Monte Carlo Integration II: Multiple Importance Sampling

CS-E5520 Spring 2023
Jaakko Lehtinen
with many slides from Frédo Durand

Recap: Reflectance Equation

$$L(x
ightarrow \mathbf{v}) =$$
 outgoing radiance

BRDF

incoming cosine of radiance incident angle

L in * cos =incident differential irradiance

hemisphere

Recap: Reflectance Equation

$$L(x \rightarrow \mathbf{v}) =$$

$$\int_{\Omega} f_r(x, \mathbf{l} \to \mathbf{v}) L(x \leftarrow \mathbf{l}) \cos \theta \, \mathrm{d}\mathbf{l}$$

Imp. Sampling According to BRDF

increasing gloss

Imp. Sampling According to Light

increasing gloss

Multiple Importance Sampling (MIS)

- If integrand f has a complex shape that consists of distinct features that are easy to sample from individually, we can use multiple PDFs and combine them in a nice way so that we got lower variance
 - -See Veach and Guibas 1995

What's Going on Here?

• Dull gloss/diffuse surface, importance sample BRDF

What's Going on Here?

• Dull gloss/diffuse surface, importance sample BRDF

Here Makes Sense to Sample Light

• Dull gloss/diffuse surface, importance sample light

What's Going on Here?

• Highly glossy surface, narrow lobe, large light source, importance sample light

What's Going on Here?

• Highly glossy surface, narrow lobe, large light source, importance sample light

Here, Better to Sample BRDF

• Highly glossy surface, narrow lobe, large light source, importance sample light

Multiple Importance Sampling

MIS = Sample both ways and optimally combine the samples

increasing gloss

Ok, how do you do it?

Why is the Red Gaussian bad for IS?

Why the Red Gaussian is bad for IS

Why This Matters

Why This Matters

Why This Matters

Spikes get worse with higher N

Effect of Spikes on Integral Estimate

Effect of Spikes on Integral Estimate

Graph of f/p (note log scale in y!)

Better: Let's mix in a constant PDF

Basic MIS Recipe

- You have M sampling distributions.
- For each sample *i*
 - -Pick one distribution at random, let's say it's the jth one
 - You can't do much better than equal chances, i.e. using probability p(j) = 1/M for all j (Veach 1995, Sec. 5.2) (I assume this below.)
 - —Draw a sample x_i from the jth distribution
 - -Compute

$$W_{i} = \frac{f(x_{i})}{\sum_{j=1}^{M} p(j)p_{j}(x_{i})}$$

- -Take the average of the W_i
- -Done!

What's Going On?

• The above process generates samples with the joint distribution

$$\bar{p}(x) = \sum_{j=1}^{M} p(j)p_j(x)$$

- Hence, we're just computing f/p with this new PDF!
 - -Note that the p(j)'s are a discrete distribution, their sum must be 1

• This is an unbiased estimate, just like regular MC.

Ha!

sample weight $f(x_i)/p(x_i)$ over

Integral Estimate, No MIS, 100k samples

Integral Estimate, MIS, 1k samples

(100x fewer than previous terrible non-MIS result)

Integral Estimate, MIS, 1k samples

(100x fewer than previous terrible non-MIS result)

Bells And Whistles

• This is the basic intuition and approach.

• <u>Veach's 1995 paper</u> contains a long treatment on how to choose the relative weighting between the PDFs and more general ways of constructing $\bar{p}(x)$ based on the individual distributions.

• However, we won't go into this. This process is really general and applies wherever MC can be applied.

Example: Use in a Path Tracer

- Apart from the direct eye ray, our basic path tracer only accounts for light through shadow rays
 - -If the extension ray, which is sampled from the BRDF, hits a light source, we set its contribution to zero.
 - −Is this the best we can do?
- Indeed, we can repurpose the extension ray for another purpose: we'll try to make the light connection by both light sampling and BRDF sampling.
 - -However we deterministically use both samplers, no random picking.

Multiple Importance Sampling

MIS = Sample both ways and optimally combine the samples

increasing gloss