ATERTOWER TYFE:ELINN SFECULAR | Tg : Q.75 TRANSFARENCY: 0 .00
¥ e ." Gt ~ 3

i

R e et T s P SR v Y

Erevmd -

¢

YA
P e P
" R e

Aalto CS-E5520 Spring 2024 — Lehtinen B A 1

Monte Carlo Path Tracing

* Recursively estimate the rendering equation
Lout(x,v) = / Lin(z,1) fr(xz,1 = v) cos b, dl
Q2
| Eout (Qf, V)

Aalto CS-E5520 Spring 2024 — Lehtinen

Monte Carlo Path Tracing

» Trace only one secondary ray per recursion
—Otherwise number of rays explodes!

* But send many primary rays per pixel (antialiasing)

Aalto CS-E5520 Spring 2024 — Lehtinen

Monte Carlo Path Tracing

* The 1dea 1s just the same as before with AO-+ilter

—Instead of thinking about nested integrals over hemispheres at
each bounce, let’s think of one integral over the Cartesian
product of all the hemispheres

—For n bounces, the domain is screen X) X ... X)
N—— ———

—Each sample 1s a path = sequence of rays ntimes

~7-. 1path=

N 1 sample !

o }

Aalto CS-E5520 Spring 2024 — Lehtinen

http://en.wikipedia.org/wiki/Cartesian_product
http://en.wikipedia.org/wiki/Cartesian_product

Example: 1 Indirect Bounce (™

* What 1s the radiance leaving P towards the eye after 1t
has taken precisely one bounce off other surfaces after
leaving the light source?

Light
RS source

2 |Aalto CS-E5520 Spring 2024 — Lehtinen

Example: 1 Indirect Bounce &y ™

* Nested version (P1, P> are ray hit points)

Lo(z,y) = / L(P; < wy) fr(P1, w1 — eye) cosfy dwy
Q(P1)

Light
source

Example: 1 Indirect Bounce &y ™

* Nested version (Pi, P2 are ray hit points)

Lo(z,y) = / L(P; < wy) fr(P1, w — eye) cos 1 dwy
Q(P1)

We’re going to
expand this next

Light
source

Example: 1 Indirect Bounce &y ™

* Nested version (Pi, P2 are ray hit points)

Lo(z,y) = / L(P) < w1) fr-(P1, w1 — eye) cos i dwq
Q(P1)

We’re going to These are going to
expand this next stay the same

Light
source

Example: 1 Indirect Bounce &y ™

* Nested version (P1, P> are ray hit points)

Lo(z,y) = L(Pw;)

/ / E(T(Pz,wg) — Pz)fr(PQ,(UQ — —wl) COS (92(10.)2
Q(P1) [/Q(P2)

fr(P1,w1 — eye) cos 01dw;

Light
mage s source
plane)

T(P2 ? CUQ)

/ Aalto CS-E5520 Spring 2024 — Lehtinen 9

Example: 1 Indirect Bounce

* Nested version (P1, P> are ray hit points)

Lo(z,y) = L(Pw;)

/ / E(T(Pz,wg) — PQ)fT(PQ,CUQ — —wl) COS (92(1&)2
Q(P1) [/Q(P2)

fr(P1,w1 — eye) cos 61dw;

Light
mage s source
plane)

T(P2 ? CUQ)

/ Aalto CS-E5520 Spring 2024 — Lehtinen 10

Example: 1 Indirect Bounce £ =r(P, wi)

* Flat version, 4D integral

LQ(xay) —

/ E(T(PQ,CUQ) %PQ) X
Q(Pl)XQ(PQ)

cos 61 cos 65 dwidws

Light
source

T(P27 CUQ)

Aalto CS-E5520 Spring 2024 — Lehtinen

fT(P27w2 — _wl)fr(Pl,wl — eye) X

This really is
just as simple
as going from
two nested 1D

integrals to a 2D
area integ1r1al!

Full Solution

» The full solution 1s a sum over paths of all lengths
L(x,y) = Z Li(z,y), with Lo(z,y) = E(P; + eye)
1=0

* Notice how we’ve “unwrapped” the recursive
rendering equation into a sum of terms

—n bounce lighting is an integral over screen X {2 x ... x {)
N ———’

ntimes

—This 1s the same as directly estimating the terms of the
Neumann series £ +TE +TTE + ...

Aalto CS-E5520 Spring 2024 — Lehtinen 12

What's a Sample?

 For the ith bounce, the points 1n the integration domain

screen X 2 x ... x §)
|

ntimes

are vectors (x, y, wi, w2, ..., Wn)

e That 1s: the screen coordinates, direction from 1st
hemisphere, direction from 2nd hemisphere, etc.

Aalto CS-E5520 Spring 2024 — Lehtinen 13

What's a Sample?

 For the ith bounce, the points 1n the integration domain

screen X 2 x ... x §)
|

ntimes

are vectors (x, y, wi, w2, ..., Wn)

e That 1s: the screen coordinates, direction from 1st
hemisphere, direction from 2nd hemisphere, etc.

» How do we draw random samples for Monte Carlo?

—In particular, how do we do importance sampling?

Aalto CS-E5520 Spring 2024 — Lehtinen 14

Sampling Paths

 “Local path sampling” proceeds bounce to bounce,
always importance sampling according to local BRDF

Aalto CS-E5520 Spring 2024 — Lehtinen

15

Sampling Paths

 “Local path sampling” proceeds bounce to bounce,
always importance sampling according to local BRDF

» That 1s, for each sample (path):
—First sample screen (x, y), then trace ray to get P
— At primary hit P;:

1. mmportance sample wq from BRDF at P using knowledge of
incoming direction!

2. trace ray to get P>
— At secondary hit P, repeat to get wo
—And so on

* How do we get the PDF for the entire path?

Aalto CS-E5520 Spring 2024 — Lehtinen

16

Computing the Path PDF

* Denote the full path z = (2, y, w1, wo, . . .)

Thenp() (’CB Yy, Wy, Wa, 7wn) —
p(x) PDF of screen sample
PDF of 1st direction
p (wl L y) given screen sample
p(w2 T,y Wl) PDF of 2nd direction
9

given screen sample and 1st dir.

p(w’n‘xa Yoo 7wn—1>

» At every step, we importance sample a single direction
conditioned on all the things we sampled before

—In practice, we just look at the incoming direction

Aalto CS-E5520 Spring 2024 — Lehtinen 17

Brute Force Path Tracing, Eye Part

Lix —v) = / Lz <1 fr(x,1 = v) cosfdl
. + F(x — v)

for each pixel
Lout = 0, w=0
for i=1 to #samples
generate x1,yl inside pixel with p(X,y)
ray 1 = generatecameraray(xi,yi)
Lout += f(xi,yi) * trace(ray i)/p(x,Yy)

w += f(xi,v1i)/p(X,Y) (Assuming, for simplicity,
endfor that only one pixel filter is
_ nonzero. Look back to
L(pixel) = Lout/w previous lecture for full

endfor treatment.)

Aalto CS-E5520 Spring 2024 — Lehtinen 18

Brute Force Path Tracing

Lix —v) = / Lz <1 fr(x,1 = v) cosfdl
. + F(x — v)

trace(ray)
hit = intersect(scene, ray)
result = emission(hit,-dir(ray)) // 0 if no light
// sample outgoing direction
[w,pdf] = sampleReflection(hit,dir(ray))
// recursively estimate incoming radiance, apply BRDF
result += BRDF (hit,-dir(ray),w)*
cos(theta)*
trace(ray(hit,w))/pdf
return result

Aalto CS-E5520 Spring 2024 — Lehtinen 19

Brute Force Path Tracing

Lx —»v)= | Lz <+ 1) f(x,1 - v) cosfdl
(2
+ F(x — v)
trace(ray)
hit = intersect(scene, ray)

result = emission(hit,-dir(ray))
// sample outgoing direction
[w,pdf] = sampleReflection(hit,dir(ray))

// recursively estimate incoming radiance, apply BRDF
result += BRDF (hit,-dir(ray),w)*

cos(theta)*

trace(ray(hit,w))/pdf
return result

// when we apply the PDF we are implicitly

// multiplying them for all bounces like shown before

// 0 if no light

Aalto CS-E5520 Spring 2024 — Lehtinen

20

Notes

» sampleReflection() chooses a direction with
which to estimate reflectance integral for indirect part

—I.e. importance sample according to BRDF

Aalto CS-E5520 Spring 2024 — Lehtinen

21

Jason Lawrence

Why “Brute Force™?

* We’re waiting for the sampler to hit the light on its own
—Often not a good 1dea
—But sometimes we can’t do too much else

—Think of an architectural model where all the light comes
through several specular bounces through windows

* In simple cases we can help by adding an explicit direct
light sampling step to each bounce

Aalto CS-E5520 Spring 2024 — Lehtinen 22

Sun

Window Q

Shadow ray

Except recently! See this
Symposium on Rendering paper
from Weta Digital (slides)

Aalto CS-E5520 Spring 2024 — Lehtinen

23

https://jo.dreggn.org/home/2015_mnee.pdf
https://jo.dreggn.org/home/2015_mnee_talk.pdf

Brute Force Path Tracing

» Trace only one secondary ray per recursion
—Otherwise number of rays explodes!

* But send many primary rays per pixel (antialiasing)

Aalto CS-E5520 Spring 2024 — Lehtinen

24

Path Tracing w/ Light Sampling

* At each hit, also sample a light and shoot a shadow ray
» The standard way of doing path tracing
* Also called “next event estimation”

Note: No
combinatorial
explosion!

Aalto CS-E5520 Spring 2024 — Lehtinen 25

Importance of Sampling the Light

Without explicit With explicit
light sampling

1 path
per pixel

4 paths
per pixel

Aalto CS-E5520 Spring 2024 — Lehtinen

26

Path Tracing w/ Light Sampling

Light
source

Shadow
rays

Aalto CS-E5520 Spring 2024 — Lehtinen

27

Interpretation of Shadow Rays

* Recall: the full lighting solution 1s a sum over paths of
all lengths

L(z,y) =Y Li(z,y), with Lo(z,y) = E(Py < eye)
1=0

* Notice how we’ve “unwrapped” the recursive
rendering equation into a sum of terms

—n bounce lighting is an integral over screen x {) X ... X {2
\——— ——’
(brute force PT)

ntimes
—But now we’ve replaced the final hemisphere with lights by
solid-angle-to-area conversion: screen X w X w... X lights

Aalto CS-E5520 Spring 2024 — Lehtinen 28

A Different Parameterization

 In hemisphere form, the domain for n bounces 1s

screen X) X ... x)
%/_/

ntimes

* For shadow ray sampling, 1t 1s

screen X {2 x ...{) xlight area
N\ —’

n—1 times

4’~
. ~

7. 1path= |

2N 1 sample !

o !

Aalto CS-E5520 Spring 2024 — Lehtinen

29

Path Tracing Pseudocode

Lix—>v)= [L(x+1) f.(z,]1 - v) cosfdl
. + F(x — v)

trace(ray)
hit = intersect(scene, ray)
if ray is from camera // only add “very direct” light here

result = emission(hit,-dir(ray))

[y,pdfl] = sampleLightsource() // pick shadow ray dest.

// G(hit,y) contains the usual cosine/r”"2 of the
// hemisphere-to-area variable change
result += V(hit,y)*E(y,y->hit)*BRDF*cos*G(hit,y)/pdfl
[w,pdf] = sampleReflection(hit,dir(ray)) // like before
result += BRDF(hit,-dir(ray),w)*

cos(theta)*

trace(ray(hit,w))/pdf
return result

Aalto CS-E5520 Spring 2024 — Lehtinen

30

Notes 2

» sampleLightsource() picks a point on the light
source and evaluates i1ts PDF
—You’re doing this in the first part of your radiosity assignment
—..and we saw this already on the first MC lecture

—We’re (again) applying the solid angle-to-area variable change
(1.e. we’re integrating over the surface of the light source)

 When you have multiple light sources, you pick one at
random, and build this into the PDF

—Simple: just multiply the light source p(y) with the probability
of picking that particular light source

Aalto CS-E5520 Spring 2024 — Lehtinen 31

Picking Lights

» It makes sense to importance sample the light you pick

* E.g. doesn’t make sense to sample dim, far-away lights
as often as bright, nearby ones!

Aalto CS-E5520 Spring 2024 — Lehtinen 32

One Small Problem

Aalto CS-E5520 Spring 2024 — Lehtinen

33

One Small Problem

* Yes, 1t doesn’t terminate 1f you just keep going

—Fortunately, there’s still something we can do!

Aalto CS-E5520 Spring 2024 — Lehtinen

34

Russian Roulette

 The usual MC estimate 1s E{@}p

p(x)

—f/p 1s a random variable because x 1s a random variable

Aalto CS-E5520 Spring 2024 — Lehtinen

35

Russian Roulette

 The usual MC estimate 1s E{@}p

p(x)

—f/p 1s a random variable because x 1s a random variable

 Let’s multiply this by another specially constructed
random variable R

—R(x)=0 with probability a(z) , and R = 1/(1 — «) otherwise
—Also assume « and x are uncorrelated (independent). Then:

B, _ piry pr2\2y = pl

p(z) / p(z) p(z)

This step requires independence Aalto CS-E5520 Spring 2024 — Lehtinen 36

E{

Russian Roulette: What is Going On?

» R(x)=0 with probabilitya(x), and R = 1/a otherwise

R- f(x) f(z) /(z)
P T PR T e

o We’ve given ourselves permission to sometimes replace
the value of the integrand with zero without introducing
bias to the result

—When we don’t set it to zero, we multiply the result by 1/

* This means, for instance, that we can probabilistically
terminate light paths without tracing them to infinity

Aalto CS-E5520 Spring 2024 — Lehtinen 37

Path Tracing w/ RR

Lix—>v)= [L(x+1) f.(z,]1 - v) cosfdl
. + F(x — v)

trace(ray)
hit = intersect(scene, ray)
if ray is from camera // only add “very direct” light here

result = emission(hit,-dir(ray))
// pick shadow ray dest.

[v,pdfl] = sampleLightsource()
result += E(y,y->hit)*BRDF*cos*G(hit,y)/pdfl
[w,pdf] = sampleReflection(hit,dir(ray))

// russian roulette with alpha=0.5
terminate = uniformrandom() < 0.5
if !terminate
result += BRDF(hit,-dir(ray),w)*
cos(theta)*
trace(ray(hit,w))/pdf/0.5

return result _ _
Aalio CS-E5520 Spring 2024 _ | ehfinen

// 1/0.5 =mult. by 2!

38

"Path Space”

» Earlier we wrote n-bounce lighting as a sitmultaneous
integral over n hemispheres

* We can just as well integrate over surfaces instead

—We just need to add in the geometry terms like before
e 1/r2, visibility, the other cosine

* The space of paths of length n 1s then simply

Sx...x8§8
N— ———

n times

with S being the set of 2D surfaces of the scene
* See Eric Veach’s PhD

Aalto CS-E5520 Spring 2024 — Lehtinen

39

http://graphics.stanford.edu/papers/veach_thesis/

Bigger Picture

* We are shooting rays from the camera, propagating
them along, and kind of hoping we will find light

—Actively try to hit 1t by the light source samples

« What about more
difficult cases?

—In a caustic, the light
propagates through a
series of specular refractions
and reflections before
hitting a diffuse surface

wikipedia

Aalto CS-E5520 Spri

To be continued...

