

CS-E5520 Spring 2024
Jaakko Lehtinen
with many slides from Frédo Durand

Today

- Intro to Monte Carlo integration
 - -Basics
 - -Importance Sampling

Integrals are Everywhere

For Example...

- Pixel: antialiasing
- Light sources: Soft shadows
- Lens: Depth of field
- Time: Motion blur
- BRDF: glossy reflection
- Hemisphere: indirect lighting

Numerical Integration

- Compute integral of arbitrary function
 - −e.g. integral over area light source, over hemisphere, etc.
- Continuous problem \rightarrow we need to discretize
 - -Analytic integration never works because of visibility and other nasty details

Numerical Integration

- You know trapezoid, <u>Simpson's rule</u>, etc. from your first engineering math class
 - +Distribute N samples (evenly) in the domain

Why Will This Not Suffice for Us?

- You know trapezoid, <u>Simpson's rule</u>, etc. from your first engineering math class
 - +Distribute N samples (evenly) in the domain

Why is This Bad?

• Error scales with (some power of) grid spacing h

Why is This Bad?

- Error scales with (some power of) grid spacing h
- Bad things happen when dimension grows..
 - +And our integrals are often high-dimensional
 - Eg. motion blurred soft shadows through finite aperture = 7D!

Why is This Bad?

- Error scales with (some power of) grid spacing h
- Bad things happen when dimension grows..
 - +Think of a 10D unit hypercube [0,1]^10
 - +For h=1/2, need 3 samples on all dims, total $3^10 = 59049$ (!)

11

Constant spacing, 1D

n

2D (yikes!)

3D (YIKES!)

4D... you get the picture

Solution: Randomness

Monte Carlo Integration

- Monte Carlo integration: use random samples and compute average
 - +We don't keep track of spacing between samples
 - (You're right to wonder: why would this help?)

Naive Monte Carlo Integration

$$\int_{S} f(x) dx \approx \frac{\operatorname{Vol}(S)}{N} \sum_{i=1}^{N} f(x_i)$$

- S is the integration domain
 - -Vol(S) is the volume (measure) of S (1D: length, 2D: area, ...)
- {x_i} are independent, uniform random points in S
- That's right: integral is average of f multiplied by size of domain
 - -We estimate the average by random sampling
 - -E.g. for hemisphere Vol(S) = 2pi

Naive Monte Carlo Computation of π

- Take a square
- Take a random point (x,y) in the square
- Test if it is inside the $\frac{1}{4}$ disc ($x^2+y^2 < 1$)
- The probability is $\pi/4$

Integral of the function that is one inside the circle, zero outside

Naive Monte Carlo Computation of π

- The probability is $\pi / 4$
- Count the inside ratio n = # inside / total # trials
- $\pi \approx n * 4$
- The error depends on the number or trials

Demo

```
def piMC(n):
    success = 0
    for i in range(n):
        x=random.random()
        y=random.random()
        if x*x+y*y<1: success = success+1
    return 4.0*float(success)/float(n)</pre>
```

Matlab Demo

Why Not Use Simpson Integration?

• You're right, Monte Carlo is not very efficient for computing π

- So when is it useful? High dimensions!
 - -Asymptotic convergence rate is independent of dimension!
 - −For *d* dimensions, Simpson requires *N*^d samples (!!!)
 - Similar explosion for other quadratures (Gaussian, etc.)
 - -You saw this visually a little earlier

Asymptotic convergence rate = the relationship of error to number of samples n when n is large

Random Variables Recap

- You know this from your basic probability classes
 - -Gentle, not very rigorous reminder follows..

Random Variables Recap: PDF

• Distribution of random points determined by the Probability Density Function (PDF) p(x)

Random Variables Recap: PDF

- Distribution of random points determined by the Probability Density Function (PDF) p(x)
 - –Uniform distribution means: each point in the domain equally likely to be picked: p(x) = 1/Vol(S)
 - -Why so? PDF must integrate to 1 over S
 - -(Uniform distribution is often pretty bad for integration)

Recap: Expected Value (=Average)

• Expected value of a function g under probability distribution p is defined as

$$E\{g(x)\}_p = \int_S g(x) p(x) dx$$

- Because *p* integrates to 1 like a proper PDF should, this is just a weighted average of *g* over *S*
 - –When p is uniform, this reduces to the usual average

$$\frac{1}{\operatorname{Vol}(S)} \int_{S} g(x) \, \mathrm{d}x$$

Random Variables Recap: Variance

• Variance is the average (expected) squared deviation from the mean $\mu = E\{X\}_p$

$$Var(X) = E\{(X - \mu)^2\}_p$$

Standard deviation is square root of variance

- Note that the PDF p is included in the definition!
 - -Also in the computation of the mean

OK, Down to Business Then!

"Importance Sampling"

Sample from non-uniform PDF

Intuitive justification: Sample more in places where there are likely to be larger contributions to the integral

Example: Glossy Reflection

Slide courtesy of <u>Jason Lawrence</u>

- Integral over hemisphere
- BRDF times cosine times incoming light

Slide courtesy of Jason Lawrence

Slide modified from Jason Lawrence's

Slide modified from Jason Lawrence's

Slide courtesy of Jason Lawrence

25 Samples/Pixel

Slide courtesy of Jason Lawrence

Slide modified from Jason Lawrence's

75 Samples/Pixel, no importance sampling

Slide modified from Jason Lawrence's

75 Samples/Pixel, with importance sampling

On Convergence Speed

• As long as the PDFs are not pathological, both methods have the same asymptotic O(1/N) convergence rate

How does that work?

Sample density changes over domain S ~
 p(x) is not a constant any more

How does that work?

- Sample density changes over domain S ~
 p(x) is not a constant any more
- So let's drop the uniform PDF requirement and rewrite:

$$\int_{S} f(x) dx = \int_{S} \frac{f(x)}{p(x)} p(x) dx$$

• Important! p(x) must be nonzero where f(x) is nonzero!

Non-Naive MC Integration

• This is (by definition) the expectation of f(x)/p(x):

$$\int_{S} f(x) dx = \int_{S} \frac{f(x)}{p(x)} p(x) dx$$

$$= E\{\frac{f(x)}{p(x)}\}_p$$

Non-Naive MC Integration

• ...and this is how one estimates it numerically

$$\int_{S} f(x) dx = \int_{S} \frac{f(x)}{p(x)} p(x) dx$$

$$= E\{\frac{f(x)}{p(x)}\}_p$$

The x_i are independent random points distributed with density p(x)

$$\approx \frac{1}{N} \sum_{i} \frac{f(x_i)}{p(x_i)}$$

Note that the uniform case reduces to the same because p(x)==1/Vol(S)

This is called Importance Sampling

$$\int_{S} f(x) dx \approx \frac{1}{N} \sum_{i} \frac{f(x_{i})}{p(x_{i})}$$

- 1. Draw random samples distributed with density p
- 2. Evaluate integrand f(x) and p(x) at the samples
- 3. Average f(x)/p(x)

$$\int_{S} f(x) dx \approx \frac{1}{N} \sum_{i} \frac{f(x_{i})}{p(x_{i})}$$

High p => samples more dense

$$\int_{S} f(x) dx \approx \frac{1}{N} \sum_{i} \frac{f(x_{i})}{p(x_{i})}$$

How does this sample contribute to the average?

$$\int_{S} f(x) dx \approx \frac{1}{N} \sum_{i} \frac{f(x_{i})}{p(x_{i})}$$

High p

=> 1/p smaller

=> sample has less weight

"If you pick a sample less often, give it more power"

Monte Carlo Integration Error

$$\int_{S} f(x) dx \approx \frac{1}{N} \sum_{i} \frac{f(x_{i})}{p(x_{i})}$$

• Clearly this is just an approximation!

Monte Carlo Integration Error

$$I \stackrel{\text{def}}{=} \int_{S} f(x) dx \approx \frac{1}{N} \sum_{i} \frac{f(x_{i})}{p(x_{i})} \stackrel{\text{def}}{=} \hat{I}$$

- Clearly this is just an approximation!
 - -The value \hat{I} of the estimate is a random variable itself
 - Because we are using random points
 - -Error manifests itself as <u>variance</u>, which shows up as **noise**

Monte Carlo Integration Error

$$I \stackrel{\text{def}}{=} \int_{S} f(x) \, \mathrm{d}x \approx \frac{1}{N} \sum_{i} \frac{f(x_{i})}{p(x_{i})} \stackrel{\text{def}}{=} \hat{I}$$

- Clearly this is just an approximation!
 - The value \hat{I} of the estimate is a random variable itself
 - -Error manifests itself as variance, which shows up as noise
- Variance of MC integration result \hat{I} is proportional to both 1/N and the variance of f/p
 - Avg. error is proportional 1/sqrt(N)
 - -To halve error, need 4x samples (!!) (avg. error = sqrt(Var))

Variance of the MC Result

• "Variance of \hat{I} proportional to 1/N and Var(f/p)"

$$Var(\hat{I}) = \frac{Vol(S)^2}{N} Var(f/p) = \frac{Vol(S)^2}{N} E\{(\frac{f(x)}{p(x)} - E\{f/p\})^2\}_p$$

==>

If f/p is constant, there is no noise

−In practice: If we use a good PDF, we will have less noise...

What's a Good PDF?

• What if p mimics f perfectly? I.e., let's take

$$p(x) = \frac{f(x)}{\int_{S} f(x) \, \mathrm{d}x}$$

- This has the same shape as *f*, but normalized so it integrates to 1
 - −Note: need non-negative *f* for this to work

What's a Good PDF?

• What if p mimics f perfectly? I.e., let's take

$$p(x) = \frac{f(x)}{\int_{S} f(x) \, \mathrm{d}x}$$

- This has the same shape as *f*, but normalized so it integrates to 1
 - −Note: need non-negative *f* for this to work
- But now f/p IS constant and we have no noise at all!
 - Alas: to come up with this p, we need the integral of f, which is what we are trying to compute in the first place :)

What's a Good PDF?

- One that mimics the shape of *f*, but is easy to sample from
- Because *p* is in the denominator, should try to avoid cases where *p* is low and *f* is high
 - These samples will increase variance a LOT

On Convergence Speed

• Obviously, method on right is better...

75 Samples/Pixel, no importance sampling

75 Samples/Pixel, with importance sampling

CS-E5520 Spring 2024 - Lehtinen

On Convergence Speed

• Both methods have the same asymptotic O(1/N) convergence rate (to halve expected error, need 4x samples), but this does not mean they are equal!

75 Samples/Pixel, no importance sampling

75 Samples/Pixel, with importance sampling

CS-E5520 Spring 2024 - Lehtinen

Importance Sampling Example

• Remember: computation of irradiance means integrating incident radiance and cosine on hemisphere:

$$E = \int_{\Omega} L_{\rm in}(\omega) \, \cos \theta \, \mathrm{d}\omega$$

- We usually can't make assumptions about the lighting, but we do know the cosine weighs the samples near the horizon down => makes sense to importance sample with $p(\omega) = \cos \theta/\pi$
 - –Why pi? Remember that $\cos \theta$ integrates to pi over hemisphere, so to get a proper PDF must normalize!

But How? You're Doing This Already

• In your assignment, you're lifting points from the unit disk onto the unit hemisphere, i.e., you're mapping

$$X = x, Y = y, Z(x, y) = \sqrt{1 - x^2 - y^2}$$
 $P = (X, Y, Z)$

• If we have uniform density of points on the disk, i.e., $p(x,y)=1/\pi$, what's the density of points on the

hemisphere?

• Instance of "transform sampling"

But How? You're Doing This Already

$$X = x, Y = y, Z(x, y) = \sqrt{1 - x^2 - y^2}$$
 $P = (X, Y, Z)$

• Let's take the infinitesimal square dA = dx*dy and map it to the hemisphere

But How? You're Doing This Already

$$X = x, Y = y, Z(x, y) = \sqrt{1 - x^2 - y^2}$$

• Let's take the infinitesimal square dA = dx*dy and map it to the hemisphere; then, remembering the properties of the cross product, compute its area by

$$\left\| \left(\frac{\partial X}{\partial x}, \frac{\partial Y}{\partial x}, \frac{\partial Z}{\partial x} \right) \times \left(\frac{\partial X}{\partial y}, \frac{\partial Y}{\partial y}, \frac{\partial Z}{\partial y} \right) \right\|$$

$$= \sqrt{\frac{|x|^2}{|x^2 + y^2 - 1|} + \frac{|y|^2}{|x^2 + y^2 - 1|} + 1}$$

But...

$$\sqrt{\frac{|x|^2}{|x^2+y^2-1|} + \frac{|y|^2}{|x^2+y^2-1|} + 1}$$

This equals 1 (why?)

$$= \sqrt{\frac{|x|^2}{|Z|^2} + \frac{|y|^2}{|Z|^2} + \frac{|Z|^2}{|Z|^2}} \quad = \frac{1}{|Z|} \sqrt{|X|^2 + |Y|^2 + |Z|^2}$$

$$=1/Z$$

Ha!

$$\sqrt{\frac{|x|^2}{x^2 + y^2 - 1} + \frac{|y|^2}{x^2 + y^2 - 1} + 1}$$

$$= \sqrt{\frac{|x|^2}{|Z|^2} + \frac{|y|^2}{|Z|^2} + \frac{|Z|^2}{|Z|^2}} \qquad = \frac{1}{|Z|} \sqrt{|X|^2 + |Y|^2 + |Z|^2}$$

=1/Z

- In polar coordinates, $z = \cos \theta$
- So: a small area on disk gets mapped to one whose area is divided by $\cos\theta$; density is inversely proportional, i.e., $p(\omega) = \cos\theta/\pi =>$ samples are cosine-weighted! 62

Remember: original density on disk is $1/\pi$!

MC Irradiance w/ Cosine Importance

• We'll use the lifting to turn uniform points on the disk onto cosine-distributed points on hemisphere, then

$$E = \int_{\Omega} L_{\rm in}(\omega) \cos \theta \, d\omega \approx \frac{1}{N} \sum_{i=1}^{N} \frac{L_{\rm in}(\omega_i)}{p(\omega_i)} \cos \theta_i$$

but
$$p(\omega) = \cos \theta / \pi$$
, so

$$E \approx \frac{\pi}{N} \sum_{i=1}^{N} L_{\rm in}(\omega_i)$$

Irradiance is just an average of the incoming radiance when the samples are drawn under the cosine distribution

How to Draw Samples on the Disk?

- You're doing rejection sampling in your assignment
 - -I.e., draw uniformly from a larger area (square), reject samples not in the domain (disk)
- Another way is to sample the disk uniformly and continuously map the square to disk

-May be better than rejection sampling, don't need to test and

potentially regenerate

- Also easily allows stratification
- -See Shirley & Chiu 97

Pseudocode

```
Vec3f result;

for i=1:n
    // can implement through rejection or Shirley&Chiu
    Vec2f disk = uniformPointUnitDisk();
    // lift disk point to hemisphere..
    Vec3f Win( disk, sqrt(1.0f - disk.x*disk.x - disk.y*disk.y) );
    // get incoming lighting and add to result
    Vec3f Lin = getRadiance(Win);
    result += Lin;
end

result = result * pi * (1.0f/N);
```

Pseudocode

```
Vec3f result;

for i=1:n
    // can implement through rejection or Shirley&Chiu
    Vec2f disk = uniformPointUnitDisk();
    // lift disk point to hemisphere..
    Vec3f Win( disk, sqrt(1.0f - disk.x*disk.x - disk.y*disk.y) );
    // get incoming lighting and add to result
    Vec3f Lin = getRadiance(Win);
    result += Lin;
end

result = result * pi * (1.0f/N);
```

This is almost a path tracer!

Just missing getRadiance()

and BRDF.

Homework: Phong Lobes

• For a fixed outgoing angle, the specular Phong lobe is

$$f_r(\omega_{\rm in}) = C(\mathbf{r}(\omega_{\rm out}) \cdot \omega_{\rm in})^q$$

- C is normalization constant $2\pi/(q+1)$ (see Wolfram Alpha), r returns the mirror vector, q is shininess
- Can you derive a formula for a PDF $p(\omega_{in})$ that is proportional to the Phong lobe for fixed \mathbf{r} ?
 - -Hint: Note that the lobe is radially symmetric around $\mathbf{r} =>$ you can concentrate on a canonical situation, e.g., $\mathbf{r} = (0,0,1)$
 - -The general case follows by rotation

Abstraction Pays, As Usual

- Because you often need different PDFs, you don't really want to write all the code for picking random points/directions directly in your inner loop
- Instead abstract into two functions
 - -1. one function for generating the points/directions, and
 - -2. another to evaluate the PDF at any given point/direction

• Why 2 functions instead of 1? This is required in Multiple Importance Sampling (next lecture), where you need to evaluate PDFs also for points drawn from different distributions

Questions?