ELEC-C5220 Lecture 10: Computational cost in Deep Learning

Machine learning in information technology

Lauri Juvela

21.3.2024

Lecture 10 content

Computation in deep learning models

- Parameter counting
- Operation counting FLOPs and MACs
- Parallel and sequential computation

Recap on model architectures

- Linear layers, fully connected networks (MLPs)
- Convolution networks
- Recurrent networks
- Attention

Computational resources in Al

Quantifying compute cost

Theoretical: depends on assumptions, not implementation

- Traditional big-O complexity analysis
- Parameter counting
- Operation counting (FLOPs and MACs)

Empirical: depends on specific implementation and hardware

- Profiling
- Wall-clock CPU/GPU hours (or years depending on the scale)
- Energy use kWh

Parameter counting

- How many floating-point parameters does and NN model have?
- Parameters are usually tensors, need to count tensor sizes
- Useful proxy for computational complexity, easy to calculate
- Parameter count is sometimes the same as operation count, but not always
- RNNs, Convolutions and Attention-based models share parameters over time

Operation counting – FLOPs and MACs

FLOPs – Floating point operations

- Scalar multiplication and addition cost ~FLOP
- Division is more expensive, depends on implementation
- Simple elementwise non-linearity cost ~FLOP
- Exponentials are more expensive, (incl. tanh and sigmoids)

Operation counting – FLOPs and MACs

- MACs Multiply and accumulate operations
 - Many processors can multiply and accumulate in a single processor cycle
 - Many DSP applications (i.e., filtering) rely on MAC operations
 - Matrix multiplication is pure MAC

OP counting: matrix multiplication

$$egin{bmatrix} a & b \ c & d \end{bmatrix} egin{bmatrix} e \ f \end{bmatrix} = egin{bmatrix} ae+be \ cf+df \end{bmatrix}$$

- 2 x 2 matrix dot product with 2 x 1 vector
- How many multiplications? (FLOPs)
- How many additions? (FLOPs)
- How many MACs?

OP counting: matrix multiplication

$$egin{aligned} \mathbf{y} &= \mathbf{A}\mathbf{x} + \mathbf{b} & \mathbf{y} \in \mathbb{R}^M & \mathbf{A} \in \mathbb{R}^{M imes N} \ y_i &= \sum_j a_{i,j} x_j + b_i & \mathbf{b} \in \mathbb{R}^M & \mathbf{x} \in \mathbb{R}^N \end{aligned}$$

- Linear layer in neural net (actually Affine)
- How many multiplications? (FLOPs)
- How many additions? (FLOPs)
- How many MACs?

Tensor parameter counts

- Scalar 0D Tensor $x \in \mathbb{R}$ ()
- Vector 1D Tensor $\mathbf{x} \in \mathbb{R}^D$ (D)
- Matrix 2D Tensor $\mathbf{X} \in \mathbb{R}^{N imes M}$ (N, M)
- Parameter count of a tensor variable is the product of its dimensions

Tensor parameter counts

3D Tensor, 1D Convolution kernel

$$x \in \mathbb{R}^{(C_{ ext{out}} imes C_{ ext{in}} imes K)} \qquad (C_{ ext{out}}, C_{ ext{in}}, K)$$

• 4D Tensor, color images

$$x \in \mathbb{R}^{(C_{ ext{out}} imes C_{ ext{in}} imes H imes W)} \; \; \left(C_{ ext{out}}, C_{ ext{in}}, H, W
ight)$$

 Parameter count of a tensor variable is the product of its dimensions

DNN Classifier for MNIST digits

Minimal convolution net

- At each time-step, the output depends on the input values at current and previous time-steps
- Same dependency for all time values: weight sharing across time

Convolution is filtering

- Input dimension 4 time steps
- Output dimension 1 time step
- Complexity: filter length x
 input length MACs
- Typically filters are much shorter than input sequences!

$$egin{array}{c} & & & & \ & & & \ & & & \ & & \ & & \ & & \ & & \ & \ & & \$$

 $y_t = \sum_{i=0} W_{i,0} x_{t-i}$

 y_t

Convolution is fully connected

- Channels in CNNs are fully connected
- Kernel width = 1
- Input dim. = input channels
- Output dim. = output channels
- Complexity: prod(W.shape) * T

Convolution layer

- Fully connected over channels
- Fully connected over kernel width in time
- Apply the compute output values for the whole sequence
- Complexity: prod(W.shape) * T

Max pooling and strided ops

- Sliding window size (2, 2)
- Stride determines the downsampling factor, (2,2) in this case
- Complexity

First order IIR unrolled in time

- For each time step, the filter output depends on the current input and previous state of the filter
- Apply the same operation on every time step (weight sharing)

Recurrent Neural Networks

- Neural networks designed for time series processing
- A non-linear analogue of multi-channel first order IIR filters
- RNN output at each time step depends on the current input, the previous state of the RNN (and the network parameters)

$$h_t = f(x_t, h_{t-1}; heta)$$

Elman RNN

- Two matrix multiplications per time-step
- Complexity:
 (I x H + H x H) * T
- Ignore biases?
- Ignore activations?

$$h_t = anh(W_{ih}x_t + b_{ih} + W_{hh}h_{t-1} + b_{hh})$$

Unrolled RNNs

- Forward pass requires sequential left-to-right processing
- Backward pass requires sequential right-to-left processing, aka backpropagation through time (BPTT)
- Forward and backward complexity is usually similar (focus on forward)

Long Short Term Memory (LSTM)

School of Elect

Gated Recurrent Unit (GRU)

$$egin{aligned} r_t &= \sigma(W_{ir}x_t + b_{ir} + W_{hr}h_{t-1} + b_{hr}) \ n_t &= anh(W_{in}x_t + b_{in} + r_t \odot (W_{hn}h_{t-1} + b_{hn})) \ z_t &= \sigma(W_{iz}x_t + b_{iz} + W_{hz}h_{t-1} + b_{hz}) \ h_t &= (1-z_t) \odot n_t + z_t \odot h_{t-1} \end{aligned}$$

DNN Autoencoder

- Data compression with neural networks
- Encoder reduces data dimensionality
- Decoder maps back to orignal data dimension
- Fully connected net: parameter count and computation match

CNN Autoencoder

- Encoder applies spatial dimensionality reduction by downsampling
- Decoder reconstructs the spatial dimensions by upsampling
- Convolution net weight sharing over time
- Parameter count & FLOPS vs fully connected?

(Batch, Channels, Height, Width)

Language model training (full sequence is known)

Autoregressive sampling

Aalto University School of Electrical Engineering

Generated mel-spectrogram and attention plot

"The quick brown fox jumps over the lazy dog."

Attention weights visualised (machine translation example)

Attention

- No parameters! Attention is calculated on activations
- Dot product of two d-dim vectors for each time-step pairing
- N time-steps on the "cross"
 sequence
- M time-steps on the "self"
 sequence
- Total operations: D x N x M

$$\mathbf{o}_i = \sum_{j=1}^n lpha_{i,j} \mathbf{z_j}$$

Tracking FLOPs in complex systems

- Elementary modules know their complexity for given input size
- Complex modules can ask their submodules for FLOPS counts
- Forward pass already has a suitable recursive logic for FLOPs counting, just include the count in return

Complexity vs. parameter count

Model	Complexity	Parameter count	Time scaling
DNN	T imes I imes H	T imes I imes H	Fixed
CNN (1D)	T imes H imes I imes K	H imes I imes K	T
CNN (2D)	$T imes H imes I imes K_{ m h} imes K_{ m w}$	$H imes I imes K_{ m h} imes K_{ m w}$	T
RNN	T imes (I imes H+H imes H)	I imes H+H imes H	T
Attention	$T_{ m self} imes T_{ m cross} imes H$	I imes H + H imes I	$T_{ m solf} imes T_{ m arross}$
	+I imes H+H imes I		- sen ··· - cross

T = time, H = hidden channels, I = input channels, K = kernel width

Lecture 10 summary

Computation in deep learning models

- Parameter counting
- Operation counting FLOPs and MACs
- Parallel and sequential computation

Recap on model architectures

- Linear layers, fully connected networks (MLPs)
- Convolution networks
- Recurrent networks
- Attention

