Monte Carlo Integration and Importance Sampling I

CS-E5520 Spring 2024
Jaakko Lehtinen
with many slides from Frédo Durand

What is the radiance hitting my sensor? \Leftrightarrow Solution of the rendering equation

Today

- Intro to Monte Carlo integration
-Basics
-Importance Sampling

Integrals are Everywhere

For Example...

- Pixel: antialiasing

$$
\iiint \iint L(x, y, t, u, v) d x d y d t d u d v
$$

- Light sources: Soft shadows
- Lens: Depth of field
- Time: Motion blur
- BRDF: glossy reflection
- Hemisphere: indirect lighting

Numerical Integration

- Compute integral of arbitrary function
-e.g. integral over area light source, over hemisphere, etc.
- Continuous problem \rightarrow we need to discretize
- Analytic integration never works because of visibility and other nasty details

Numerical Integration

- You know trapezoid, Simpson's rule, etc. from your first engineering math class
${ }^{+}$Distribute N samples (evenly) in the domain
- Evaluate function at sample points

1D trapezoid rule weights:
Weigh samples and sum
a

Why Will This Not Suffice for Us?

- You know trapezoid, Simpson's rule, etc. from your first engineering math class
${ }^{+}$Distribute N samples (evenly) in the domain
- Evaluate function at sample points

1D trapezoid rule weights:

Why is This Bad?

- Error scales with (some power of) grid spacing h

Why is This Bad?

- Error scales with (some power of) grid spacing h - Bad things happen when dimension grows.. \dagger And our integrals are often high-dimensional
- Eg. motion blurred soft shadows through finite aperture $=7 \mathrm{D}$!

Why is This Bad?

- Error scales with (some power of) grid spacing h
- Bad things happen when dimension grows.. \dagger Think of a 10D unit hypercube $[0,1]^{\wedge} 10$
- For $\mathrm{h}=1 / 2$, need 3 samples on all dims, total $3^{\wedge} 10=59049$ (!)

Constant spacing, 1D

2D (yikes!)

○○○○○○○○○○○○
$\circ \circ \circ$
$\circ \circ \circ$
$\circ \circ \circ$

$\circ \circ \circ$
$\circ \circ \circ$
$\circ \circ \circ$
$\circ \circ \circ$
$\circ \circ \circ$

3D (YIKES!)

n^{3}

4D... you get the picture

Solution: Randomness

Monte Carlo Integration

- Monte Carlo integration: use random samples and compute average
-We don't keep track of spacing between samples
-(You're right to wonder: why would this help?)

Naive Monte Carlo Integration

- S is the integration domain
$-\operatorname{Vol}(\mathrm{S})$ is the volume (measure) of S (1D: length, 2D: area, ...)
- $\left\{\mathrm{x}_{\mathrm{i}}\right\}$ are independent, uniform random points in S
- That's right: integral is average of f multiplied by size of domain
-We estimate the average by random sampling
- E.g. for hemisphere $\operatorname{Vol}(S)=2$ pi

Naive Monte Carlo Computation of π

- Take a square
- Take a random point (x, y) in the square
- Test if it is inside the $1 / 4 \operatorname{disc}\left(x^{2}+y^{2}<1\right)$
- The probability is $\pi / 4$

Integral of the function that is one inside the circle, zero outside

Naive Monte Carlo Computation of π

- The probability is $\pi / 4$
- Count the inside ratio $\mathrm{n}=\#$ inside / total \# trials
- $\pi \approx \mathrm{n} * 4$
- The error depends on the number or trials

Demo

```
def piMC(n):
```

 success \(=0\)
 for \(i\) in range(n):
 \(x=r a n d o m . r a n d o m()\)
 \(y=r a n d o m . r a n d o m()\)
 if \(x * x+y * y<1: ~ s u c c e s s=\) success+1
 return 4.0*float(success)/float(n)

Matlab Demo

Why Not Use Simpson Integration?

- You're right, Monte Carlo is not very efficient for computing π
- So when is it useful? High dimensions!
- Asymptotic convergence rate is independent of dimension!
-For d dimensions, Simpson requires N^{d} samples (!!!)
- Similar explosion for other quadratures (Gaussian, etc.)
- You saw this visually a little earlier

Asymptotic convergence rate $=$
the relationship of error to number of samples n when n is large

Random Variables Recap

- You know this from your basic probability classes -Gentle, not very rigorous reminder follows..

Random Variables Recap: PDF

- Distribution of random points determined by the Probability Density Function (PDF) $p(x)$

Random Variables Recap: PDF

- Distribution of random points determined by the Probability Density Function (PDF) $p(x)$
-Uniform distribution means: each point in the domain equally likely to be picked: $p(x)=1 / \operatorname{Vol}(\mathrm{S})$
-Why so? PDF must integrate to 1 over S
-(Uniform distribution is often pretty bad for integration)

Recap: Expected Value (=Average)

- Expected value of a function g under probability distribution p is defined as

$$
E\{g(x)\}_{p}=\int_{S} g(x) p(x) \mathrm{d} x
$$

- Because p integrates to 1 like a proper PDF should, this is just a weighted average of g over S
- When p is uniform, this reduces to the usual average

$$
\frac{1}{\operatorname{Vol}(S)} \int_{S} g(x) \mathrm{d} x
$$

Random Variables Recap: Variance

- Variance is the average (expected) squared deviation from the mean $\mu=E\{X\}_{p}$

$$
\operatorname{Var}(X)=E\left\{(X-\mu)^{2}\right\}_{p}
$$

- Standard deviation is square root of variance
- Note that the PDF p is included in the definition!
-Also in the computation of the mean

OK, Down to Business Then!

"Importance Sampling"

Sample from non-uniform PDF

Intuitive justification: Sample more in places where there are likely to be larger contributions to the integral

Example: Glossy Reflection

- Integral over hemisphere
- BRDF times cosine times incoming light

Sampling a BRDF

Slide courtesy of Jason Lawrence

Sampling a BRDF

Slide modified from Jason Lawrence's

Sampling a BRDF

Slide modified from Jason Lawrence's

5 Samples/Pixel, with importance sampling

Sampling a BRDF

Slide courtesy of Jason Lawrence

25 Samples/Pixel

$P\left(\omega_{i}\right)$

Sampling a BRDF

Slide courtesy of Jason Lawrence

75 Samples/Pixel

Sampling a BRDF

75 Samples/Pixel, no importance sampling

Sampling a BRDF

75 Samples/Pixel, with importance sampling

On Convergence Speed

- As long as the PDFs are not pathological, both methods have the same asymptotic $\mathrm{O}(1 / \mathrm{N})$ convergence rate

How does that work?

- Sample density changes over domain $\mathrm{S} \sim$ $\mathrm{p}(\mathrm{x})$ is not a constant any more

How does that work?

- Sample density changes over domain $S \sim$ $\mathrm{p}(\mathrm{x})$ is not a constant any more
- So let's drop the uniform PDF requirement and rewrite:

$$
\int_{S} f(x) \mathrm{d} x=\int_{S} \frac{f(x)}{p(x)} p(x) \mathrm{d} x
$$

- Important! $p(x)$ must be nonzero where $f(x)$ is nonzero!

Non-Naive MC Integration

- This is (by definition) the expectation of $\mathrm{f}(\mathrm{x}) / \mathrm{p}(\mathrm{x})$:

$$
\begin{gathered}
\int_{S} f(x) \mathrm{d} x=\int_{S} \frac{f(x)}{p(x)} p(x) \mathrm{d} x \\
=E\left\{\frac{f(x)}{p(x)}\right\}_{p}
\end{gathered}
$$

Non-Naive MC Integration

- ... and this is how one estimates it numerically

$$
\begin{aligned}
\int_{S} f(x) & \mathrm{d} x
\end{aligned}=\int_{S} \frac{f(x)}{p(x)} p(x) \mathrm{d} x x
$$

The x _ i are independent random points distributed with density $p(x)$

$$
\approx \frac{1}{N} \sum_{i} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

Note that the uniform case reduces to the same because $p(x)==1 / \mathrm{Vol}(S)$

This is called Importance Sampling

$$
\int_{S} f(x) \mathrm{d} x \approx \frac{1}{N} \sum_{i} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

1. Draw random samples distributed with density p
2. Evaluate integrand $f(x)$ and $p(x)$ at the samples
3. Average $f(x) / p(x)$

Let's think about this...

$$
\int_{S} f(x) \mathrm{d} x \approx \frac{1}{N} \sum_{i} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

High p => samples more dense

Let's think about this...

$$
\int_{S} f(x) \mathrm{d} x \approx \frac{1}{N} \sum_{i} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

How does this sample contribute to the average?

Let's think about this...

$$
\int_{S} f(x) \mathrm{d} x \approx \frac{1}{N} \sum_{i} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

High p
=> 1/p smaller
=> sample has less weight

Let's think about this...

"If you pick a sample less often, give it more power"

High p
=> 1/p smaller
=> sample has less weight

Monte Carlo Integration Error

$$
\int_{S} f(x) \mathrm{d} x \approx \frac{1}{N} \sum_{i} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

- Clearly this is just an approximation!

Monte Carlo Integration Error

$$
I \stackrel{\text { def }}{=} \int_{S} f(x) \mathrm{d} x \approx \frac{1}{N} \sum_{i} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)} \stackrel{\text { def }}{=} \hat{I}
$$

- Clearly this is just an approximation!
- The value \hat{I} of the estimate is a random variable itself
- Because we are using random points
-Error manifests itself as variance, which shows up as noise

Monte Carlo Integration Error

$$
I \stackrel{\text { def }}{=} \int_{S} f(x) \mathrm{d} x \approx \frac{1}{N} \sum_{i} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)} \stackrel{\text { def }}{=} \hat{I}
$$

- Clearly this is just an approximation!
-The value \hat{I} of the estimate is a random variable itself
-Error manifests itself as variance, which shows up as noise
- Variance of MC integration result \hat{I} is proportional to both $\mathbf{1 / N}$ and the variance of f / p
-Avg. error is proportional $1 /$ sqrt(N)
-To halve error, need 4 x samples (!!) (avg. error $=\operatorname{sqrt}($ Var $)$)

Variance of the MC Result

- "Variance of \hat{I} proportional to $1 / \mathrm{N}$ and $\operatorname{Var}(\mathrm{f} / \mathrm{p})$ "

$$
\operatorname{Var}(\hat{I})=\frac{\operatorname{Vol}(S)^{2}}{N} \operatorname{Var}(\mathrm{f} / \mathrm{p})=\frac{\operatorname{Vol}(S)^{2}}{N} E\left\{\left(\frac{f(x)}{p(x)}-E\{f / p\}\right)^{2}\right\}_{p}
$$

If f / p is constant, there is no noise

-In practice: If we use a good PDF, we will have less noise...

What's a Good PDF?

- What if p mimics f perfectly? I.e., let's take

$$
p(x)=\frac{f(x)}{\int_{S} f(x) \mathrm{d} x}
$$

- This has the same shape as f, but normalized so it integrates to 1
-Note: need non-negative f for this to work

What's a Good PDF?

- What if p mimics f perfectly? I.e., let's take

$$
p(x)=\frac{f(x)}{\int_{S} f(x) \mathrm{d} x}
$$

- This has the same shape as f, but normalized so it integrates to 1
-Note: need non-negative f for this to work
- But now f/p IS constant and we have no noise at all!
- Alas: to come up with this p, we need the integral of f, which is what we are trying to compute in the first place :)

What's a Good PDF?

- One that mimics the shape of f, but is easy to sample from
- Because p is in the denominator, should try to avoid cases where p is low and f is high
-These samples will increase variance a LOT

On Convergence Speed

- Obviously, method on right is better...

75 Samples/Pixel, no importance sampling

75 Samples/Pixel, with importance sampling

On Convergence Speed

- Both methods have the same asymptotic $\mathrm{O}(1 / \mathrm{N})$ convergence rate (to halve expected error, need 4 x samples), but this does not mean they are equal!

75 Samples/Pixel, no importance sampling

75 Samples/Pixel, with importance sampling

Questions?

runes.nu, rendered using Maxwell

Importance Sampling Example

- Remember: computation of irradiance means integrating incident radiance and cosine on hemisphere:

$$
E=\int_{\Omega} L_{\mathrm{in}}(\omega) \cos \theta \mathrm{d} \omega
$$

- We usually can't make assumptions about the lighting, but we do know the cosine weighs the samples near the horizon down $=>$ makes sense to importance sample with $p(\omega)=\cos \theta / \pi$
-Why pi? Remember that $\cos \theta$ integrates to pi over hemisphere, so to get a proper PDF must normalize!

But How? You're Doing This Already

- In your assignment, you're lifting points from the unit disk onto the unit hemisphere, i.e., you're mapping

$$
X=x, Y=y, Z(x, y)=\sqrt{1-x^{2}-y^{2}} \quad P=(X, Y, Z)
$$

- If we have uniform density of points on the disk, i.e., $p(x, y)=1 / \pi$, what's the density of points on the hemisphere?
- Instance of "transform sampling"

But How? You're Doing This Already

$$
X=x, Y=y, Z(x, y)=\sqrt{1-x^{2}-y^{2}} \quad P=(X, Y, Z)
$$

- Let's take the infinitesimal square $\mathrm{d} A=\mathrm{d} x * \mathrm{~d} y$ and map it to the hemisphere

But How? You're Doing This Already

$X=x, Y=y, Z(x, y)=\sqrt{1-x^{2}-y^{2}}$

- Let's take the infinitesimal square $\mathrm{d} A=\mathrm{d} x * \mathrm{~d} y$ and map it to the hemisphere; then, remembering the properties of the cross product, compute its area by
$\left\|\left(\frac{\partial X}{\partial x}, \frac{\partial Y}{\partial x}, \frac{\partial Z}{\partial x}\right) \times\left(\frac{\partial X}{\partial y}, \frac{\partial Y}{\partial y}, \frac{\partial Z}{\partial y}\right)\right\|$

$$
=\sqrt{\frac{|x|^{2}}{\left|x^{2}+y^{2}-1\right|}+\frac{|y|^{2}}{\left|x^{2}+y^{2}-1\right|}+1}
$$

But...

$$
\begin{aligned}
& \sqrt{\frac{|x|^{2}}{\left|x^{2}+y^{2}-1\right|}+\frac{|y|^{2}}{\left|x^{2}+y^{2}-1\right|}+1} \\
& \begin{array}{r}
=\sqrt{\frac{|x|^{2}}{|Z|^{2}}+\frac{|y|^{2}}{|Z|^{2}}+\frac{|Z|^{2}}{|Z|^{2}}}=\frac{1}{|Z|} \sqrt{|X|^{2}+|Y|^{2}+|Z|^{2}} \\
\quad \text { This equals } 1 \text { (why?) } \\
\\
=1 / Z
\end{array}
\end{aligned}
$$

Ha!

$$
\begin{aligned}
& \sqrt{\frac{|x|^{2}}{x^{2}+y^{2}-1}+\frac{|y|^{2}}{x^{2}+y^{2}-1}+1} \\
& \quad=\sqrt{\frac{|x|^{2}}{|Z|^{2}}+\frac{|y|^{2}}{|Z|^{2}}+\frac{|Z|^{2}}{|Z|^{2}}}=\frac{1}{|Z|} \sqrt{|X|^{2}+|Y|^{2}+|Z|^{2}} \\
& =1 / Z
\end{aligned}
$$

- In polar coordinates, $\mathrm{z}=\cos \theta$
- So: a small area on disk gets mapped to one whose area is divided by $\cos \theta$; density is inversely propotional, i.e., $p(\omega)=\cos \theta / \pi \Rightarrow>$ samples are cosine-weighted! ${ }_{62}$ Remember: original density Cs-E5520 Spring 2024 - Lehtinen on disk is $1 / \pi$!

MC Irradiance w/ Cosine Importance

- We'll use the lifting to turn uniform points on the disk onto cosine-distributed points on hemisphere, then

$$
E=\int_{\Omega} L_{\mathrm{in}}(\omega) \cos \theta \mathrm{d} \omega \approx \frac{1}{N} \sum_{i=1}^{N} \frac{L_{\mathrm{in}}\left(\omega_{i}\right)}{p\left(\omega_{i}\right)} \cos \theta_{i}
$$

but $p(\omega)=\cos \theta / \pi$, so

$$
E \approx \frac{\pi}{N} \sum_{i=1}^{N} L_{\mathrm{in}}\left(\omega_{i}\right)
$$

Irradiance is just an average of the incoming radiance when the samples are drawn under the cosine distribution

How to Draw Samples on the Disk?

- You're doing rejection sampling in your assignment -I.e., draw uniformly from a larger area (square), reject samples not in the domain (disk)
- Another way is to sample the disk uniformly and continuously map the square to disk
-May be better than rejection sampling, don't need to test and potentially regenerate
- Also easily allows stratification
-See Shirley \& Chiu 97

Pseudocode

```
Vec3f result;
for i=1:n
    // can implement through rejection or Shirley&Chiu
    Vec2f disk = uniformPointUnitDisk();
    // lift disk point to hemisphere..
    Vec3f Win( disk, sqrt(1.0f - disk.x*disk.x - disk.y*disk.y) );
    // get incoming lighting and add to result
    Vec3f Lin = getRadiance(Win);
    result += Lin;
end
result = result * pi * (1.0f/N);
```


Pseudocode

```
Vec3f result;
for i=1:n
    // can implement through rejection or Shirley&Chiu
    Vec2f disk = uniformPointUnitDisk();
    // lift disk point to hemisphere..
    Vec3f Win( disk, sqrt(1.0f - disk.x*disk.x - disk.y*disk.y) );
    // get incoming lighting and add to result
    Vec3f Lin = getRadiance(Win);
    result += Lin;
end
result = result * pi * (1.0f/N);
```

> This is almost a path tracer! Just missing getRadiance() and BRDF.

Homework: Phong Lobes

- For a fixed outgoing angle, the specular Phong lobe is

$$
f_{r}\left(\omega_{\text {in }}\right)=C\left(\mathbf{r}\left(\omega_{\text {out }}\right) \cdot \omega_{\text {in }}\right)^{q}
$$

- C is normalization constant $2 \pi /\left(q^{+}\right)$(see Wolfram Alpha), \mathbf{r} returns the mirror vector, q is shininess
- Can you derive a formula for a PDF $p\left(\omega_{\mathrm{in}}\right)$ that is proportional to the Phong lobe for fixed \mathbf{r} ?
-Hint: Note that the lobe is radially symmetric around $\mathbf{r}=>$ you can concentrate on a canonical situation, e.g., $\mathbf{r}=(0,0,1)$
-The general case follows by rotation

Abstraction Pays, As Usual

- Because you often need different PDFs, you don't really want to write all the code for picking random points/directions directly in your inner loop
- Instead abstract into two functions
-1 . one function for generating the points/directions, and
-2 . another to evaluate the PDF at any given point/direction
- Why 2 functions instead of 1 ? This is required in Multiple Importance Sampling (next lecture), where you need to evaluate PDFs also for points drawn from different distributions

Questions?

