CS-E5520 Spring 2024

Jaakko Lehtinen / Erik Harkonen, Helk

tor) |-

Radiosity

estudibasic, Rendered using Maxwell

http://www.maxwellrender.com

What is the radiance hitting my
Solution of the rendering equation

Today

* Discretizing the rendering equation

—Radiosity (topic of your assignment!)

CS-E5520 Spring 2024 — Lehtinen

€ appedra € OI'C
doesn’t change over v

Jutgoing radiar

HOVWEVER €
1aS IS OV

11elc diIC

» .

’

So-called radiosity methods expre
the Infinitely complex solution'asa’
sum of simple basis functions:

This is the basis for light mappingsas
seen In many games.

e discretize the infinitely:complex

~ renderlng equation o get afinite
| equation We can solve.

- -

Sis function™?

Simplest version is to divide the
surfaces up to small patches and
approximate the radiosity of each
patch as constan

Now there are only finitely i any

unknown the radiosities of the
patc

Some Function on a Continuous Domain

Unweighted Basis Functions

® Here each basis function is a box, translated so that
they don’t overlap

Unweighted Basis Functions

® Here each basis function is a box, translated so that
they don’t overlap

Bi(x) Ba(z) Bn(at)
‘..; ‘

Approximation by Basis Functions

e We can try to choose weights for the basis
functions such that together the boxes approximate
the input function well

e This is called projection

o, By, ()

“Projection onto Finite Basis”

L7

approximation weighted basis functions

Projection onto Finite Basis, Piecewise Linear

A~ Y e S

approximation weighted basis functions

-n
“‘l ..’
* *
* *
S *
O’ "
L4
L4
L4
L
L4
L
L J
*
*

.‘---.....'.
.
5
Yo, n
3 0
L/
x

*
*
*
-
*
*
‘e
-
.
-
‘e
. N
]
l]
l]
l |
l
 J
]
 }
L }
]
]
]
L]
L |
L]
L]
L]
L]
a4
L
.
\ .
.
.
»

Fourier Series is the Same Thing

(Formula for interval of length 2pi;
Weights arethe A_0, A i, B_i)

sy = Ao —I—Z (A; cos(nz) + B; sin(nz))

1=1

weighted basis functions=scaled sines and cosines

WL

approximation

Figure adapted from wikipedia

Piecewise Linear Basis Functions

® Each vertex has one basis
function

—1 at the vertex, falls linearly to
0 inside the connected triangles

—Easy to evaluate using
barycentrics: remember, this is

pretty much their definition . ==——<

—But remember each vertexf/\<><>/\

:] /\/\
affects all connected tris! z /\/

vavaYiie

Functions

1S

Bas

inear

L

iecewise

»

AN

= S
pﬁuﬂm‘»
X % iy M

%ﬂmﬁga Y

fi
Y
_ﬁ,}w«A
g%.w/

7

a4

0
i
L,a

—1 at the vertex, falls linearly

e Each vertex has one
basis function

%
a¥l

pwl/du

7 X AN

AR

2, %
%
WA

to 0 inside the connected

I\

e

A\

< X UL

N7
G,
N\ At

wﬁi %

Wi
%

F

%

A\

¥

triangles

5]
v

/

p/

| 2y
S, o ! _I_“___ p, P, 3
N AR T AN

I\t

]

NNDK

—Barycentrics!

7>

VA

_ __ _h.....ﬂ,

i

VN

>

L“\ Vﬂni .p._/ S= Hq
L

i ..“_2

» i
w 'y
AR S
\“‘ff"‘r

M . ﬁ'g

W%
'. h.ﬂ..“

;?‘\

e Sampling values at

N,

s

wﬁ%#fﬂﬂzﬁ,
ﬂ.ﬂurw.wfvr?ﬂ,
P AN
2 NN
iR Y
oA 4%, Ay NS
ST %70l RN
7 avase N

i"‘

':;4
a
N

N
W

L] -

L
L L

:
s,
D

9

3

7

W}

vertices and

terpolating linearly

In

linear bas

piecewise

Flashback: Bilinear Texture Filtering

» Tell OpenGL to use a tent filter instead of a box filter

» Magnification looks better, but blurry

— (texture 1s under-sampled for this resolution)
—Oh well...

CS-E5520 Spring 2024 — Lehtinen 19

Texture Maps

o A texel in a texture map is also a basis function

—Think about it: it’s a finite set of numbers that together define
a function on the continuous 2D domain

Texture Maps

o A texel in a texture map is also a basis function

—Think about it: it’s a finite set of numbers that together define
a function on the continuous 2D domain

® The exact shape of the basis function determined by
the interpolation method used

—Most common: bilinear basis, here defined on [-1,1]2

, 0<z,y<1
0<xz<1,-1<y<0
—1<z<0<y<1
.,..._:t.1.§x7y<0

Ry

-. -. - -. \
S+ 4+ I
; ¥ 8.8 8

.. AN N N /N
———

.. _/.:_/ \.\/ N——"

“Projection Operators”

e \What’s going on: we take a function defined on a
continuous domain, do something, and get an
approximate version out

-n
“‘l ..’
* *
* *
’ *
O. "
L4
L4
L4
L
L4
L
L J
*
*

.‘---.....'.
.
5
Yo, n
3 0
D)
)

*
*
*
-
*
*
*e
-
.
-
‘e
. N
]
]
]
]
]
L]
L]
L |
L |
L |
L |
L |
L |
L |
L]
]
L]
L]
a4
L 2
.
\ .
.
.
»

“Projection Operators”

® Projection can be written as linear operator fP

® Take an arbitrary function L, return finite
approximation L described by vector of weights
(a1, 0, ...,a,) for basis functions

-n
“‘l ..’
* *
* *
S *
O. "
L4
L4
L4
L
L4
L
L J
*
*

.‘---.....'.
.
5
Yo, n
3 0
L/
)

*
*
*
-
*
*
*e
-
.
-
‘e
. N
]
]
]
]
]
L]
L]
L |
L |
L |
L |
L |
L |
L |
L]
L]
L]
L]
a4
L 2
.
\ .
.
.
»

Different Projections

» Sample at just one point (“point collocation”)

—For vertex basis, look at value at the vertex and use as weight:

f(x) ~ Z Bi(x) f(x;)

[

Basis function Function value

associated at i:th vertex
with 1:th vertex

» This process takes samples at vertices and “smears”
them across the triangles to yield a continuously-
deﬁned fUﬂCtiOn CS-E5520 Spring 2024 — Lehtinen

25

Different Projections

» Sample at just one point (“point collocation”)

—For vertex basis, look at value at the vertex and use as weight:

f(x) ~ Z Bi(x) f(x;)

[

Basis function Function value

associated at i:th vertex
with 1:th vertex

« What condition does the basis have to fulfil for this to
make sense?

CS-E5520 Spring 2024 — Lehtinen 26

Different Projections

» Sample at just one point (“point collocation”)

—For vertex basis, look at value at the vertex and use as weight:

f(x) ~ Z Bi(x) f(x;)

[

Basis function Function value

associated at i:th vertex
with 1:th vertex

 What condition does the basis have to fulfil for this to
make sense? Must have B;(z;) = 0 when ¢ # 7 (why?)

CS-E5520 Spring 2024 — Lehtinen 27

Different Projections

» Sample at just one point (“point collocation”)

—For vertex basis, look at value at the vertex and use as weight:

f(x) ~ Z Bi(x) f(x;)

» “Least squares projection”, aka Lo projection

—Find coefficients that minimize the squared norm of the error
integrated over the entire domain

CS-E5520 Spring 2024 — Lehtinen 28

Least Squares Projection

e Task: find (a1, as,...,a,) such that the residual

R = /S(f(x);asz@)) dx

1S minimized.

* Residual 1s mput function f minus the approximation
 Minimize the squared integral of R over the domain

—If approximation 1s exact, this i1s zero (never happens)
—Need to solve for the weights alpha

CS-E5520 Spring 2024 — Lehtinen

29

Turns Out To Be Simple

argmin,, /S (f(x) — Z:Zl oziBi(a:)) dx

CS-E5520 Spring 2024 — Lehtinen

30

Turns Out To Be Simple

argmin,, /S (f(x) — Z:Zl oziBi(a:)) dx

< expand the square

/S (f(x)2 _ QZf(:E) o; Bi(z) + 22:2:04@- Oszi(aj)Bj(gj)) e

CS-E5520 Spring 2024 — Lehtinen 31

Turns Out To Be Simple

argmin,, /S (f(x) — Z:Zl oziBi(:c)) dx

/ (% XZ]‘ a; B +XLLO‘Z a; B

onstant
(Does not affect
minimization)

CS-E5520 Spring 2024 — Lehtinen

32

Turns Out To Be Simple

argmin,, /S (f(a:) — Z:Zl OzZ'Bi(JJ)) dx

<~

[| 2K XY) 0s) XL D s BB o) |

<> (rearrange integration and summation)

—Z@i/Sf(-fU) Bi($)d$—l-2:2:oz@- ozj/SBZ-(:v)Bj(a:)dx

Independent of alphas, CS-E5520 Spring 2024 — Lehtinen Independent of alphas,
depend on just fand Bs depend only on Bs

33

Inner products

Zai/sf(x) Bi(x)da:—l—ZZozi ozj/SBi(a:)Bj(x)dx
1 \ / T 7 \ ,
= (f, Bi) = (Bi, Bj)

» These integrals of products of functions are called
inner products

» Think about analogy to usual vectors: Z i Vi

—Again, sums become integrals when
dimension D grows without limit

CS-E5520 Spring 2024 — Lehtinen 34

Turns Out To Be Simple

Zai/sf(x) Bi(x)da:—l—ZZozi ozj/SBi(a:)Bj(x)dx
N , i \ y
= (f, Bi) = (Bi, Bj)

» So the final task 1s to find alphas that minimize

=D _0i(fiBi)+) > aia; (B, Bj)

or, 1n matrix-vector form

—fla+ a’Ba

CS-E5520 Spring 2024 — Lehtinen 35

—f"a+a’Ba

» It’s a quadratic function in the vector alpha

—f, B are constants, given f (x) and the basis functions B; (x)

 What happens when you differentiate a quadratic
function and set to zero?

CS-E5520 Spring 2024 — Lehtinen

36

A Linear System

 Least squares projection solution given by

Ba=f

where f; = (f, B;) and B; ; = (B;, Bj)

CS-E5520 Spring 2024 — Lehtinen

37

Easy Special Case: Box Functions

 Least squares projection solution given by

Ba=f

where f; = (f, B;) and B; ; = (B;, Bj)

* What if we use the piecewise constant box basis?
—Then B;; =0 when i !=;. (Why?)

CS-E5520 Spring 2024 — Lehtinen

38

Easy Special Case: Box Functions

 Least squares projection solution given by

Ba=f

where f; = (f, B;) and B; ; = (B;, Bj)

* What if we use the piecewise constant box basis?
—Then B;; =0 when i !=;. (Why?)
—In fact, the B;; are just the areas under the boxes

—Convince yourself that then the basis coefficients are just area
averages of f over the boxes!

CS-E5520 Spring 2024 — Lehtinen

39

“Projection Operators” Recap

® Projection can be written as linear operator fP

® Take an arbitrary function L, return finite
approximation L described by vector of weights

(a1, az,...,a,) for basis functions
¢ To implement, do what we just did

A
-
-
-
*
‘e
-
-
<*
‘e
: .

®
a
a
a
Y
Y
a
a
a
x
®
®
a
a
x
a
a
a
a
)
-
L4
\ *
&
*
*

OK, Why all the Trouble?

e Video

CS-E5520 Spring 2024 — Lehtinen

41

Radiosity Derivation

* Rendering equation
L=TL+E

* Now let’s search for an approximate solution in terms
of basis functions, 1.e. try to find coefficients s.t.

L(z) =~ Z o; B;(x)

CS-E5520 Spring 2024 — Lehtinen

42

Radiosity Derivation

* Rendering equation

L=TL+E

» This amounts to applying the projection operator:

e
projection
PL ="PT(PL)+ PE

[_— T

PL = approximate PE = projected
solution in terms emission function

of basis functions
CS-E5520 Spring 2024 — Lehtinen

43

Lo and Behold

» The discretized rendering equation

PL = PT(PL)+ PE

1s actually a finite system of linear equations!

* Why?
—Clearly, both sides are finite basis expansions because we

always apply P to every term

—Hence, for the LHS and RHS to match, the basis coefficients
for PL on both side must be equal

CS-E5520 Spring 2024 — Lehtinen

44

PL = PT(PL) + PE

. . . (1)
 Let’s write things out a bit

Alphas are the unknowns we seek!

PL="Y) g:/Bi @)

CS-E5520 Spring 2024 — Lehtinen 45

PL = PT(PL) + PE

. . . (1)
 Let’s write things out a bit
/ Alphas are the unknowns we seek!
PL — 8% Bz (2)
()
Substitute (2) into (1) — PT Z CVj BJ —|— PE

CS-E5520 Spring 2024 — Lehtinen 46

PL = PT(PL) + PE

. . . (1)
 Let’s write things out a bit
/ Alphas are the unknowns we seek!
PL — 8% Bz (2)
)
Substitute (2) into (1) — PT E CVj BJ —|‘ PE
J

Move PT inside the sum — . :
(can be done as they’re both linear) o Z &] (PT B]) T PE

]
PTB; does not depend on the alphas or the
emission!

CS-E5520 Spring 2024 — Lehtinen 47

PL = PT(PL) + PE

. . . (1)
 Let’s write things out a bit

Alphas are the unknowns we seek!

PL="Y) g:/Bi @)

)
Substitute (2) into (1) — PT E CVj BJ —|— PE
J
Move PT inside the sum — : :
(can be done as they’re both linear) o Z &] (PT B]) T PE

j T
TB;j is the once-bounce illumination received

by all surfaces when the basis function B;
acts as an emitter. P merely projects it.

CS-E5520 Spring 2024 — Lehtinen 48

Visualizing PTB;

One sender basis function B;

Red = The one-
bounce
illumination
received by
other surfaces
when B;j is the
only emitter

Let's Finish It

» PT B, isthe basis expansion of the one-bounce
illumination that results when the emission 1s B;

* Because 1t 1s a basis expansion, 1t has 1ts own basis
coefficients. We’ll call them B; ;-

(PT B;)(Z B, : B;(

* “how to scale the ith basis function B;so that when
summed together, they together represent the scene
illuminated by the jth basis function B;”

CS-E5520 Spring 2024 — Lehtinen 50

Visualizing PTB

0,
0,
One sender basis
function B;
0,
0,
0,

Viany receiving basis
functions whodg
coefficients are Bi;

O

Final Radiosity Equation

» The abstract projected equation

PL = PT(PL)+ PE

1s actually the linear system
oa=DBoa+te

where the components of alpha are the unknown
coefficients, the matrix B consists of the basis
coefficients of PTB; for all j as shown before, and e 1s
the basis coetficient vector projected emission PE.

CS-E5520 Spring 2024 — Lehtinen

52

Important Point

oa—=Boa+e

* This 1s all good, but we never ever form the matrix B
explicitly. Why?

CS-E5520 Spring 2024 — Lehtinen

53

Important Point

oa—=Boa+e

* This 1s all good, but we never ever form the matrix B
explicitly. Why?

* We can easily have 10M basis functions 1n the scene
=> matrix 1s 10M2 = 1014 float3 entries = 1015 bytes

—We really don’t have the time to compute them

—Nor space to store them

e Solution: use iterative methods

CS-E5520 Spring 2024 — Lehtinen

54

Iterative Linear Solver

e Jterative method means we don’t first invert the matrix
and then use a direct solver like Gaussian elimination

* Instead, compute matrix-vector products and iterate

* No, you don’t need the full matrix in memory to
compute matrix-vector products

—See Jacobi iteration, Gauss-Seidel iteration, conjugate gradient
method, Krylov subspace methods

—Some very smart approximate product algorithms are known
for some particular matrices/operators

CS-E5520 Spring 2024 — Lehtinen 55

http://en.wikipedia.org/wiki/Jacobi_method
http://en.wikipedia.org/wiki/Gauss%25E2%2580%2593Seidel_method
http://en.wikipedia.org/wiki/Conjugate_gradient_method
http://en.wikipedia.org/wiki/Conjugate_gradient_method
http://en.wikipedia.org/wiki/Krylov_subspace
http://en.wikipedia.org/wiki/Fast_multipole_method

Discrete Radiosity Equation
oa=Ba+te

* ¢ 1s the vertex color vector where only the emitting
polygons’ vertices have a nonzero radiosity

* Turns out we can apply the Neumann series here, too!

o =e-+ Be-+ B’e+ ...

e ... and this 1s almost precisely what Max Payne’s
lighting solver does, as well as you 1n Assn 2!

—Just one possible iteration for this equation, you’ll find lots of
others 1n textbooks (Jacobi, Gauss-Seidel, Southwell)

CS-E5520 Spring 2024 — Lehtinen 56

lterative Radiosity Solution (Jacobi)

o =e-+ Be-+ B’e+ ...

e Initialize: o« =e,3 = e

 Then iterate:
1. B3+ B

2o atp until happy

* What happens:
B = {e,Be,BBe,...}
o = {e,e + Be,e - Be + BBe,. ..}

CS-E5520 Spring 2024 — Lehtinen

57

Computing the Product

» How to compute B3 ?

—Using the basis expansion with coefficients 3 as the emission,
compute at the one-bounce 1llumination cast on the scene and
determine 1ts projection coefficients.

—When using vertex basis, very simple: evaluate the
hemispherical irradiance integral at each vertex and turn it into
outgoing radiance using albedo

—And don’t forget to divide by p1 :)

» Note! Do not update values of (3 while computing the
full matrix product

—Store product 1n temp vector and then update once all vertices
have been computed

CS-E5520 Spring 2024 — Lehtinen 58

One Last Practical Detall

* We don’t actually store outgoing radiosity, but incident
irradiance 1nstead

—Why? So that we can modulate the lighting using textures

* S0, our basis expansion gives us irradiance, we turn 1t
into radiosity by dividing by p1 and multiplying by
albedo 1n the shader

CS-E5520 Spring 2024 — Lehtinen

59

Pseudocode Using Vertex Basis

// these are
// they stor
vector alpha
e = project(
alpha = beta

for bounce=l1
clear(te

for i=1

B =

res

// M

for

end

vectors of length N, where N is the number of vertices
e radiosity before multiplied by albedo
, beta, temp, e;

E); // set the colors of emitter vertices

= e; // init

to numBounces

mp) ; // set to zero
to N // loop over vertices
formBasis(vertices[i]); // you already know how

= Vec3f(0);
is the number of rays to sample hemisphere with
j=1 to M
Wi = drawCosineWeightedDirection(); // you know how
y = rayCast(vertices[i], Wi); // you know how

// get the radiosity for the hit point y, rho/pi is BRDF
Li = rho(y)/pi * interpolatelIrradiance(y, beta);
res = res + Li;

temp[i] = res/M;

end

beta = temp;

alpha =
end

alpha + beta; g 5550 spring 2024 - Lehtinen

60

Interpolation

* interpolateIrradiance(y, beta) takes the
hit point y and interpolates the irradiance values from
the corresponding corner vertices using barycentrics

* You remember this from C3100...

CS-E5520 Spring 2024 — Lehtinen

61

Barycentric Interpolation Recap

* Values vi, vz, vz defined at a, b, ¢

—Colors, normal, texture coordinates, etc.

e P(a, B, y) =caa+ b + ye¢ 1s the point...

e v(a, B, Y) = avi

barycentric interpolation of

vi-v3 at point P

—Sanity check: v(1,0,0) = vi, etc.
e I.e, once you know a, f3,y, Vi1

you can interpolate values o
using the same weights.

—Convenient!

Bva

CS-E5520 Spring 2024 — Lehtinen

vv3 18 the

62

-

E+TE E+TE E+TE
+T°E +T2E
+T°F

adapted from Pat Hanrahan, Spring 2010

Discussion

» This was for vertex-based interpolation

» Often one uses texture maps, so-called lightmaps, for
storing the 1rradiance

—This 1s what we did (video)

—Why? To get detailed 1llumination, you need many vertices
—Downside: building UV parameterizations over the scene hard

—Also, we computed the hemispherical integrals using the GPU
using a so-called hemicube technique

* However, the main ingredients of the lighting solver
are precisely the same

CS-E5520 Spring 2024 — Lehtinen 64

http://dl.acm.org/citation.cfm?id=325171

Discussion 2

* The loop over vertices 1s embarrassingly parallel
—We had a simple distributed cluster running this in Max Payne
—But need to synchronize across bounces

* But you can be even smarter

—In Max Payne 2, we solved each room in the scene separately
in 1ts own cluster node

* Less data to transfer over network, faster gathering integrals

—Then, light was propagated between the rooms through 4D
light fields or Lumigraphs

—Corresponds to a two-level block-structured iteration on the

large linear system
CS-E5520 Spring 2024 — Lehtinen 65

http://dl.acm.org/citation.cfm?id=237200

Discussion 3

* You can also store directional information, not just
irradiance

—This allows you to combine radiosity and normal maps

—Even 1f the 1rradiance 1s coarsely-sampled, you still get nice
surface detail

—“Spherical Harmonics™ and “vector 1rradiance™ are keywords

— Extra credit in your assignment

* Also, as you notice, the lighting 1s static

—But you can allow the lighting to vary in some predetermined
linear space => Precomputed Radiance Transfer (VIDEO)

—See my master’s thesis and ToG paper for an 1n-depth
introduction to PRT

CS-E5520 Spring 2024 — Lehtinen 66

http://users.aalto.fi/~lehtinj7/JaakkoLehtinen_MSc_thesis.pdf
http://dl.acm.org/citation.cfm?doid=1289603.1289604

Radiosity + Normals in Half-Life 2

Slide by Gary McTaggart (Valve)

Radiosity

Slide by Gary McTaggart (Valve)

L\
¥
%
]
e »";-
-
A\

r
»
£
P
o~ S
S~
/ o
I
. o
>
S ; 3
» -
~~ -

Slide by Gary McTaggart (Valve)

Normal Mapped Radiosity

Albedo

"l
oY !

Botn ;‘N

Slide by Gary McTaggart (Valve)

\\

Slide by Gary McTaggart (Valve)

Albedo * Normal Mapped Radiosity

Radiosity Normal
Mapping Shade Tree

Albedo 4%

St iy)
JITY FA AU

S

B f\v\

Discussion 4

* It often makes sense to compute direct lighting
separately and only use basis functions for indirect

* Also, does 1t make sense to compute the lighting at a
high resolution where 1t doesn’t vary very fast..?

CS-E5520 Spring 2024 — Lehtinen 73

Discussion 4

* It often makes sense to compute direct lighting
separately and only use basis functions for indirect

* Also, does 1t make sense to compute the lighting at a
high resolution where 1t doesn’t vary very fast..?

—You’re right, 1t doesn’t

* Adaptive refinement means you compute coarsely, then
subdivide where you think you need to

CS-E5520 Spring 2024 — Lehtinen 74

Adaptive Refinement Example

Krivanek 2004

NN

(a) (b)

Figure 5: (a) Uniform subdivision (1953 vertices and 3504 triangles). (b) Adaptive subdivision (1540 vertices, 3720
triangles).

CS-E5520 Spring 2024 — Lehtinen 75

http://dcgi.felk.cvut.cz/publications/2004/krivanek-sccg-amsp

Final Conclusions

* Meshing 1s hard
» Lightmaps are hard (but they are still used)

* You can get around limitations of both by using
meshless basis functions (Lehtinen et al. 2008)

— Also supports adaptive refinement

—Rendering cost 1s pretty high, though.

CS-E5520 Spring 2024 — Lehtinen

http://people.csail.mit.edu/jaakko/meshless/

Modern Take (link)

Multi-Scale Global
lllumination in Quantum Break

Ari Silvennoinen Ville Timonen

Remedy Entertainment Remedy Entertainment
Aalto University

REMEDY

@ SIGGRAPH2015 @

CS-E5520 Spring 2024 — Lehtinen

http://advances.realtimerendering.com/s2015/SIGGRAPH_2015_Remedy_Notes.pdf

S L;
—

&

Direct-to-indirect precomputed light transport
using meshless hierarchical basis functions

That’s’i%c for Today

o Further reading

— My master’s thesis introduces math
behind discretized global
1llumination |

—Cohen & Wallace: Radiosity and
Realistic Image Synthesis

http://advances.realtimerendering.com/s2015/SIGGRAPH_2015_Remedy_Notes.pdf

