

AAE-E2001 Computational Fluid Dynamics Lecture 4: OpenFOAM code and structure

M.Sc. Ilya Morev

February 5th 2024 Aalto University, School of Engineering

OpenFOAM

Part 1

How to do simulations?

Part 2

How do solvers work?

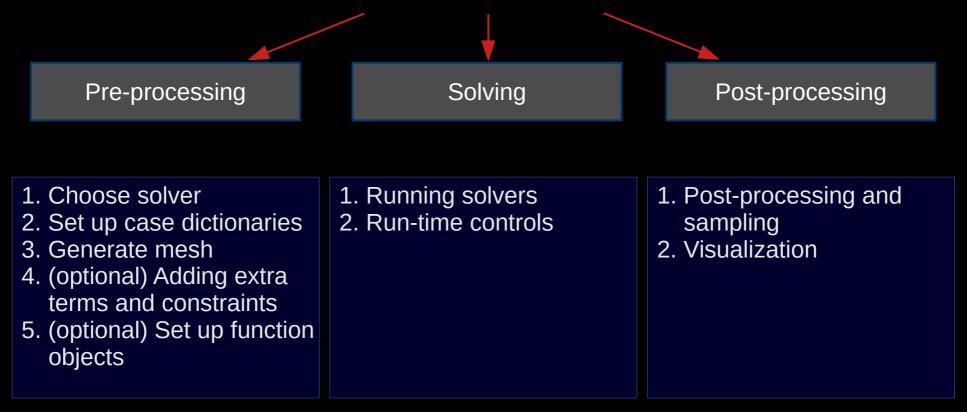
Part 1

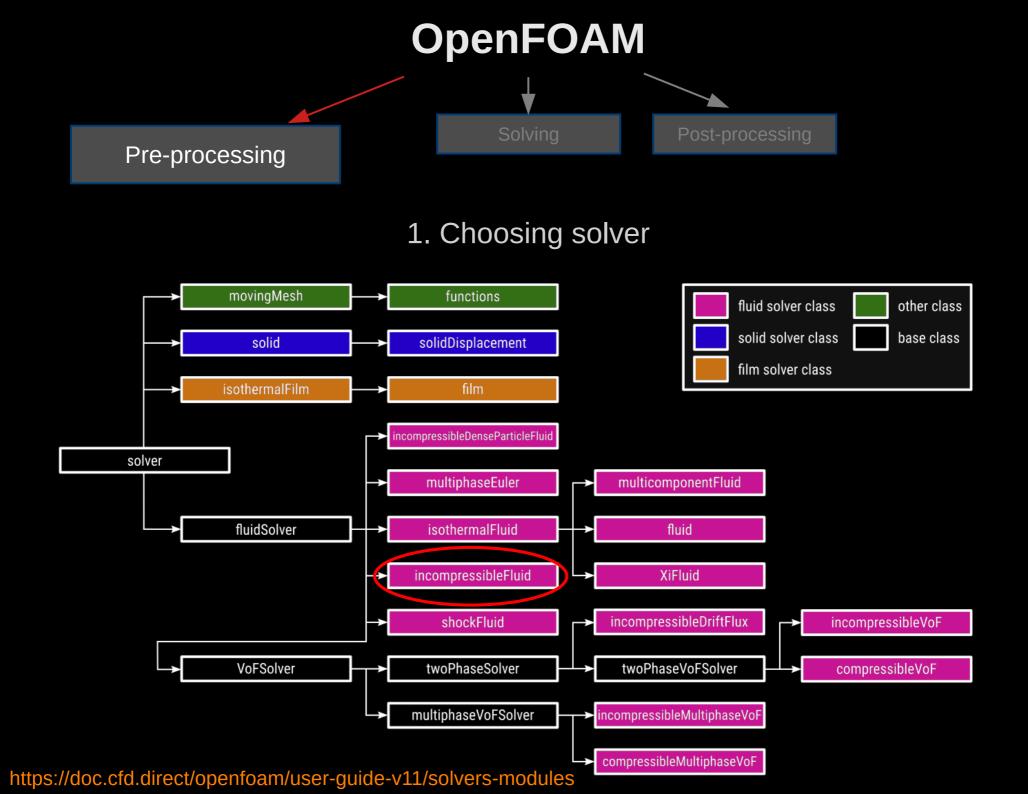
How to do simulations?

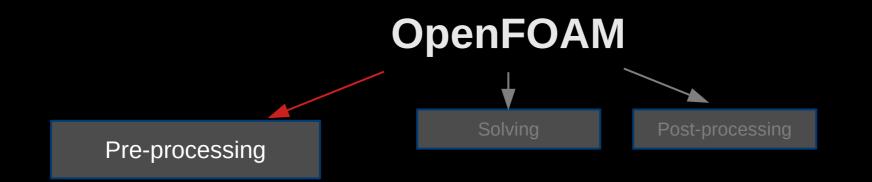
OpenFOAM 11 – open-source CFD library

github.com/OpenFOAM/OpenFOAM-11

/opt/openfoam11/

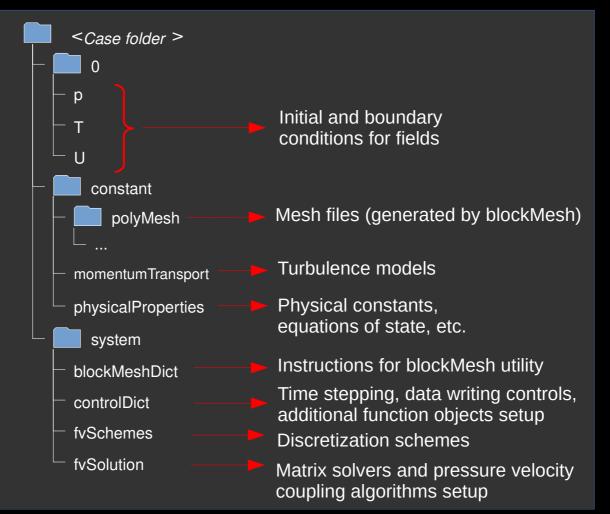

UpenFOAM-11 Public		⊙ Watch 2	♥ Fork 19 ▼ ☆ Star 44 ▼	<pre></pre>		□ ×
양 master ▾ 양 1 Branch ⓒ 171 Tags	Q Go to file t Add file 👻	<> Code -	About	Name	∨ Size	Modifie
			Description: OpenFOAM Foundation	Allwmake	1.1 kB	16 Ja
💽 Henry Weller multiphaseEuler::phaseModel: Changed the phase-fraction field con 🚥 c219200 · 3 weeks ago 🕚 7,029 Commits			repository for OpenFOAM version 11	applications	6 items	18 Ja
applications	multiphaseEuler::phaseModel: Changed the phase-fraction	3 weeks ago	☐ Readme	bin	71 items	18 Ja
bin	bin/.*Foam redirection scripts: Updated tutorial paths	2 months ago	শ্রু View license -∿- Activity	build-stamp	0 bytes	16 Ja
doc	Updated for OpenFOAM-11	7 months ago	岔 44 stars		35.6 kB	16 Ja
etc	Template cases: apply entrainmentPressure BC for p at outl	2 months ago				
src src	HashList: Clear entire table on resizeAndClear	last month	Report repository	doc	4 items	18 Ja
🖿 test	Updated for OpenFOAM-11	7 months ago	Releases	etc	12 items	18 Jai
tutorials	Updated for OpenFOAM-11	7 months ago	© 171 tags	platforms	1 item	17 Ja
🖿 wmake	wmkdep: Corrected string reallocation for a very uncommon	7 months ago	• (ago	() README.org	1.6 kB	16 Ja
🗋 .gitattributes	Added .gitattributes file to make language reporting more a	4 years ago	Packages	src	46 items	18 Jai
🕒 .gitignore	VoFSolver: New base-class for twoPhaseVoFSolver and m	2 years ago	No packages published			
🗋 Allwmake	Allwmake: Provides clearer message when OpenFOAM en	8 years ago	Languages	test	9 items	18 Ja
	COPYING: Updated date and contact details	7 years ago	• C++ 97.8% • Shell 1.7%	tutorials	25 items	18 Ja
README.org	Updated for OpenFOAM-11	7 months ago	 Lex 0.4% C 0.1% Awk 0.0% CMake 0.0% 	wmake	20 items	18 Ja

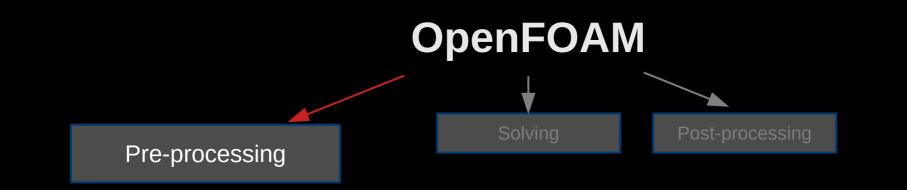

Useful utilities

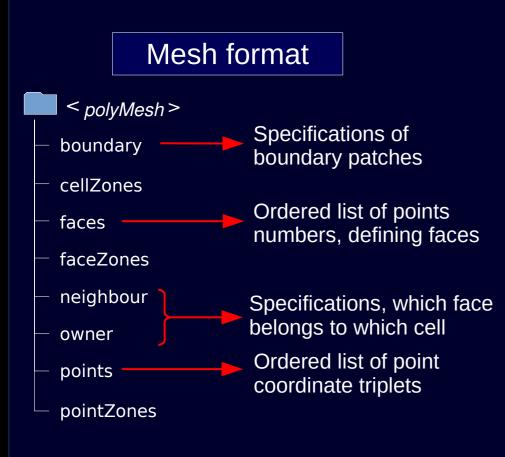

foamToC	"Table of contents". Lists available models/libraries/objects foamToC -fvModels foamToC -fvConstraints foamToC -functionObjects
foamInfo	Print information about models, objects, utilities, etc. foamInfo incompressibleFluid foamInfo -a heatSource
foamSearch	Searches a directory for files with some name and extracts specified entries foamSearch \$FOAM_TUTORIALS physicalProperties viscosityModel foamSearch -c \$FOAM_TUTORIALS fvSchemes ddtSchemes/default
foamGet	Copies example dictionaries from /opt/openfoam11/etc/caseDicts foamGet graphCell foamGet decomposeParDict
foamDictionary	Prints or changes dictionary entries foamDictionary -entry endTime system/controlDict foamDictionary -entry "divSchemes/div(phi,T)" -set "Gauss linear" system/fvSchemes
foamListTimes	Prints or removes time folders foamListTimes -time ":0.4" foamListTimes -time "0.2,0.4" -rm
checkMesh	Checks validity of mesh and prints some statistics
patchSummary	Print all boundary condition information for the case

Note that any OpenFOAM executable has a *-help* option: blockMesh -help foamToC -help

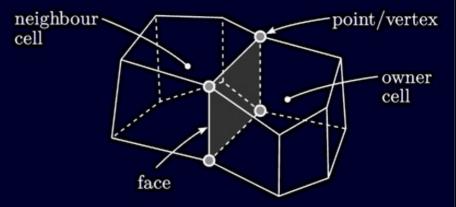
OpenFOAM



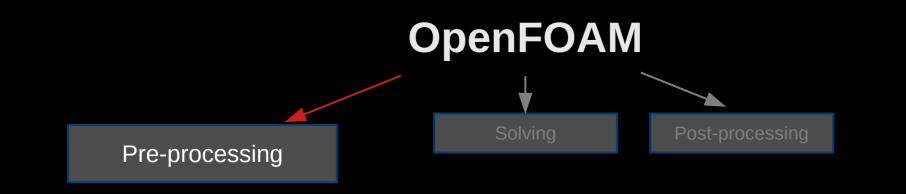



2. Setting up case dictionaries

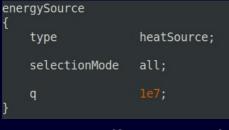
Usually starts with copying tutorial case



3. Mesh generation



Main mesh generation utilities				
blockMesh	for simple structured meshes			
snappyHexMesh	for meshing complex geometries (using stl, obj, vtk,)			
starToFoam fluentMeshToFoam gmshToFoam 	import 3rd party mesh formats			


https://doc.cfd.direct/openfoam/user-guide-v11/mesh-files

https://doc.cfd.direct/notes/cfd-general-principles/computational-mesh

4. Adding extra terms and constraints

constant/fvModels

system/fvConstraints

.im	itp	
	type	limitPressure;
	min max	0.8e5; 1.2e5;

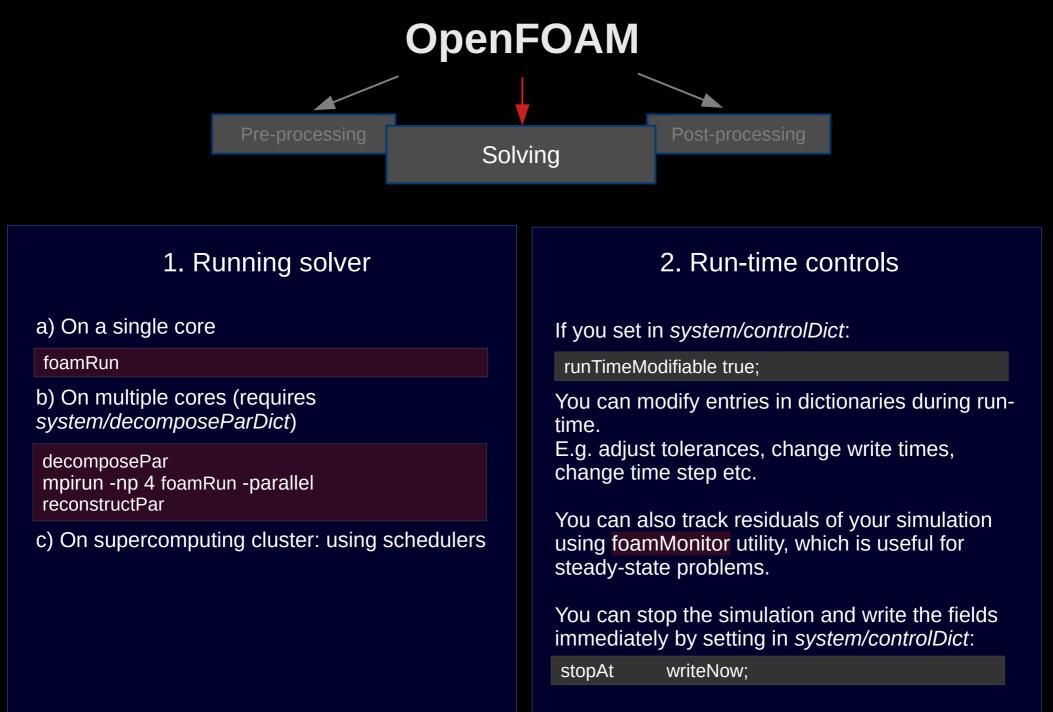
Commands to list available options:

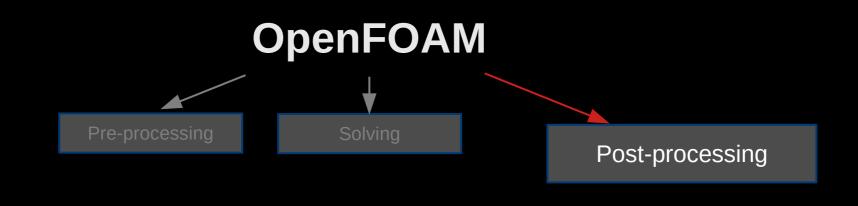
foamToC -fvModels
foamToC -fvConstraints

Command to show info and find usage examples:

```
foamInfo -a heatSource
foamInfo -a limitPressure
```

https://github.com/OpenFOAM/OpenFOAM-11/tree/master/src/fvModels/derived https://github.com/OpenFOAM/OpenFOAM-11/tree/master/src/fvConstraints


5. Set up function objects

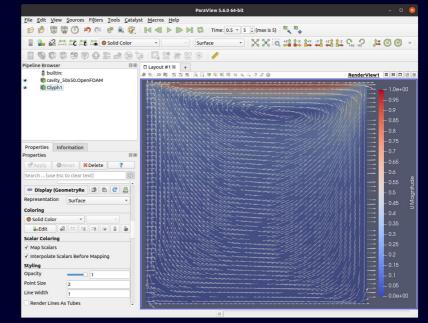

system/controlDict

func {	tions
ι	probes {
	type probes; libs ("libsampling.so"); writeControl timeStep; writeInterval 1;
	fields (p);
	<pre>probeLocations (</pre>
	}
	<pre>#includeFunc fieldAverage(U, p, prime2Mean = yes)</pre>
}	#includeFunc scalarTransport

foamToC -functionObjects
foamInfo -a probes

https://doc.cfd.direct/openfoam/user-guide-v11/post-processing-cli

1. Post-processing and sampling


Utility foamPostProcess can execute functionObjects after simulation is finished. E.g. sample data over a line (requires file system/graphCell):

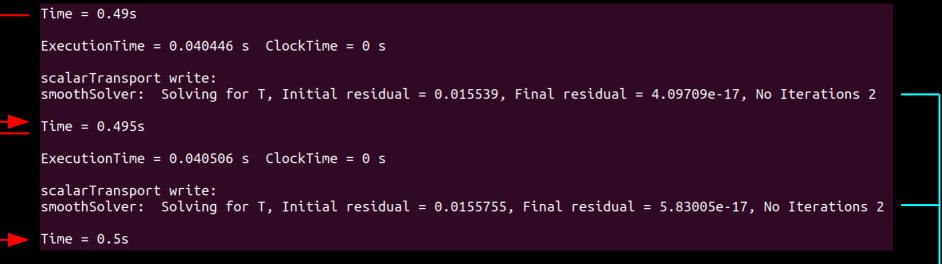
foamPostProcess -func graphCell

<u>O</u> pen ∨ Fl		line.xy ~/OpenFOAM/morevi1-11/run/A1/postProce		<u>S</u> ave ≡		
1#	Х	Т				
	0.157	0.543884				
	0.471	0.376803				
	0.785	0.225963				
	1.099	0.120067				
	1.413	0.0733217				
	1.727	0.0224464				
	2.041	-0.00179881				
	2.355	0.0304411				
10	2.669	0.0120696				
	2.983	-0.0492032				
	3.297	-0.0123274				
	3.611	0.0856994				
14	3.925	0.0576469				
15	4.239	-0.108608				
16	4.553	-0.203034				
	4.867	-0.0609215				
18	5.181	0.259591				
	5 495	<u> 9 568049</u>				
			Plain Text 🗸 🛛 Tab Width: 4 🗸	 Ln 21, Co 	128	∼ INS

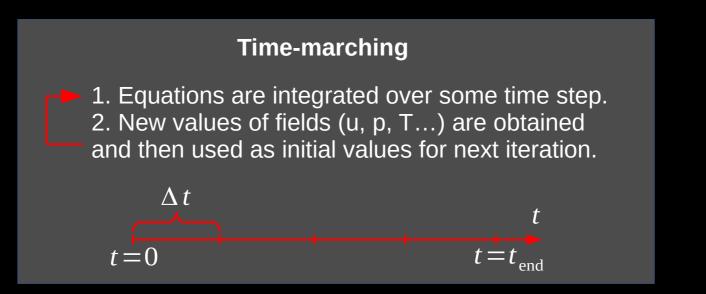
2. Visualization

Use paraFoam to visualize fields, make videos, renders, plots, etc.

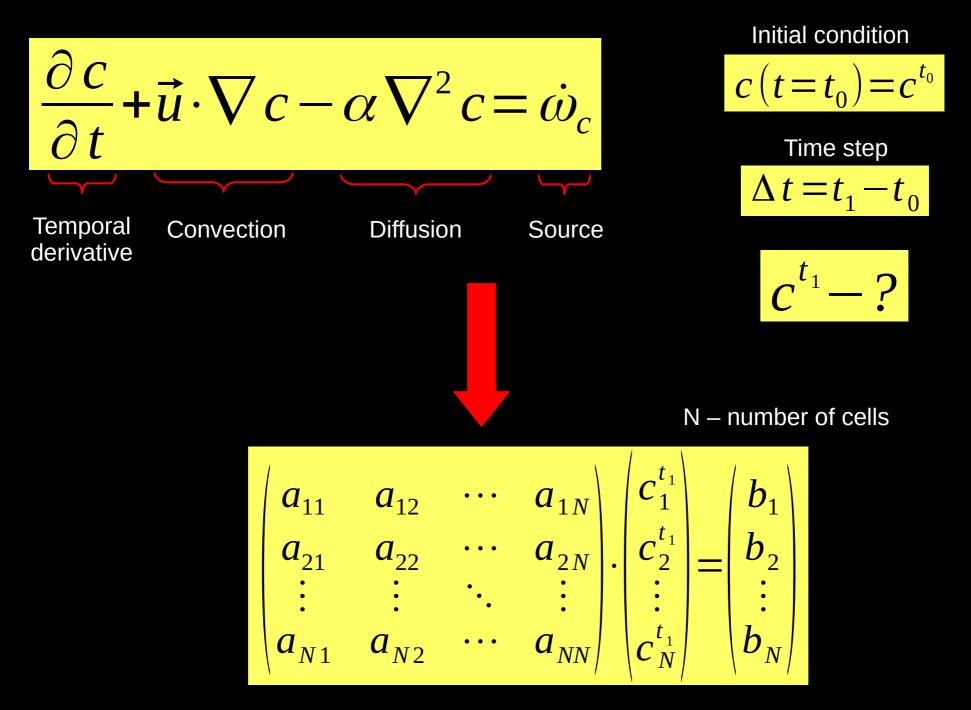
Or export the data to 3rd part format, e.g. VTK:

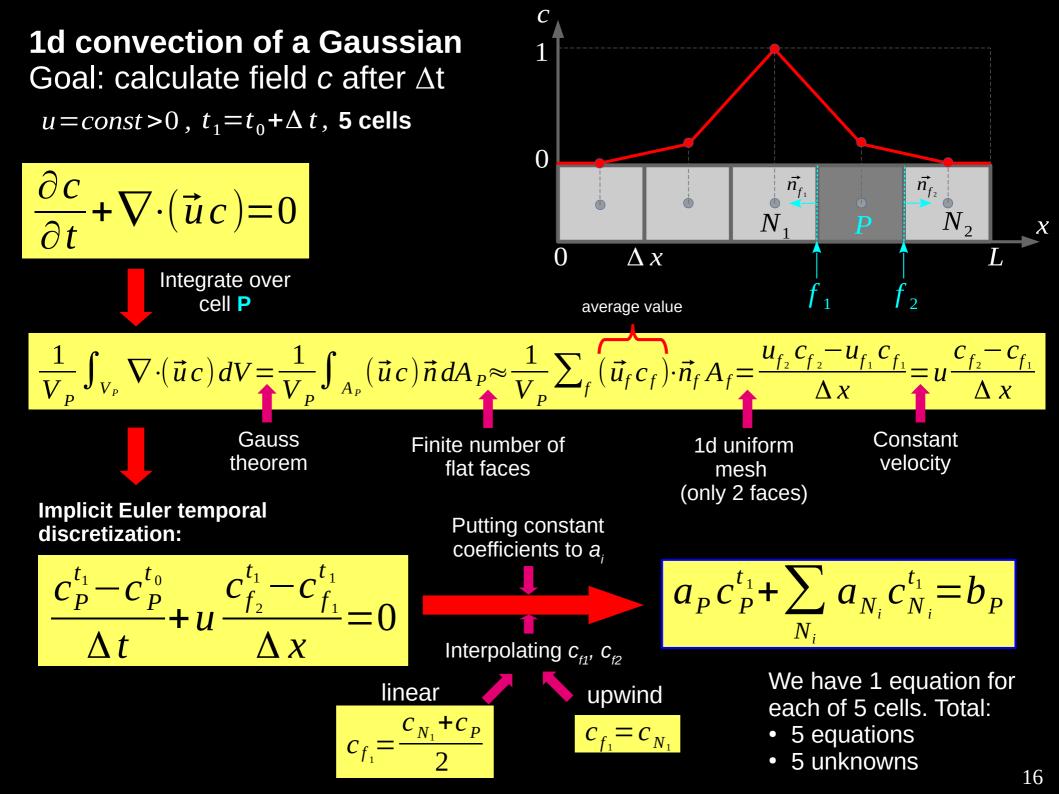

foamToVTK

Part 2

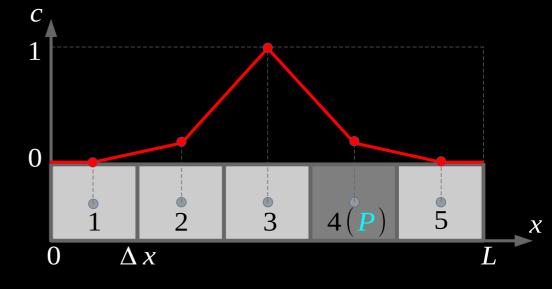

How do solvers work?

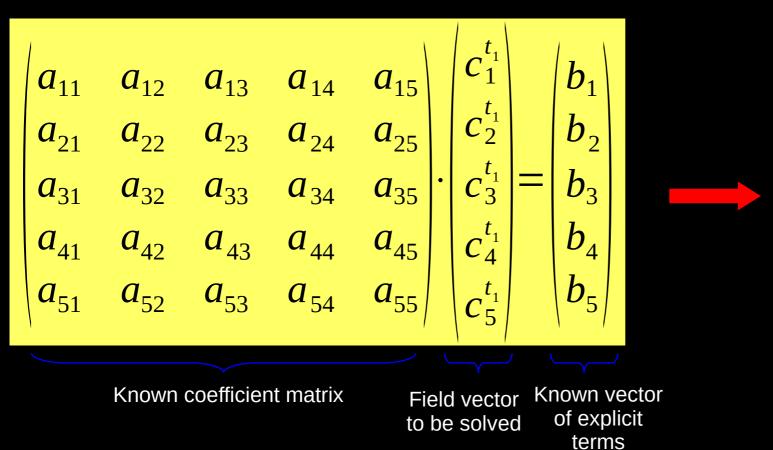
Main question:


How does OpenFOAM solver proceed from one time step to the next one?



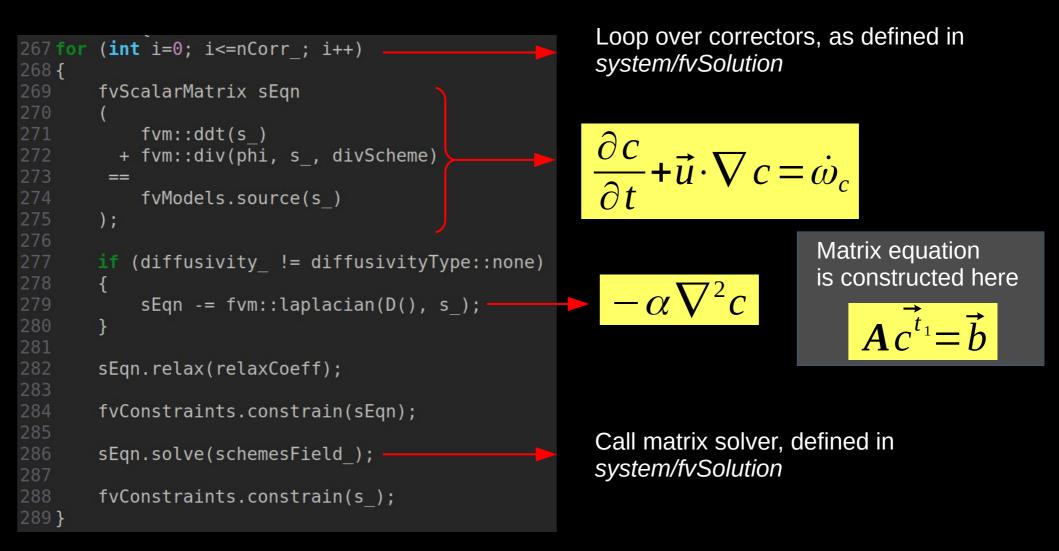
Matrix equation solver logs. But where does the matrix come from?


Scalar transport equation



$$a_{P}c_{P}^{t_{1}}+\sum_{N_{i}}a_{N_{i}}c_{N_{i}}^{t_{1}}=b$$

Diagonal Off-diagonal Components Components ("owner") ("neighbor")



Use some matrix solver to obtain field cat time t_1

Ac

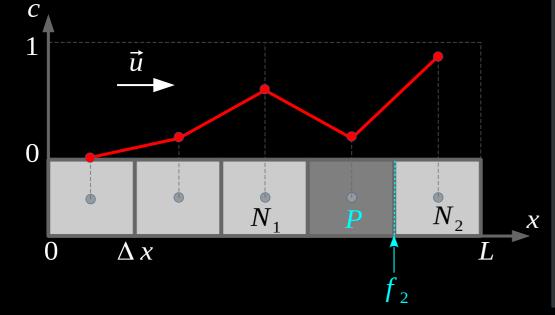
scalarTransport source code

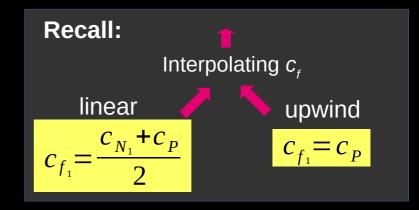
Located in src/functionObjects/solvers/scalarTransport/scalarTransport.C

Discretization schemes

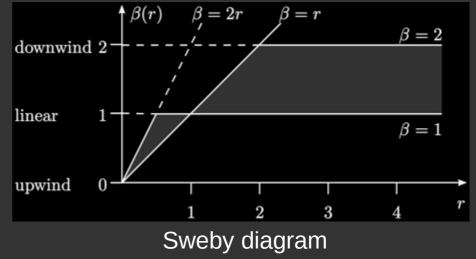
Located in system/fvSchemes

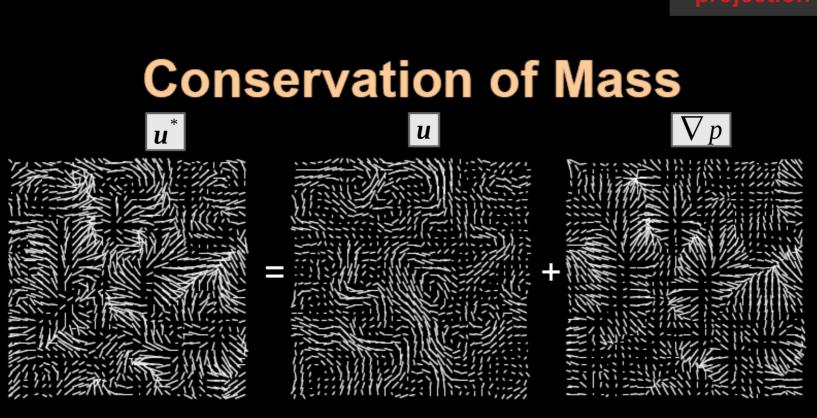
ddtS {	Schemes			Temporal discretization schemes: Euler (1 st ord.), backward (2 nd ord.),
}	default	Euler; O		
grad	lSchemes		7	In the most cases, linear works well here.
}	grad(p)	Gauss linear; Gauss linear;		div(phi,) are the most important schemes usually! Here we discretize convection term. upwind (1 st ord.), linear (2 nd ord.),
{		none; Gauss linear;	7.	limitedLinear, Gamma and vanLeer are good choices
{	.acianSchemes default	Gauss linear orthogonal;	7 ²	The keyword "linear" refers to interpolation scheme, where linear is usually enough. The second keyword in surface normal
}	uerautt	Gauss tillear of thogonat,	V	gradient scheme, which usually is either orthogonal or corrected (for meshes with
inte {	erpolationSchemes	5		non-orthogonality)
}	default	linear;		Cell to face interpolations of values. Used in the interpolation of velocity to
snGr {	adSchemes			face centers for the calculation of flux
}	default	orthogonal;	∇_n	Component of gradient normal to a cell face. Can be orthogonal, uncorrected or
heck	what schemes ar	e used in tutorials:	· //	corrected, depending on your mesh
foamSearch -c \$FOAM_TUTORIALS fvSchemes "divSchemes/div(phi,U)"			1	


Flux limiting schemes

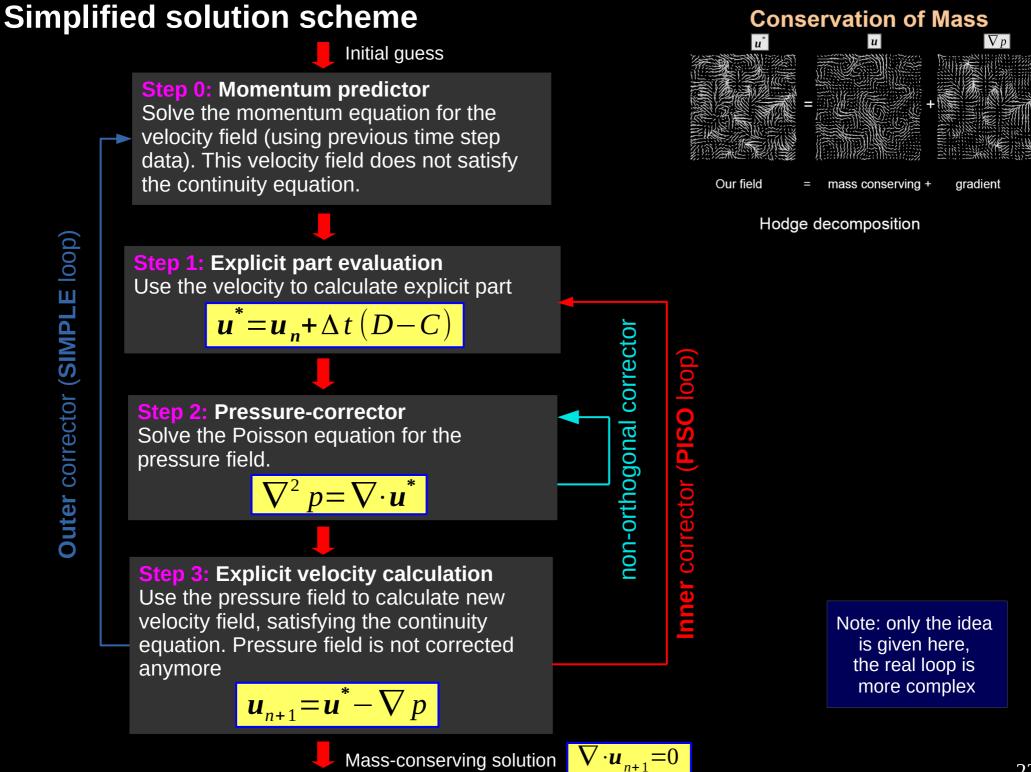

Blended, but each face has its own blending coefficient

$$c_{f_2} = c_{f_2}^{UW1} - \beta(r)(c_{f_2}^{UW1} - c_{f_2}^{CD2})$$


Limiter, e.g. depending on the ratio of successive gradients *r*


Total variation diminishing (TVD) schemes have $\beta(r)$ defined such that it lies in the highlighted region

https://doc.cfd.direct/notes/cfd-general-principles/limited-advection-scheme https://doc.cfd.direct/notes/cfd-general-principles/useful-tvd-schemes


Vector fields can be divided into two parts via "Helmholtz-Hodge" decomposition

Recall lecture 3: projection method

Our field = mass conserving + gradient

Hodge decomposition

Pressure-velocity coupling algorithms

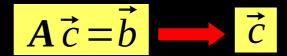
Parameters are located in system/fvSolution

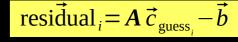
PIMPLE

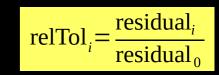
momentumPredictor no; nOuterCorrectors 1; nCorrectors 2; nNonOrthogonalCorrectors 0;

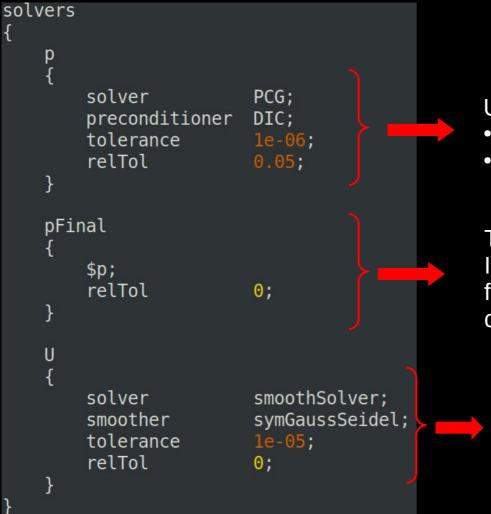
momentumPredictor	switch controlling the momentum predictor. Can be set to "off" for some flows, including low Reynolds number and multiphase.
nOuterCorrectors	sets the number of outer correctors, number of loops over the entire system of equations within on time step, representing the total number of times the system is solved; must be \geq 1 and is typically set to 1, replicating the PISO algorithm. If you experience unphysical pressure fluctuations, increasing this number can help.
nCorrectors	sets the number of inner correctors, i.e. times the algorithm solves the pressure equation and momentum corrector in each step; typically set to 2 or 3.
nNonOrthogonalCorrectors	specifies repeated solutions of the pressure equation, used to update the explicit non-orthogonal correction; typically set to 0 for orthogonal meshes and ≥ 1 for meshes with non-orthogonality

Further reading:


SIMPLE: https://openfoamwiki.net/index.php/The_SIMPLE_algorithm_in_OpenFOAM


PISO: https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PISO_algorithm_in_OpenFOAM


PIMPLE: https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PIMPLE_algorithm_in_OpenFOAM


Matrix solver setup

Located in system/fvSolution

Usually:

- PCG with DIC preconditioner
- GAMG with GaussSeidel smoother

Tolerance for the final **inner corrector** step. In transient simulations, the relTol for the final iteration is usually set to 0 to enforce convergence to absolute tolerance.

Solver selection here depends on your grid parameters, which determines the filling of your matrix. PBiCGStab with DILU preconditioner is quite robust

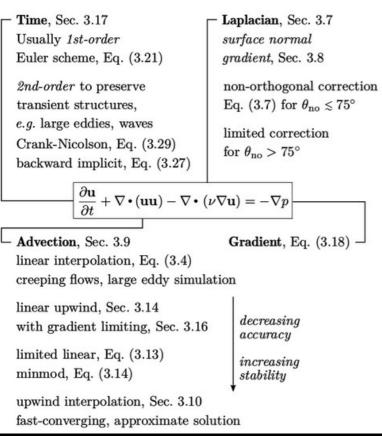
As long as the **solver converges**, the **solution is accurate** to a given tolerance value!

Time = 0.295

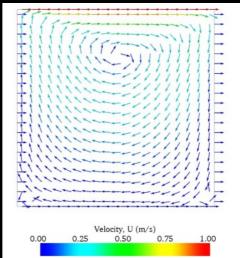
smoothSolver: Solving for Ux, Initial residual = 0.00336414, Final residual = 4.87212e-06, No Iterations 2 smoothSolver: Solving for Uy, Initial residual = 0.00395571, Final residual = 6.13208e-06, No Iterations 2 DICPCG: Solving for p, Initial residual = 0.00198918, Final residual = 9.51425e-05, No Iterations 27 time step continuity errors : sum local = 1.56381e-08, global = 5.72285e-20, cumulative = 2.48268e-20 DICPCG: Solving for p, Initial residual = 0.00061602, Final residual = 9.64995e-07, No Iterations 65 time step continuity errors : sum local = 1.49115e-10, global = 2.02111e-20, cumulative = 4.50379e-20 ExecutionTime = 0.31 s ClockTime = 1 s

Further reading

User guide:


Online: https://doc.cfd.direct/openfoam/user-guide-v11/index Offline: /opt/openfoam11/doc/Guides/OpenFOAMUserGuide-A4.pdf

Programmers Guide:


https://sourceforge.net/projects/openfoam/files/v2112/ProgrammersGuide.pdf/download CFD textbook by authors of OpenFOAM (free web version):

https://doc.cfd.direct/notes/cfd-general-principles/

Textbook

User guide Tutorial relevant to HW2

Figure 2.8: Velocities in the cavity case.

				i
Operation	Comment	Mathematical	*	
		Description	in OpenFOAM	
Addition		$\mathbf{a} + \mathbf{b}$	a + b	
Subtraction		$\mathbf{a} - \mathbf{b}$	a - b	
Scalar multiplication		sa	s * a	
Scalar division		\mathbf{a}/s	a/s	
Outer product	$\operatorname{rank} \mathbf{a}, \mathbf{b} >= 1$	ab	a * b	
Inner product	rank $\mathbf{a}, \mathbf{b} >= 1$	a•b	a & b	

Programmer's guide