Homework -exercises 25.-26.1.2024 Round 3

To get points from these exercises do them at home before the second exercise session of the week and at the beginning of the class mark them on the list.

- 1. Let $z = f(x, y) = \frac{2y}{x^2 + y^2}$, $x(s) = \cos(s)$ and $y(s) = \sin(s)$. Calculate the derivative $\frac{dz}{ds}$ in two different ways:
 - (a) by using the chain rule,
 - (b) by substituting the expressions of x and y to z.
- 2. Calculate the gradient for the function f(x, y, z) = xy + 2xz + 3yz at the point (2, -1, 3).
- 3. The base of the pyramid is a square of side s and the height of the pyramid is h. Use the differential (i.e. linear approximation) to estimate the relative error $|\Delta V|/V$ of the volume of the pyramid

$$V = V(h,s) = \frac{1}{3}hs^2$$

when s is measured with 1 % relative accuracy and h (harder to measure!) with 3 % relative accuracy.

Hint: To begin with, the general formula to be used in this exercise is

$$|\Delta f(x,y)| \lesssim |f_x| \cdot |\Delta x| + |f_y| \cdot |\Delta y|.$$

The notation \leq denotes an approximate inequality whose (relative) accuracy improves when $|\Delta x|, |\Delta y| \rightarrow 0$, but \leq is not necessary valid, because the estimate only includes the linear part of the change, i.e. the differential without error terms. There would be equality only in the form

$$\Delta f := f(x + \Delta x, y + \Delta y) - f(x, y) = f_x \Delta x + f_y \Delta y + \text{error term},$$

from which follows

$$|\Delta f| \le |f_x| \cdot |\Delta x| + |f_y| \cdot |\Delta y| + |\text{error term}|.$$