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After the lecture the student: 

- Can explain connection between Gauss’ theorem and the 
finite volume method (fvm)

- Can write down & derive the fvm discretized 1d convection-
diffusion problem (relevance: HW2) 

Intended learning objectives of the full lecture
 



  

In fact, Gauss (left) and Newton (right) developed much of the 
mathematics and physics tools & thinking that we use 

nowadays in our CFD simulations

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/File:Carl_Friedrich_Gauss_1840_by_Jensen.jpg https://en.wikipedia.org/wiki/File:Portrait_of_Sir_Isaac_Newton,_1689.jpg

https://en.wikipedia.org/wiki/Isaac_Newton

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/File:Carl_Friedrich_Gauss_1840_by_Jensen.jpg
https://en.wikipedia.org/wiki/File:Portrait_of_Sir_Isaac_Newton,_1689.jpg
https://en.wikipedia.org/wiki/Isaac_Newton


  

1) Physics identification.  

2) Mathematical equations and physics interpretation. 
Boundary/initial conditions.

3) Objectives, feasibility, and time-constraints. 

4) Numerical method and modeling assumptions.

5) Geometry and mesh generation. 

6) Computing i.e. running simulation. 

7) Visualization and post-processing.

8) Validation and verification, reference data. Reporting, 
analysis and discussion of the results. Are the results sane?  

CFD simulation and PDE solution includes at least 
the following aspects covered on the course

 



  

Example applications on finite volume method 
CFD simulations



  

Visual example: Aerodynamics CFD simulation 
using the finite volume method (OpenFOAM)

 The Motorbike tutorial and steady state velocity field

https://www.youtube.com/watch?v=1C4Av_yCfpw&list=RDCMUCDuQsPzfqxcYKVp_uuKCzqw&start_radio=1&rv=1C4Av_yCfpw&t=6

https://www.youtube.com/watch?v=1C4Av_yCfpw&list=RDCMUCDuQsPzfqxcYKVp_uuKCzqw&start_radio=1&rv=1C4Av_yCfpw&t=6


  

Basic idea of finite volume method: divide geometry into small 
volumes and update numerical solution at volume centroids by 

estimating e.g. mass & momentum fluxes through the faces of the 
control volumes during small time intervals

Control volume

V
P

V
N



  

Visual research examples: recent high-performance computing 
applications using finite volume method (OpenFOAM) in my  team

https://www.sciencedirect.com/science/article/abs/pii/S0029801821017194?via%3Dihub

∂c
∂ t

+u⃗⋅∇ c=α ∇
2c

u⃗= u⃗ (x , y , z , t)

c=c (x , y , z , t)

∂ u⃗
∂ t

+u⃗⋅∇ u⃗=−∇ p+ν∇
2 u⃗

Navier-Stokes (Newton’s 2nd law)

Convection-Diffusion eqn

Velocity 

Concentration

a)

Ship hydrodynamics simulation by: P.Kanninen & P.Peltonen

Indoor airflow simulation by: V.Vuorinen. Visualization: M.Gadalla
Indoor airflow simulation by: M.Korhonen

Ship hull

https://www.sciencedirect.com/science/article/abs/pii/S0029801821017194?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0029801821017194?via%3Dihub


  

“Computational cost” depends on numerous aspects: 
Type of software, computing infrastructure, how long can you wait, method, 

resolution, how long we need to simulate physical time, steady vs transient, physics 
(e.g. refinement need at boundary layers/wakes), what is the intention of the 

simulation (e.g. visualization of known physics, quick design insight, exact matching 
of an experiment with publication quality) etc

Case Resolution Computational
cost

Method Comment

Motorbike Very coarse 
~0.1M cells

~1 min 
(Laptop CPU)

Steady state 
RANS - method

A basic tutorial. 
Intention: demo

Airflow in a 
room

Medium
~30M cells

~2 days
(GPU)

Transient LES 
method

To be submitted 
to a journal.

Ship hydro Medium
~60M cells

~10 days
(Supercomputer)

Transient LES 
method

Published in a 
journal. 



  

Finite volume method in a nutshell

The core problem in solving convection-diffusion type equations (PDE’s):
In CFD, we would like to find a ∆φ=∆t(-C+D) to update solution as φ

n+1
 = φ

n
 + ∆φ. 

→ Need to numerically calculate divergence terms i.e. convection C=C(x,y,z,t) & 
diffusion D=D(x,y,z,t) (t=n∆t).

∫V
∇⋅(uϕ)dV=∫A

(uϕ)⋅n dA

dA = differential area element on the outer surface A of volume V 
n = the surface outer normal vector

Gauss’ theorem: enables converting volume integrals into surface integrals (B.Sc. math):

C=∇⋅(uϕ)

D=α ∇⋅∇ ϕ

Cave=
1
V ∫V

∇⋅(uϕ)dV=
1
V ∫A

(uϕ)⋅n dA≈
1
V

Σfaces(u f ϕf )⋅nf dA f

Gauss’ theorem + volume averaging: divergence terms C and D can be converted into
surface integrals which can be numerically computed via summations. 

Dave=
1
V ∫V

α ∇⋅∇ ϕdV =
1
V ∫A

∇ ϕ⋅n dA≈
1
V

Σfaces ∇ ϕf⋅n f dA f



  

Recall: discretization methods (FDM, FVM, FEM) needed to 
numerically calculate space derivatives appearing in PDE’s 

(derivative = slope of the function)

x=0 x=Lx
R

x
L

c(x
i
)

Slope (analytical)

Slope (numerical)

∆x/2 3∆x/2 L-∆x/2

∆x

E.g. with CD2/FD: c '(x i)=
∂ c
∂ x

≈
c i+1−c i−1

2Δ x

c(x)

i i+1i-1



  

Next, we derive fvm discretization for the derivative c’(x).
Keywords: “volume averaging & Gauss’ theorem”

∫xL

xR

c '(x )dx=+c (xR)−c (x L)

Let us integrate c’(x) over x
L
 < x < x

R  
(∆x = x

R 
 - x

L
): 

1
Δ x

∫xL

xR

c ' (x )dx=
+c (x R)−c (xL)

Δ x

To obtain “volume average” of c’(x), divide both sides by ∆x: 

Volume average of c’(x) over ∆x Looks essentially like CD2/FD 

x=0 x=Lx
R

x
L

∆x

Note: 
Cell face outer normal
vectors point to (+1,0) and (-1,0)
directions so actually the +/- signs
in 1d integration originate from 
the Gauss’ theorem.



  

This leads to a finite volume discretization formula for c’(x)

(
∂ c
∂ x

)
fvm

=
1

Δ x
∫xL

xR

c ' (x)dx=
+c (xR)−c (x L)

Δ x
=

c i+1−c i−1

2Δ x

Interpolating fluxes linearly c(x
L
) = 0.5(c

i 
+ c

i-1
) and c(x

R
) = 0.5(c

i 
+ c

i+1
) 

yields the fvm discretization: 

Notes: 
→ Averaging derivative over an interval (1d) or volume (3d) we can find finite volume discretization 
formulae. On uniform grids, and linear interpolation, FVM and FDM give exactly the same 2nd order 
central difference (CD2) formula (see: Week 1).

→ Face interpolation of c(x
L
) and c(x

R
) is one of the most essential parts to pay attention on in CFD (the 

numerical uncertainty and error contained in the interpolation details). In HW1 you will compare three 
interpolation procedures: linear (CD2) vs upwind (UW1) vs a flux limiter. Flux limiters “try” to be as close 
to CD2 but still diffusive enough to stabilize the numerical solution.   

… being exactly the CD2/FD formula (week 1).



  

Recap discussions: Gauss’ theorem, conservation of mass and a room with 
cross-draught. Flow enters 1m/s from the left windows and exits from right. 

Window area = constant. 

x

y

z

https://www.youtube.com/watch?v=Pf7hgOkjd_w

Indoor airflow simulation by: M.Korhonen

https://www.youtube.com/watch?v=Pf7hgOkjd_w


  

Basic fluid dynamics (M.Sc.): Velocity field of incompressible fluids, 
such as low speed air and water, satisfies the mass conservation equation: 

∇⋅u⃗=0

x

y

z

Test your learning by writing down:

Q0: Gauss’ theorem for div(u)=0 for V
room

Q1: What is outer normal n at the 4 walls?
Q2: What is u on the 4 walls?
Q3: What are n & u at the windows?  
Q4: What can we say about U

w
A

w 
? 

(w=window, U
w 

= mean velocity at window, A
w
=area)



  

Gauss theorem + mass conservation:

x

y

z

∫V room

∇⋅u⃗ dV =∫A room

u⃗⋅n dA=0



  

Finite volume method for the 1d convection-
diffusion equation 

(relevance: small theory question in HW2)



  

3D smoke cloud moving in air∂c
∂ t

+u⃗⋅∇ c=α ∇
2c

u⃗= u⃗ (x , y , z , t)

c=c (x , y , z , t)

∂ u⃗
∂ t

+u⃗⋅∇ u⃗=−∇ p+ν∇
2 u⃗



  

Let us model the smoke cloud motion in a simple way using 
the 1D convection-diffusion equation (u=constant)

∂c
∂ t

+u
∂ c
∂ x

=α
∂2c

∂ x2

c=smoke concentration
α=diffusivity [m2/s]
u=mean wind velocity [m/s]



  

We average the 1d CD-eqn over finite intervals of length ∆x.

1
Δ x

∫x-

x+

∂c
∂ t

dx+
1

Δ x
∫x-

x+

u
∂ c
∂ x

dx=
1

Δ x
∫x -

x+

α
∂2 c

∂ x2 dx

c1 c2 c Nc i

Δ x
x=0 x=L

f ave=
1

Δ x∫Δ x
f dx

Definition: average of a function in 1d over the interval ∆x

x+x-

Averaged CD-eqn over the interval ∆x



  

We average the 1d CD-eqn over a finite interval of length ∆x.

Assuming ∆x is small, we assume:

∂c
∂ t

+u
c (x+ , t)−c (x - ,t )

Δ x
=α[

∂ c (x+ ,t )
∂ x

−
∂ c (x - ,t )

∂ x
]

1
Δ x

c≈
1

Δ x∫x -

x+

c dx

The resulting form:



  

Estimation of quantities at the cell face

c (x+) , c (x-)

α
∂ c (x+)

∂ x
,α

∂ c (x-)

∂ x

The terms below require interpolation of c to the cell face from adjacent cells

The terms below require estimation of the gradients of c on the cell face

How could we get those values ? 

→ On uniform grid one could simply linearly interpolate

c (x+)≈0.5 (c i+1+c i) c (x-)≈0.5 (c i+c i−1)

α
∂ c (x+)

∂ x
≈α

c i+1−c i

Δ x
α

∂ c (x-)

∂ x
≈α

ci−c i−1

Δ x



  

Gathering the interpolants into the cell averaged equations and 
discretizing time with Euler method gives...

c i
n+1−c i

n

Δ t
+u

ci+1
n −c i−1

n

2Δ x
=α

c i+1
n −2 c i

n+c i−1
n

Δ x2

c i
n+1

=c i
n
−Δ t u

c i+1
n −c i−1

n

2Δ x
+αΔ t

ci+1
n −2c i

n+c i−1
n

Δ x2

∂c
∂ t

+u
c (x+ , t)−c (x - ,t )

Δ x
=α[

∂ c (x+ ,t )
∂ x

−
∂ c (x- ,t )

∂ x
]

1
Δ x

Observation: Finite volume method boils down to 
the finite difference method (week 1) on uniform grids. 



  

Numerical stability: Courant number (Co) and Courant-
Friedrichs-Lewy (CFL) number should be below one. 

Co=
Δ t u
Δ x

<1

CFL=
Δ t α

Δ x2 <1

CFL is relevant to the stability of the diffusion term (e.g. concentration is not
allowed to diffuse over distances larger than grid spacing during timestep) 

Co is relevant to the stability of the convection term (e.g. velocity is not
allowed to transport over distances larger than grid spacing during timestep) 
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