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What is the radiance hitting my sensor? <=> 
Solution of the rendering equation



• Intro to Monte Carlo integration 
–Basics 
– Importance Sampling
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Today
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ZIntegrals are Everywhere
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Z



• Pixel: antialiasing 
• Light sources: Soft shadows 
• Lens: Depth of field 
• Time: Motion blur 
• BRDF: glossy reflection 
• Hemisphere: indirect lighting
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For Example...
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• Compute integral of arbitrary function 
–e.g. integral over area light source, over hemisphere, etc. 

• Continuous problem ! we need to discretize 
–Analytic integration never works because of visibility and 

other nasty details
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Numerical Integration
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• You know trapezoid, Simpson’s rule, etc. 
from your first engineering math class 
–Distribute N samples (evenly) in the domain 
–Evaluate function at sample points 
–Weigh samples and sum 
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Numerical Integration
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1D trapezoid rule weights:

1D Simpson’s rule weights:

http://en.wikipedia.org/wiki/Simpson%2527s_rule


• You know trapezoid, Simpson’s rule, etc. 
from your first engineering math class 
–Distribute N samples (evenly) in the domain 
–Evaluate function at sample points 
–Weigh samples and sum 
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Why Will This Not Suffice for Us?
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1D trapezoid rule weights:

1D Simpson’s rule weights:

http://en.wikipedia.org/wiki/Simpson%2527s_rule


• Error scales with (some power of) grid spacing h
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Why is This Bad?
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h



• Error scales with (some power of) grid spacing h 
• Bad things happen when dimension grows.. 

–And our integrals are often high-dimensional 
• Eg. motion blurred soft shadows through finite aperture = 7D!
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Why is This Bad?
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h



• Error scales with (some power of) grid spacing h 
• Bad things happen when dimension grows.. 

–Think of a 10D unit hypercube [0,1]^10 
–For h=1/2, need 3 samples on all dims, total 3^10 = 59049 (!)
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Why is This Bad?
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h
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n

Constant spacing, 1D

12



CS-E5520 Spring 2024 – Lehtinen 

n2

2D (yikes!)
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n3

3D (YIKES!)
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4D... you get the picture
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Solution: Randomness
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• Monte Carlo integration: use random samples and 
compute average 
–We don’t keep track of spacing between samples 
– (You’re right to wonder: why would this help?)
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Monte Carlo Integration
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• S is the integration domain 
–Vol(S) is the volume (measure) of S (1D: length, 2D: area, ...) 

• {xi} are independent, uniform random points in S 
• That’s right: integral is average of f multiplied by size 

of domain 
–We estimate the average by random sampling 
–E.g. for hemisphere Vol(S) = 2pi
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Naive Monte Carlo Integration
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�

S

f(x) dx � Vol(S)
N

N�

i=1

f(xi)



• Take a square 
• Take a random point (x,y) in the square 
• Test if it is inside the ¼ disc (x2+y2 < 1) 
• The probability is π /4 
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Naive Monte Carlo Computation of π

x

y Integral of the function that 
is one inside the circle, zero 
outside
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• The probability is π /4  
• Count the inside ratio n = # inside / total # trials 
•  π ≈ n * 4 
• The error depends on the number or trials
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Naive Monte Carlo Computation of π

Demo

def piMC(n):
    success = 0
    for i in range(n):
        x=random.random()
        y=random.random()
        if x*x+y*y<1: success = success+1
    return 4.0*float(success)/float(n)
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Matlab Demo
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• You’re right, Monte Carlo is not very efficient for 
computing π 

• So when is it useful? High dimensions! 
–Asymptotic convergence rate is independent of dimension! 
–For d dimensions, Simpson requires Nd samples (!!!) 

• Similar explosion for other quadratures (Gaussian, etc.) 

–You saw this visually a little earlier
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Why Not Use Simpson Integration?
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Asymptotic convergence rate = 
the relationship of error to number of samples n when n is large



• You know this from your basic probability classes 
–Gentle, not very rigorous reminder follows..
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Random Variables Recap
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• Distribution of random points determined by the 
Probability Density Function (PDF) p(x)
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Random Variables Recap: PDF
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Examples of 1D PDFs

Note that the Laplace 
and normal distributions 
are supported on the 
entire real line, not just 
[0,1]!



• Distribution of random points determined by the 
Probability Density Function (PDF) p(x) 
–Uniform distribution means: each point in the domain equally 

likely to be picked: p(x) = 1/Vol(S) 
–Why so? PDF must integrate to 1 over S 
– (Uniform distribution is often pretty bad for integration)
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Random Variables Recap: PDF

24

Examples of 1D PDFs

Note that the Laplace 
and normal distributions 
are supported on the 
entire real line, not just 
[0,1]!



• Expected value of a function g under probability 
distribution p is defined as 

• Because p integrates to 1 like a proper PDF should, this 
is just a weighted average of g over S 
–When p is uniform, this reduces to the usual average
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Recap: Expected Value (=Average)
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E{g(x)}p =

Z

S
g(x) p(x) dx

1

Vol(S)

Z

S
g(x) dx



• Variance is the average (expected) squared deviation 
from the mean 

• Standard deviation is square root of variance 

• Note that the PDF p is included in the definition! 
–Also in the computation of the mean
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Random Variables Recap: Variance
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Var(X) = E{(X � µ)2}p

µ = E{X}p

http://en.wikipedia.org/wiki/Variance
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OK, Down to Business Then!
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Sample from non-uniform PDF 
Intuitive justification: Sample more in places where there are 

likely to be larger contributions to the integral
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“Importance Sampling”
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• Integral over hemisphere 
• BRDF times cosine times incoming light
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Example: Glossy Reflection
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Slide courtesy of Jason Lawrence

http://www.cs.virginia.edu/~jdl/
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Sampling a BRDF

5 Samples/Pixel
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Slide courtesy of Jason Lawrence
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Sampling a BRDF
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Slide modified from Jason Lawrence’s

5 Samples/Pixel, no importance sampling
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Sampling a BRDF
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Slide modified from Jason Lawrence’s

5 Samples/Pixel, with importance sampling
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Sampling a BRDF

25 Samples/Pixel
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Slide courtesy of Jason Lawrence
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Sampling a BRDF

75 Samples/Pixel

Slide courtesy of Jason Lawrence
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Sampling a BRDF

75 Samples/Pixel, no importance sampling

Slide modified from Jason Lawrence’s
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Sampling a BRDF Slide modified from Jason Lawrence’s
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75 Samples/Pixel, with importance sampling



• As long as the PDFs are not pathological, both methods 
have the same asymptotic O(1/N) convergence rate
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On Convergence Speed
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• Sample density changes over domain S ~ 
p(x) is not a constant any more
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How does that work?
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• Sample density changes over domain S ~ 
p(x) is not a constant any more 

• So let’s drop the uniform PDF requirement and rewrite: 

• Important! p(x) must be nonzero where f(x) is 
nonzero!
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How does that work?
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Z

S
f(x) dx =

Z

S

f(x)

p(x)
p(x) dx



• This is (by definition) the expectation of f(x)/p(x):
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Non-Naive MC Integration
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Z

S
f(x) dx =

Z

S

f(x)

p(x)
p(x) dx

= E{f(x)
p(x)

}p



• …and this is how one estimates it numerically
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Non-Naive MC Integration
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Z

S
f(x) dx =

Z

S

f(x)

p(x)
p(x) dx

= E{f(x)
p(x)

}p

⇡ 1

N

X

i

f(xi)

p(xi)

Note that the 
uniform case 
reduces to the 
same because 
p(x)==1/Vol(S)

The x_i are 
independent 
random points 
distributed with 
density p(x)



1. Draw random samples distributed with density p 
2. Evaluate integrand f(x) and p(x) at the samples 
3. Average f(x)/p(x)
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This is called Importance Sampling

42

⇡ 1

N

X

i

f(xi)

p(xi)

Z

S
f(x) dx
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Let’s think about this…
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High p => samples more dense

Low p => samples less dense

⇡ 1

N

X

i

f(xi)

p(xi)

Z

S
f(x) dx
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Let’s think about this…
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How does this sample contribute to the average?

And this one?

⇡ 1

N

X

i

f(xi)

p(xi)

Z

S
f(x) dx
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Let’s think about this…
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High p 
   => 1/p smaller 
       => sample has less weight

Low p 
    => 1/p larger 
        => sample has higher weight

⇡ 1

N

X

i

f(xi)

p(xi)

Z

S
f(x) dx



“If you pick a sample less often, give it more power”

CS-E5520 Spring 2024 – Lehtinen 

Let’s think about this…
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High p 
   => 1/p smaller 
       => sample has less weight

Low p 
    => 1/p larger 
        => sample has higher weight

(..but f/p remains as constant as 
possible! More on this later.)



Z

S
f(x) dx ⇡ 1

N

X

i

f(xi)

p(xi)

• Clearly this is just an approximation!
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Monte Carlo Integration Error
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def
= ÎI

def
=

• Clearly this is just an approximation! 
–The value     of the estimate is a random variable itself 

• Because we are using random points 

–Error manifests itself as variance, which shows up as noise
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Monte Carlo Integration Error
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Î

Z

S
f(x) dx ⇡ 1

N

X

i

f(xi)

p(xi)

http://en.wikipedia.org/wiki/Variance
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Monte Carlo Integration Error

Î

def
= ÎI

def
=

Z

S
f(x) dx ⇡ 1

N

X

i

f(xi)

p(xi)

49

• Clearly this is just an approximation! 
–The value     of the estimate is a random variable itself 
–Error manifests itself as variance, which shows up as noise 

• Variance of MC integration result     is proportional 
to both 1/N and the variance of f/p 
–Avg. error is proportional 1/sqrt(N) 
–To halve error, need 4x samples (!!) (avg. error = sqrt(Var))

Î

http://en.wikipedia.org/wiki/Variance


• “Variance of    proportional to 1/N and Var(f/p)” 
 
 
 
 
 
 
==> 
If f/p is constant, there is no noise 
– In practice: If we use a good PDF, we will have less noise...
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Variance of the MC Result
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Î

Var(Î) =
Vol(S)2

N
Var(f/p) =

Vol(S)2

N
E{(f(x)

p(x)
� E{f/p})2}p



• What if p mimics f perfectly? I.e., let’s take 

• This has the same shape as f, 
but normalized so it integrates to 1 
–Note: need non-negative f for this to work
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What’s a Good PDF?
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p(x) =
f(x)R

S f(x) dx



• What if p mimics f perfectly? I.e., let’s take 

• This has the same shape as f, 
but normalized so it integrates to 1 
–Note: need non-negative f for this to work 

• But now f/p IS constant and we have no noise at all! 
–Alas: to come up with this p, we need the integral of f, which 

is what we are trying to compute in the first place :)
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What’s a Good PDF?
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p(x) =
f(x)R

S f(x) dx



• One that mimics the shape of f, 
but is easy to sample from 

• Because p is in the denominator, should try to avoid 
cases where p is low and f is high 
–These samples will increase variance a LOT
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What’s a Good PDF?

53



• Obviously, method on right is better…
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On Convergence Speed
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75 Samples/Pixel, no importance sampling 75 Samples/Pixel, with importance sampling



• Both methods have the same asymptotic O(1/N) 
convergence rate (to halve expected error, need 4x 
samples), but this does not mean they are equal!
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On Convergence Speed
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75 Samples/Pixel, no importance sampling 75 Samples/Pixel, with importance sampling



Questions?

runes.nu, rendered using Maxwell



• Remember: computation of irradiance means 
integrating incident radiance and cosine on hemisphere: 

• We usually can’t make assumptions about the lighting, 
but we do know the cosine weighs the samples near the 
horizon down => makes sense to importance sample 
with  
–Why pi? Remember that          integrates to pi over 

hemisphere, so to get a proper PDF must normalize!
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Importance Sampling Example
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E =

Z

⌦
Lin(!) cos ✓ d!

p(!) = cos ✓/⇡

cos ✓



• In your assignment, you’re lifting points from the unit 
disk onto the unit hemisphere, i.e., you’re mapping 

• If we have uniform density of points on the disk, i.e., 
p(x,y)=1/π, what’s the density of points on the 
hemisphere? 

• Instance of “transform sampling”
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But How? You’re Doing This Already
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X = x, Y = y, Z(x, y) =
p

1� x2 � y2 P = (X,Y, Z)



• Let’s take the infinitesimal square dA = dx*dy and map 
it to the hemisphere 
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But How? You’re Doing This Already
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X = x, Y = y, Z(x, y) =
p

1� x2 � y2

dx
dy

dP

dxdP

dy

P = (X,Y, Z)



• Let’s take the infinitesimal square dA = dx*dy and map 
it to the hemisphere; then, remembering the properties 
of the cross product, compute its area by 
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But How? You’re Doing This Already
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X = x, Y = y, Z(x, y) =
p

1� x2 � y2

(
@X

@x
,
@Y

@x
,
@Z

@x
) (

@X

@y
,
@Y

@y
,
@Z

@y
)⇥k k

=

s
|x|2

x2 + y2 � 1
+

|y|2
x2 + y2 � 1

+ 1
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But...
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s
|x|2

x2 + y2 � 1
+

|y|2
x2 + y2 � 1

+ 1

=

s
|x|2
|Z|2 +

|y|2
|Z|2 +

|Z|2
|Z|2

=
1

|Z|
p
|X|2 + |Y |2 + |Z|2

= 1/Z

This equals 1 (why?)



• In polar coordinates, z = 
• So: a small area on disk gets mapped to one whose area 

is divided by          ; density is inversely propotional, 
i.e.,                             => samples are cosine-weighted!
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Ha!
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s
|x|2

x2 + y2 � 1
+

|y|2
x2 + y2 � 1

+ 1

=

s
|x|2
|Z|2 +

|y|2
|Z|2 +

|Z|2
|Z|2

=
1

|Z|
p
|X|2 + |Y |2 + |Z|2

= 1/Z

p(!) = cos ✓/⇡

cos ✓

cos ✓

Remember: original density 
on disk is 1/π!



• We’ll use the lifting to turn uniform points on the disk 
onto cosine-distributed points on hemisphere, then 
 
 
 
 
but                        , so
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MC Irradiance w/ Cosine Importance
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E =

Z

⌦
Lin(!) cos ✓ d! ⇡ 1

N

NX

i=1

Lin(!i)

p(!i)
cos ✓i

p(!) = cos ✓/⇡

E ⇡ ⇡

N

NX

i=1

Lin(!i)

Irradiance is just an average of the incoming radiance 
when the samples are drawn under the cosine distribution



• You’re doing rejection sampling in your assignment 
– I.e., draw uniformly from a larger area (square), reject samples 

not in the domain (disk) 

• Another way is to sample the disk uniformly and 
continuously map the square to disk 
–May be better than rejection sampling, don’t need to test and 

potentially regenerate 
–Also easily allows 

stratification 
–See Shirley & Chiu 97
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How to Draw Samples on the Disk?
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http://en.wikipedia.org/wiki/Rejection_sampling
http://www.tml.tkk.fi/~jaakko/T111-5310/K2013/JGT-97.pdf
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Pseudocode
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Vec3f result;

for i=1:n
   // can implement through rejection or Shirley&Chiu
   Vec2f disk = uniformPointUnitDisk();
   // lift disk point to hemisphere..
   Vec3f Win( disk, sqrt(1.0f - disk.x*disk.x - disk.y*disk.y) );
   // get incoming lighting and add to result
   Vec3f Lin = getRadiance(Win);
   result += Lin;
end

result = result * pi * (1.0f/N);
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Pseudocode
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Vec3f result;

for i=1:n
   // can implement through rejection or Shirley&Chiu
   Vec2f disk = uniformPointUnitDisk();
   // lift disk point to hemisphere..
   Vec3f Win( disk, sqrt(1.0f - disk.x*disk.x - disk.y*disk.y) );
   // get incoming lighting and add to result
   Vec3f Lin = getRadiance(Win);
   result += Lin;
end

result = result * pi * (1.0f/N);

This is almost a path tracer! 
Just missing getRadiance() 

and BRDF.



• For a fixed outgoing angle, the specular Phong lobe is 

• C is normalization constant 2π/(q+1) (see Wolfram 
Alpha), r returns the mirror vector, q is shininess 

• Can you derive a formula for a PDF              that is 
proportional to the Phong lobe for fixed r? 
–Hint: Note that the lobe is radially symmetric around r => 

you can concentrate on a canonical situation, e.g., r = (0,0,1) 
–The general case follows by rotation
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Homework: Phong Lobes
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fr(!in) = C(r(!out) · !in)
q

p(!in)

http://bit.ly/13a0d73
http://bit.ly/13a0d73


• Because you often need different PDFs, you don’t 
really want to write all the code for picking random 
points/directions directly in your inner loop 

• Instead abstract into two functions 
–1. one function for generating the points/directions, and 
–2. another to evaluate the PDF at any given point/direction 

• Why 2 functions instead of 1? This is required in Multiple 
Importance Sampling (next lecture), where you need to evaluate 
PDFs also for points drawn from different distributions
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Abstraction Pays, As Usual
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Questions?
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