EEN-E2001 Computational Fluid Dynamics

Lecture 1: Partial Differential Equations and Finite Difference Method

Prof. Ville Vuorinen

January $15^{\text {th }} 2024$
Aalto University, School of Engineering

Lecture 1: Linear PDEs and finite difference method
$\frac{\partial T}{\partial t}+\nabla \cdot T \boldsymbol{u}=\alpha \nabla^{2} T$
$\frac{\partial T}{\partial x} \approx \frac{T_{i+1}-T_{i-1}}{2 \Delta x}$

Lecture 4: OpenFOAM code and structure

Lecture 2: Gauss’ theorem and finite volume method

$\boldsymbol{u} \cdot \boldsymbol{n} d S \approx \Sigma_{f} \boldsymbol{u}_{f} \cdot \boldsymbol{n}_{f} d S_{f}$

Lecture 5: Fluid physical phenomena: (laminar and turbulent flow)

Lecture 3: Navier-Stokes equation and pressure
$\frac{\partial \boldsymbol{u}}{\partial t}+\nabla \cdot \boldsymbol{u} \boldsymbol{u}=-\nabla p+v \nabla^{2} \boldsymbol{u}$

$-\nabla^{2} p=\nabla \cdot \nabla \cdot u u$

Lecture 6: Matrix equations $\mathrm{Ax}=\mathrm{b}$ and final assignment

\square

CFD simulation and PDE solution includes at least the following aspects covered on the course

1) Physics identification. System length and timescales.
2) Mathematical equations and physics interpretation boundary/initial conditions.
3) Objectives, feasibility, and time-constraints.
4) Numerical method and modeling assumptions.
5) Geometry and mesh generation.
6) Computing i.e. running simulation.
7) Visualization and post-processing.
8) Validation and verification, reference data. Reporting, analysis and discussion of the results. Are the results sane?

Background

CFD at Aalto/ENG

Computational fluid dynamics team at Aalto University/ENG, Finland

- Prof. V.Vuorinen + Prof. O.Kaario +20 researchers
- 15 supervised PhD's, 100+ journal papers
- Hydrogen, e-fuels, reactive multiphase flow, heat transfer, gas-/hydrodynamics - OpenFOAM, StarCCM+, STAR-CD, LES/DNS/RANS/DES, DLBFoam

Wind power efficiency in landscapes Healthy indoor air/vertical farming Energy conversion to H2/burners

Energy conversion to $\mathrm{H} 2 /$ engines

Heat transfer and energy

Hydrogen flame physics/chemistry

Courtesy:
Z.Shahin (2023)

COVID-19: a rather unexpected, new context to CFD

Simulation by:
M.Auvinen \&A.Hellsten/FMI

$$
\begin{aligned}
& 1-10 \mu \mathrm{~m} \\
& 10-90 \mu \mathrm{~m} \\
& 90-100 \mu \mathrm{~m}
\end{aligned}
$$

Courtesy: E.Laurila (submitted)

Aerosols and airflow

Droplets

Partial differential equations

Convection and diffusion as transport mechanisms

In fluid dynamics, we are interested in understanding how different variables e.g. velocity/concentration/temperature - change in space ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) and time (t). Unknown functions below could be typically velocity and concentration fields.
Transport mechanisms: convection (velocity) and diffusion (molecular)

Ordinary differential equations (ODEs) describe commonly time dependency of physical system. No space coordinate dependency.

ODE for $\mathrm{y}=\mathrm{y}(\mathrm{t})=$? (e.g. radioactivity decay/Newton's cooling law)

$$
\frac{d y}{d t}=-\lambda y(t)
$$

Initial condition

$$
y(t=0)=y_{o}
$$

Analytical solution

$$
y(t)=y_{o} e^{-\lambda t}
$$

First of all, to resolve space-dependent functions, we need enough many grid points i.e. high enough resolution.

Partial differential equations (PDEs) describe space-time dependency of a physical system.
Convection-diffusion (CD) eqn is the key PDE of fluid dynamics. CD-eqn is a general conservation law (mass, momentum, energy,..)

Smoke cloud moving in air can be accurately modeled by solving Navier-Stokes equation and CD-eqn for smoke concentration

$\vec{u}=\vec{u}(x, y, z, t)$
$c=c(x, y, z, t)$

For a PDE problem to be well posed, it is necessary to have boundary and initial conditions.

E.g. convection-diffusion equation (1d)

Initial condition

$$
c(x, t=0)=c_{o}(x)
$$

Boundary conditions. For example: fixed values,

$$
c(x=0)=c_{1} \quad c(x=L)=c_{2}
$$

Convection equation (1d)

Analytical solution: shape maintained and function travels/shifts at velocity u CD2/FD (central difference, $2^{\text {nd }}$ order, finite difference): numerical dispersion is additionally noted at later times
E.g. concentration cloud moves due to wind.

Convection-diffusion equation (1d)

Solutions travel at velocity u while amplitude decreases

$$
\frac{\partial c}{\partial t}+u \frac{\partial c}{\partial x}=\alpha \frac{\partial^{2} c}{\partial x^{2}}
$$

$\mathrm{c}=\mathrm{e} . \mathrm{g}$. temperature, concentration $\alpha=d i f f u s i v i t y\left[m^{2} / \mathrm{s}\right]$

Diffusion equation i.e. heat equation (1d)

Solution amplitude decreases and the diffusion spreads the function
E.g. heat conducts from more hot towards cooler parts

c=e.g. temperature, concentration $\alpha=$ diffusivity [m²/s]

Wave equation (1d)

Waves start traveling in opposite directions with velocities $\pm \mathrm{u}$ E.g. sound waves in air

c=wave amplitude
$u=$ wave speed (e.g. speed of sound)

Example: solution of the convection equation by pen and paper

A smoke cloud concentration $c(x, t)$ is transported by wind along the x-direction. The initial condition $c(x, t=0)=g(x)$ and the wind velocity $u>0$ and t=time.

$$
\frac{\partial c}{\partial t}+u \frac{\partial c}{\partial x}=0
$$

We observe that the solution is $\mathrm{c}=\mathrm{g}(\mathrm{x}-\mathrm{ut})$ because if we substitute this expression to the convection eqn above then it fulfills the equation.

```
Proof:
1) Define a new variable z=x-ut
2) By chain rule of derivation applied on c=g(x-ut):
(i) }\mp@subsup{\textrm{c}}{\textrm{t}}{}=\mp@subsup{\textrm{c}}{\textrm{z}}{}\mp@subsup{\textrm{z}}{\textrm{t}}{}=-\mp@subsup{\textrm{uc}}{\textrm{z}}{}\mathrm{ and
(ii) }\mp@subsup{\textrm{c}}{\textrm{x}}{}=\mp@subsup{\textrm{c}}{\textrm{z}}{}\mp@subsup{\textrm{z}}{\textrm{x}}{}=\mp@subsup{\textrm{c}}{\textrm{z}}{
3) Thus: ct + uc}\mp@subsup{x}{x}{}=-u\mp@subsup{c}{z}{}+u\mp@subsup{c}{z}{}=
```

Conclusion: the solution has the same shape as the initial condition and it is just "shifting" in positive x-direction at velocity u (as we saw earlier).

Numerical solution using finite difference method

Common space discretization methods needed to solve PDEs

Finite difference:
Central scheme (CD2)

$$
\frac{\partial c}{\partial x} \approx \frac{c_{i+1}-c_{i-1}}{2 \Delta x}
$$

Finite volume

Common time discretization methods needed to solve PDEs

Euler method ($1^{\text {st }}$ order)

$$
\frac{\partial c}{\partial t} \approx \frac{c_{i}^{n+1}-c_{i}^{n}}{\Delta t}
$$

Backward difference (2 ${ }^{\text {nd }}$ order)

$$
\frac{\partial c}{\partial t} \approx \frac{3 c_{i}^{n+1}-4 c_{i}^{n}+c_{i}^{n-1}}{2 \Delta t}
$$

Finite difference solution of convection-diffusion equation (Explicit Euler method + central difference CD2)

\rightarrow Can be solved easily by computer (e.g. Week 1 Matlab class).

Discretization formulae come from Taylor series

- For example, where does the central difference formula (CD2) come from?

$$
\frac{\partial f}{\partial x} \approx \frac{f_{i+1}-f_{i-1}}{2 \Delta x}
$$

- A function can be expanded in Taylor series around point x

$$
f(x+\Delta x)=f(x)+\frac{\partial f(x)}{\partial x} \Delta x+\frac{1}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}+\frac{1}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}+\ldots
$$

$$
f(x-\Delta x)=f(x)-\frac{\partial f(x)}{\partial x} \Delta x+\frac{1}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}-\frac{1}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}+\ldots
$$

- We would like to find a numerical, discrete approximation for $f^{\prime}(x)$ using the values $f\left(x_{i}\right)=f_{i}, f\left(x_{i}+\Delta x\right)=f_{i+1}$ and $f\left(x_{i}-\Delta x\right)=f_{i-1}$
- We see directly that:

$$
f(x+\Delta x)-f(x-\Delta x)=2 \frac{\partial f(x)}{\partial x} \Delta x+\frac{2}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}+O\left(\Delta x^{5}\right)
$$

$$
\frac{f(x+\Delta x)-f(x-\Delta x)}{2 \Delta x}+O\left(\Delta x^{2}\right) \approx \frac{\partial f(x)}{\partial x} \text {, where } O\left(\Delta x^{2}\right) \text { is the leading error term. }
$$

- The CD2 scheme above is said to be "second order" because the leading order term in the error is a polynomial of degree 2 i.e. $O\left(\Delta x^{2}\right)$
- Taking more points would allow to construct more accurate higher degree discretization schemes which would pose less numerical dispersion/diffusion.

Differential operators

Gradient and divergence

Gradient is a vector operator:
$\nabla=\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}$
Gradient of a scalar function is a vector:
$\nabla \phi=\vec{i} \frac{\partial \phi}{\partial x}+\vec{j} \frac{\partial \phi}{\partial y}+\vec{k} \frac{\partial \phi}{\partial z}$
Divergence of a vector is the scalar product of gradient with vector which is a scalar:

```
\nabla\cdot\boldsymbol{u}=\frac{\partial\mp@subsup{u}{1}{}}{\partialx}+\frac{\partial\mp@subsup{u}{2}{}}{\partialy}+\frac{\partial\mp@subsup{u}{3}{}}{\partialz}
```

Divergence of a gradient is the scalar operator i.e. the Laplacian operator:
$\nabla \cdot \nabla=\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$

In CD-equation, convection and diffusion terms contain divergence

Convection term:

Note:

$1^{\text {st }}$ derivatives

Diffusion term (const. diffusivity):

$$
\nabla \cdot(v \nabla \phi)=v \nabla \cdot \nabla \phi=v \frac{\partial^{2} \phi}{\partial x^{2}}+v \frac{\partial^{2} \phi}{\partial y^{2}}+v \frac{\partial^{2} \phi}{\partial z^{2}}
$$

Tensors

Used short-hand notation for multiplying vectors uи

\longrightarrow If we define u as 3 by 1 vector then how can we multiply two vectors?
\longrightarrow The used short-hand is here understood as matrix product $\boldsymbol{u} \boldsymbol{u}=\boldsymbol{u} \boldsymbol{u}^{T}$
\longrightarrow In the present notation uu defines a 3 by 3 matrix also called a "tensor"

```
u\boldsymbol{u}=[\mp@subsup{u}{i}{}\mp@subsup{u}{j}{}\mp@subsup{]}{3\times3}{}
```

Column index

Divergence of vector and tensor

Divergence of a vector is a scalar:
$\nabla \cdot \boldsymbol{u}=\frac{\partial u_{1}}{\partial x}+\frac{\partial u_{2}}{\partial y}+\frac{\partial u_{3}}{\partial z}$

Divergence of a tensor is a vector:

$\nabla \cdot \boldsymbol{u} \boldsymbol{u}=\vec{C}$

Thus: we can think that taking divergence reduces the dimensionality of the object.

- divergence of 3 by 3 tensor gives a 3 by 1 vector
- divergence of 3 by 1 vector gives a scalar (think: "1 by 1" matrix)

Einstein summation convention and index notation

Einstein summation convention: if index appears twice, sum over the index

Divergence of vector:
$\nabla \cdot \boldsymbol{u}=\frac{\partial u_{i}}{\partial x_{i}}=\Sigma_{i=1}^{3} \frac{\partial u_{i}}{\partial x_{i}}$
Divergence of tensor:
$\nabla \cdot \boldsymbol{u} \boldsymbol{u}=\frac{\partial u_{i} u_{j}}{\partial x_{j}}=u_{j} \frac{\partial u_{i}}{\partial x_{j}}+u_{i} \frac{\partial u_{j}}{\partial x_{j}}$
Divergence of gradient of scalar:
$v \nabla \cdot \nabla u_{i}=v \frac{\partial^{2} u_{i}}{\partial x_{j}^{2}}$

In incompressible flows the latter term is zero:

