
PRGs: From 1 bit to polynomially many
An example of the hybrid argument technique

—Lecture 7—
Christopher Brzuska

February 28, 2022

1

MS-E1687 - Advanced topics in cryptography Lecture Notes 7

1 Teaching Period IV: Hardness amplification in
cryptography

In the end of teaching period III, we learned that distributional one-wayness1

can be amplified to weak one-wayness (using information-theoretic extractors),
and weak one-wayness can be amplified to standard one-wayness via parallel
repetition (or complexity-theoretic hash-functions). These were our first ampli-
fication results. From the introductory course in cryptography, we know that
moreover, one-way functions (OWFs) imply pseudorandom generators (PRGs)
and that PRGs imply pseudorandom functions (PRFs). In addition, PRFs also
imply OWFs, so all three primitives are equivalent.

∃OWFs⇔ ∃PRGs⇔ ∃PRFs

While we gave some intuition for why this is true, we also discussed that OWFs
are a very very very weak notion of security (although in Lecture 5, we saw even
weaker notions...). So, how can it be that we can build something as strong as
a cipher/PRF just from a OWF? Understanding how this exactly works is the
goal of this teaching period as well as deepening our understanding of the limits
of what we can prove. Below is a (preliminary) outline of the contents:

Hybrid Arguments
(1) PRGs which map λ bits to λ+1 bits can be turned into PRGs which map

λ bits to λ + p(λ) bits for some arbitrary polynomial p.

(2) Length-doubling PRGs can be turned into pseudorandom functions via
the Goldreich-Goldwasser-Micali construction.

While (1) and (2) are interesting statements of their own right, they also provide
two examples of the proof technique known as hybrid arguments.

Search-to-decision
(3) We know that bijective, length-preserving OWFs can be turned into PRGs

via the Goldreich-Levin hardcore bit. We prove that the Goldreich-Levin
construction is, indeed, a hardcore bit.

(4) We prove that, in general, OWFs can be turned into PRGs. This was orig-
inally proved by Hastad, Impagliazzo, Levin and Luby, but we present a
simpler proof (and more efficient construction) by Vadhan and Zheng https:
//eccc.weizmann.ac.il/report/2011/141/.

(3) and (4) are interest and useful also because they show us how to turn a
distinguishing algorithm, which only gives us 1 bit (in cryptography we refer
to decision algorithms as distinguishing algorithms2) into a search algorithm
(which gives us a string, namely a pre-image).

1For a δ-distributional one-way functions, any PPT adversary cannot find uniformly ran-
dom pre-images, there is always a δ-gap in the distribution returned by the inverter and the
actual uniform distribution over the pre-images.

2Technically, a distinguishing algorithm isn’t a decision algorithm, since we require that a
distinguishing algorithm be correct in the majority of instances, not necessarily all of them.
For example, a distinguisher for a PRG is considered successful, if it outputs 1 with probability
more than 1/2 (it need not be 1).

2

https://eccc.weizmann.ac.il/report/2011/141/
https://eccc.weizmann.ac.il/report/2011/141/

MS-E1687 - Advanced topics in cryptography Lecture Notes 7

Separation results
(5) We already saw that one-way functions do not imply collision-resistant

hash-functions. Which other things are not implied by one-way functions,
i.e., outside of MiniCrypt. Can we build, e.g., public-key encryption from
one-way functions? We do not know a definite answer, but the oracle
separation by Impagliazzo and Rudich gives us some indication. We prove
this oracle separation result.

(6) While (5) was about stronger cryptography, but what about weaker cryp-
tography? Can we build one-way functions based on weaker assumptions?
We will see a separation results that shows that it might be hard to build
one-way functions merely from the assumption that NP is not equal to P.

Separation results such as (5) and (6) are a way for us to check whether “stan-
dard” or “black-box” techniques can solve our problems. Note that the notion
of standard/black-box techniques can be formalized, but they often remain a
little fuzzy/dependent on context. Another nice topic of hardness amplification
is trying to build a one-way function from weaker notions of one-wayness. We
saw this result recently, before Lecture 7.

2 Overview over Lecture 7
In Lecture 9 and Lecture 10, we will see how we can obtain a PRG from a
one-way function, and there, we will focus on getting a PRG which gives us one
bit of stretch, i.e., maps λ to λ + 1 bits. Why is this useful? Why all the effort
just for a single additional bit of (pseudo-)randomness?
Given a pseudorandom generator (PRG) which maps λ bits to λ + 1 bits, how
can be build a PRG which maps n bits to n+p(λ) many bits for some arbitrary
polynomial p(λ)? The construction, essentially, consists of iterating the pseudo-
random generator many times (see Figure 1 and Figure 2). This comes at the
complication that we need to use the security of the pseudorandom generator
many times in the security argument. This technique is known as game-hopping
or hybrid argument, a main technique that we use this week and next week.

Further References If you would like to read further references on the hybrid
technique, see https://www.youtube.com/watch?v=TQY5AsZXuqw for a short (6
min.) video explanation of (one version of) the hybrid argument by myself or
Appendix B of https://eprint.iacr.org/2018/306 or the proof of Theorem
3.2.6 in Foundations of Cryptography I.

Outline for today’s lecture

(1) We recall the definition of PRGs.

(2) We recall how, from a PRG g with stretch s(λ) = 1, we can construct a
PRG G with stretch s(λ) = p(λ) for some arbitrary polynomial p in λ.

3

https://www.youtube.com/watch?v=TQY5AsZXuqw
https://eprint.iacr.org/2018/306

MS-E1687 - Advanced topics in cryptography Lecture Notes 1

(3) We give a high-level overview over the proof and introduce the notion of
hybrid arguments/game-hops as a general proof structure.

(4) We look into the proof.

3 Definition and Construction
Definition 3.1. Let s be a function s : N→ N such that for all λ ∈ N, s(λ) ≥ 1.
Let g : {0, 1}∗ → {0, 1}∗ be efficiently computable such that for all x ∈ {0, 1}∗,
|g(x)| = |x|+s(|x|). g is a secure PRG (or PR-secure) if the real and ideal games
Gprg0

g and Gprg1
s are computationally indistinguishable, i.e., the advantage

AdvGprg0
g,Gprg1

s

A (λ) :=
∣∣Pr
[
1 = A → Gprg0

g

]
− Pr

[
1 = A → Gprg1

s

]∣∣
is negligible in λ.

Gprg0
g

Parameters

λ: security par.
s(λ): length-exp.
g: function

State

y: image value

SAMPLE()

assert y = ⊥
x←$ {0, 1}λ

y ← g(x)
return y

Gprg1
s

Parameters

λ: security par.
s(λ): length-exp.

State

y: random value

SAMPLE()

assert y = ⊥

y←$ {0, 1}λ+s(λ)

return y

Theorem (PRG Length-expansion). Let g be a pseudorandom generator (PRG)
with stretch s(λ) = 1, i.e., |g(x)| = |x|+ 1. Let p(λ) be any polynomial. Then,
G is a PRG with stretch s(λ) = p(λ), i.e, |G(x)| = |x|+ s(|x|).
In particular, there is a PPT reduction R such that for all PPT adversaries A,
it holds that

AdvPRG
G,A(λ) ≤ s(λ) · AdvPRG

g,A→R(λ),

i.e.,∣∣∣Pr
[
1 = A SAMPLE→ Gprg0

G

]
− Pr

[
1 = A SAMPLE→ Gprg1

p(λ)

]∣∣∣
= s(λ) ·∣∣∣Pr
[
1 = A SAMPLE→ R SAMPLE→ Gprg0

g

]
− Pr

[
1 = A SAMPLE→ R SAMPLE→ Gprg1

g

]∣∣∣
Before we turn to the proof overview, let us quickly recall notation. We will
consider the PRG games for g with s(λ) = 1 as well as for G with s(λ) = p(λ).

4

MS-E1687 - Advanced topics in cryptography Lecture Notes 1

gggg
Text

G

input

output

Figure 1: PRG Length-Expansion Construction

G(x)

s0 ← x

for i from 1 to s(|x|) :
si||y[i]← g(si−1)

(y[i] denotes 1 bit.)
y ← y[1]||..||y[p(λ)]||sp(λ)

return y

Gprg0
G

SAMPLE()

assert y = ⊥

x←$ {0, 1}λ

s0 ← x

for i from 1 to s(|x|) :
si||y[i]← g(si−1)

(y[i] denotes 1 bit.)
y ← y[1]||..||y[p(λ)]||sp(λ)

return y

Hj

SAMPLE

assert y 6= ⊥

for i from 1 to j :
y[i]←$ {0, 1}

sj ←$ {0, 1}λ

for i from j+1 to p(|x|) :
si||y[i]← g(si−1)

(y[i] denotes 1 bit.)
y ← y[1]||..||y[p(λ)]||sp(λ)

return y

Rj
SAMPLE

assert y 6= ⊥

for i from 1 to j − 1 :
y[i]←$ {0, 1}

sj ||y[j]← SAMPLE
for i from j+1 to p(|x|) :
si||y[i]← g(si−1)

(y[i] denotes 1 bit.)
y ← y[1]||..||y[p(λ)]||sp(λ)

return y

Figure 2: Construction G (left), real game Gprg0
G (middle left), hybrid game Hj

(middle right), reduction Rj (right).

5

MS-E1687 - Advanced topics in cryptography Lecture Notes 1

We now just re-write these games with these variables. We also inline the code
of G into Gprg0

G in the right-most game below:

Gprg0
g

SAMPLE()

assert y = ⊥
x←$ {0, 1}λ

y ← g(x)
return y

Gprg1
s(λ)=1

SAMPLE()

assert y = ⊥

y←$ {0, 1}λ+1

return y

Gprg0
G

SAMPLE()

assert y = ⊥
x←$ {0, 1}λ

y ← G(x)
return y

Gprg1
s(λ)=p(λ)

SAMPLE()

assert y = ⊥

y←$ {0, 1}λ+p(λ)

return y

Gprg0
G

SAMPLE()

assert y = ⊥

x←$ {0, 1}λ

s0 ← x

for i from 1 to s(|x|) :
si||y[i]← g(si−1)

(y[i] denotes 1 bit.)
y ← y[1]||..||y[p(λ)]||sp(λ)

return y

In this proof, we will rely on a hybrid argument. I.e., we start with game H0...and
prove the following claims.
Now, defineR as the reduction which samples a uniformly random j←$ {1, .., p(λ)}.
Then, we can derive Theorem ?? from Claim ?? and Claim ?? as follows:∣∣∣Pr

[
1 = A SAMPLE→ Gprg0

G

]
− Pr

[
1 = A SAMPLE→ Gprg1

p(λ)

]∣∣∣
=
∣∣∣Pr
[
1 = A SAMPLE→ H0

]
− Pr

[
1 = A SAMPLE→ Hp(λ)

]∣∣∣ (by Claim 2)

=

∣∣∣∣∣∣
p(λ)∑
j=1

Pr
[
1 = A SAMPLE→ Hj−1

]
− Pr

[
1 = A SAMPLE→ Hj

]∣∣∣∣∣∣ (telescopic sum)

=p(λ) ·

∣∣∣∣∣∣
p(λ)∑
j=1

1
p(λ) · Pr

[
1 = A SAMPLE→ Hj

]−
p(λ)∑
j=1

1
p(λ) · Pr

[
1 = A SAMPLE→ Hj

]∣∣∣∣∣∣ (multiply by 1)

=p(λ) ·

∣∣∣∣∣∣
p(λ)∑
j=1

1
p(λ) · Pr

[
1 = A SAMPLE→ Rj

SAMPLE→ Gprg0
g

]−
p(λ)∑
j=1

1
p(λ) · Pr

[
1 = A SAMPLE→ Rj

SAMPLE→ Gprg1
g

]∣∣∣∣∣∣
=s(λ) ·

∣∣∣Pr
[
1 = A SAMPLE→ R SAMPLE→ Gprg0

g

]
− Pr

[
1 = A SAMPLE→ R SAMPLE→ Gprg1

g

]∣∣∣

6

MS-E1687 - Advanced topics in cryptography Lecture Notes 1

Claim 1 (Extreme Hybrids).

H0
code≡ Gprg0

G

Hp(λ)
code≡ Gprg1

s(λ)=p(λ)

H0

SAMPLE

assert y 6= ⊥

for i from 1 to 0 :
y[i]←$ {0, 1}

s0 ←$ {0, 1}λ

for i from 0+1 to p(|x|) :
si||y[i]← g(si−1)

(y[i] denotes 1 bit.)
y ← y[1]||..||y[p(λ)]||sp(λ)

return y

H0

SAMPLE

assert y 6= ⊥

s0 ←$ {0, 1}λ

for i from 1 to p(|x|) :
si||y[i]← g(si−1)

(y[i] denotes 1 bit.)
y ← y[1]||..||y[p(λ)]||sp(λ)

return y

Gprg0
G

SAMPLE()

assert y = ⊥

x←$ {0, 1}λ

s0 ← x

for i from 1 to p(|x|) :
si||y[i]← g(si−1)

(y[i] denotes 1 bit.)
y ← y[1]||..||y[p(λ)]||sp(λ)

return y

Hp(λ)

SAMPLE

assert y 6= ⊥

for i from 1 to p(λ) :
y[i]←$ {0, 1}

sp(λ) ←$ {0, 1}λ

for i from p(λ)+1 to p(|x|) :
si||y[i]← g(si−1)

(y[i] denotes 1 bit.)
y ← y[1]||..||y[p(λ)]||sp(λ)

return y

Hp(λ)

SAMPLE

assert y 6= ⊥

for i from 1 to p(λ) :
y[i]←$ {0, 1}

sp(λ) ←$ {0, 1}λ

y ← y[1]||..||y[p(λ)]||sp(λ)

return y

Gprg1
p(λ)

SAMPLE

assert y 6= ⊥

y←$ {0, 1}p(λ)+λ

return y

7

MS-E1687 - Advanced topics in cryptography Lecture Notes 1

Claim 2 (Reduction between hybrids).

For all j ∈ {1, .., p(λ)} : Hj−1
code≡ Rj

SAMPLE→ Gprg0
g

For all j ∈ {1, .., p(λ)} : Hj
code≡ Rj

SAMPLE→ Gprg1
s(λ)=1

Hj−1

SAMPLE

assert y 6= ⊥

for i from 1 to j − 1 :
y[i]←$ {0, 1}

sj−1 ←$ {0, 1}λ

for i from j to p(|x|) :
si||y[i]← g(si−1)

y ← y[1]||..||y[p(λ)]||sp(λ)

return y

Hj−1

SAMPLE

assert y 6= ⊥

for i from 1 to j − 1 :
y[i]←$ {0, 1}

sj−1 ←$ {0, 1}λ

sj ||y[j]← g(sj−1)
for i from j+1 to p(|x|) :
si||y[i]← g(si−1)

y ← y[1]||..||y[p(λ)]||sp(λ)

return y

Rj
SAMPLE→ Gprg0

g

SAMPLE

assert y 6= ⊥

for i from 1 to j − 1 :
y[i]←$ {0, 1}

x←$ {0, 1}λ

sj ||y[j]← g(x)
for i from j+1 to p(|x|) :
si||y[i]← g(si−1)

y ← y[1]||..||y[p(λ)]||sp(λ)

return y

Rj
SAMPLE

assert y 6= ⊥

for i from 1 to j − 1 :
y[i]←$ {0, 1}

sj ||y[j]← SAMPLE

for i from j+1 to p(|x|) :
si||y[i]← g(si−1)

y ← y[1]||..||y[p(λ)]||sp(λ)

return y

Hj

SAMPLE

assert y 6= ⊥

for i from 1 to j :
y[i]←$ {0, 1}

sj ←$ {0, 1}λ

for i from j+1 to p(|x|) :
si||y[i]← g(si−1)

y ← y[1]||..||y[p(λ)]||sp(λ)

return y

Rj
SAMPLE→ Gprg1

s(λ)=1

SAMPLE

assert y 6= ⊥

for i from 1 to j − 1 :
y[i]←$ {0, 1}

sj+1||y[j + 1]←$ {0, 1}λ+1

for i from j+1 to s(|x|) :
si||y[i]← g(si−1)

y ← y[1]||..||y[s(λ)]
return y

Rj
SAMPLE

assert y 6= ⊥

for i from 1 to j − 1 :
y[i]←$ {0, 1}

sj ||y[j]← SAMPLE
for i from j+1 to p(|x|) :
si||y[i]← g(si−1)

y ← y[1]||..||y[p(λ)]||sp(λ)

return y

8

