

activation
Class probabilities

(un-normalized)

DNN Classifier –
How many parameters?

Linear layer: Linear layer:
Element-wise

activation
Class probabilities

(un-normalized)

Minimal convolution net

• At each time-step, the
output depends on the
input values at current and
previous time-steps

• Same dependency for all
time values: weight sharing
across time

Convolution is filtering

• Input dimension – 4 time steps
• Output dimension – 1 time step
• Complexity: filter length x

input length MACs
• Typically filters are much

shorter than input sequences!

Convolution is fully connected

• Channels in CNNs are fully
connected

• Kernel width = 1
• Input dim. = input channels
• Output dim. = output channels
• Complexity:

prod(W.shape) * T

Convolution layer

• Fully connected over
channels

• Fully connected over
kernel width in time

• Apply the compute
output values for the
whole sequence

• Complexity:
prod(W.shape) * T

Max pooling and strided ops

• Sliding window size (2, 2)
• Stride determines the downsampling factor, (2,2) in this case
• Complexity

Average
pooling

Max
pooling 100 184

12 45

31 15 28 184

0 100 70 38

12 12 7 2

12 12 45 6

31 15 28 184

0 100 70 38

12 12 7 2

12 12 45 6

36 80

12 15

First order IIR unrolled in time

IIR
Filter

IIR
Filter

IIR
Filter

IIR
Filter

IIR
Filter

• For each time step, the
filter output depends on
the current input and
previous state of the
filter

• Apply the same
operation on every time
step (weight sharing)

Recurrent Neural Networks

• Neural networks designed for time series processing
• A non-linear analogue of multi-channel first order IIR filters
• RNN output at each time step depends on the current input, the

previous state of the RNN (and the network parameters)

RNN Cell

NN Layer

concat

Elman RNN

• Two matrix
multiplications per
time-step

• Complexity:
(I x H + H x H) * T

• Ignore biases?
• Ignore activations?

RNN Cell

NN Layer

concat

RNN Cell

NN Layer

concat

Unrolled RNNs
• Forward pass requires sequential left-to-right processing
• Backward pass requires sequential right-to-left processing, aka

backpropagation through time (BPTT)
• Forward and backward complexity is usually similar (focus on

forward)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Long Short Term Memory (LSTM)

concat

NN Layer Element-wise
operation

Gates: Input, forget,
cell, output

concat NN Layer Element-wise
operation

Gates: Input, forget,
cell, output

concat NN Layer Element-wise
operation

Gates: Input, forget,
cell, output

Gated Recurrent Unit (GRU)

concat

NN Layer Element-wise
operation

concat

Lin

Lin

concat

NN Layer Element-wise
operation

concat

Lin

Lin

concat NN Layer Element-wise
operation

Gates: Input, forget,
cell, output

DNN Autoencoder

NN Layer

NN Layer

NN Layer

NN Layer

Flattened
image

Reconstructed
image

Encoder

Decoder

Bottleneck

• Data compression with neural
networks

• Encoder reduces data
dimensionality

• Decoder maps back to orignal
data dimension

• Fully connected net:
parameter count and
computation match

CNN Autoencoder
• Encoder applies spatial

dimensionality reduction by
downsampling

• Decoder reconstructs the
spatial dimensions by
upsampling

• Convolution net - weight
sharing over time

• Parameter count & FLOPS vs
fully connected?

DownLayer

DownLayer

UpLayer

UpLayer

Input image

Reconstructed
image

Encoder

Decoder

Language model training
(full sequence is known)

The quick brown fox jumped ___

RNN RNN RNN RNNRNN

The quick brown fox jumped

quick brown fox jumped overTarget:

Input:

Autoregressive sampling

The quick brown fox jumped ___

RNN RNN RNN RNNRNN

The quick brown fox jumped

quick brown fox jumped over

Input:

Sample Sample Sample Sample Sample

Output:

Generated mel-spectrogram and
attention plot

"The quick brown fox jumps over the lazy dog."

Attention weights visualised
(machine translation example)

Attention coe�cients

• Weights ↵ij can be visualized. The x-axis and y-axis of each plot correspond to the words in the

source sentence and the generated translation, respectively.

9

Attention
• No parameters! Attention is

calculated on activations
• Dot product of two d-dim

vectors for each time-step
pairing

• N time-steps on the “cross”
sequence

• M time-steps on the “self”
sequence

• Total operations: D x N x M

Attention

Attention

Attention

Attention

Tracking FLOPs in complex
systemsRobust Speech Recognition via Large-Scale Weak Supervision 4

⋯

⋯

2 × Conv1D + GELU

⋮

cr
os

s
at

te
nt

io
n

Log-Mel Spectrogram

~
SOT EN TRANS-

CRIBE 0.0 The quick

Tokens in Multitask Training Format

Transformer
Encoder Blocks Transformer

Decoder Blocks

EN 0.0 The quick brown

⋮ ⋮

next-token
prediction

Sinusoidal
Positional
Encoding

Learned
Positional
Encoding

Multitask training data (680k hours) Sequence-to-sequence learning

Multitask training format

English transcription

Any-to-English speech translation

Non-English transcription

No speech

 “Ask not what your country can do for ⋯”

 Ask not what your country can do for ⋯

 “El rápido zorro marrón salta sobre ⋯”

 The quick brown fox jumps over ⋯

 “언덕 위에 올라 내려다보면 너무나 넓고 넓은 ⋯”

 언덕 위에 올라 내려다보면 너무나 넓고 넓은 ⋯

 (background music playing)

 ∅

PREV

special
tokens

text
tokens

timestamp
tokens

START OF
TRANSCRIPT

LANGUAGE
TAG

NO
SPEECH

EOT

TRANSCRIBE

TRANSLATE

begin
time

NO
TIMESTAMPS

⋯end
timetext tokens begin

time
end
timetext tokens

text tokens

Voice activity
detection

(VAD)

Custom vocabulary /
prompting

Time-aligned transcription

Text-only transcription
(allows dataset-specific fine-tuning)

X → English
Translation

previous
text tokens

X → X
Transcription

Language
identification

MLP

self attention

MLP

self attention

MLP

self attention

MLP

cross attention

self attention

MLP

cross attention

self attention

MLP

cross attention

self attention

TRANS-
CRIBE

Figure 1. Overview of our approach. A sequence-to-sequence Transformer model is trained on many different speech processing tasks,
including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. All of these
tasks are jointly represented as a sequence of tokens to be predicted by the decoder, allowing for a single model to replace many different
stages of a traditional speech processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or
classification targets, as further explained in Section 2.3.

2.4. Training Details

We train a suite of models of various sizes in order to study
the scaling properties of Whisper. Please see Table 1 for an
overview. We train with data parallelism across accelerators
using FP16 with dynamic loss scaling and activation check-
pointing (Griewank & Walther, 2000; Chen et al., 2016).
Models were trained with AdamW (Loshchilov & Hutter,
2017) and gradient norm clipping (Pascanu et al., 2013)
with a linear learning rate decay to zero after a warmup over
the first 2048 updates. A batch size of 256 segments was
used, and the models are trained for 220 updates which is
between two and three passes over the dataset. Due to only
training for a few epochs, over-fitting is not a large concern,
and we do not use any data augmentation or regularization
and instead rely on the diversity contained within such a

large dataset to encourage generalization and robustness.
Please see Appendix F for full training hyperparameters.3

During early development and evaluation we observed that
Whisper models had a tendency to transcribe plausible but
almost always incorrect guesses for the names of speakers.
This happens because many transcripts in the pre-training
dataset include the name of the person who is speaking,
encouraging the model to try to predict them, but this infor-
mation is only rarely inferable from only the most recent 30

3After the original release of Whisper, we trained an additional
Large model (denoted V2) for 2.5X more epochs while adding
SpecAugment (Park et al., 2019), Stochastic Depth (Huang et al.,
2016), and BPE Dropout (Provilkov et al., 2019) for regularization.
Reported results have been updated to this improved model unless
otherwise specified.

• Elementary modules know
their complexity for given
input size

• Complex modules can ask
their submodules for
FLOPS counts

• Forward pass already has a
suitable recursive logic for
FLOPs counting, just
include the count in return

Complexity vs. parameter count

T = time, H = hidden channels,
I = input channels, K = kernel width

Model Complexity Parameter count Time scaling

DNN

CNN (1D)

CNN (2D)

RNN

Attention

Fixed
Fixed
Fixed
Fixed
Fixed

FixedFixed Fixed
Fixed
FixedFixed

Fixed

Fixed

Fixed

Fixed

Lecture 10 summary

• Computation in deep learning models
• Parameter counting
• Operation counting – FLOPs and MACs
• Parallel and sequential computation

• Recap on model architectures
• Linear layers, fully connected networks (MLPs)
• Convolution networks
• Recurrent networks
• Attention

