

Monte Carlo Path Tracing

• Recursively estimate the rendering equation

$$L_{\text{out}}(x, \mathbf{v}) = \int_{\Omega} L_{\text{in}}(x, \mathbf{l}) f_r(x, \mathbf{l} \to \mathbf{v}) \cos \theta_{\text{in}} d\mathbf{l}$$
$$+ E_{\text{out}}(x, \mathbf{v})$$

Monte Carlo Path Tracing

- Trace only one secondary ray per recursion
 - -Otherwise number of rays explodes!
- But send many primary rays per pixel (antialiasing)

Monte Carlo Path Tracing

- The idea is just the same as before with AO+filter
 - -Instead of thinking about nested integrals over hemispheres at each bounce, let's think of one integral over the <u>Cartesian</u> <u>product</u> of all the hemispheres
 - -For *n* bounces, the domain is screen $\times \Omega \times \ldots \times \Omega$
 - -Each sample is a $path = sequence \ of \ rays$ n times

Example: 1 Indirect Bounce (Without pixel filter, for clarity!)

• What is the radiance leaving P₁ towards the eye after it has taken precisely one bounce off other surfaces after leaving the light source?

(Without pixel filter, for clarity!)

• Nested version (P₁, P₂ are ray hit points)

$$L_2(x,y) = \int_{\Omega(P_1)} L(P_1 \leftarrow \omega_1) f_r(P_1, \omega_1 \rightarrow \text{eye}) \cos \theta_1 d\omega_1$$

(Without pixel filter, for clarity!)

• Nested version (P₁, P₂ are ray hit points)

$$L_2(x,y) = \int_{\Omega(P_1)} L(P_1 \leftarrow \omega_1) \, f_r(P_1,\, \omega_1 \rightarrow \text{eye}) \, \cos\theta_1 \, \mathrm{d}\omega_1$$
 We're going to expand this next

(Without pixel filter, for clarity!)

• Nested version (P₁, P₂ are ray hit points)

plane

Aalto CS-E5520 Spring 2024 – Lehtinen

(Without pixel filter, for clarity!)

• Nested version (P₁, P₂ are ray hit points)

$$L_2(x,y) = \underbrace{L(P_1 \leftarrow \omega_1)}_{L(P_1)} \left[\int_{\Omega(P_2)} E(r(P_2,\omega_2) \rightarrow P_2) f_r(P_2,\omega_2 \rightarrow -\omega_1) \cos\theta_2 \mathrm{d}\omega_2 \right] }_{f_r(P_1,\omega_1 \rightarrow \mathrm{eye}) \cos\theta_1 \mathrm{d}\omega_1}$$
 image plane
$$\underbrace{F_2}_{P_1} \underbrace{Light}_{\text{Salto CS-E5520 Spring 2024-Lehtinen}}_{p_2} \underbrace{F_2}_{p_2} \underbrace{F_2}_{p_3} \underbrace{F_2}_{p_4} \underbrace{F_3}_{p_4} \underbrace{F_4}_{p_4} \underbrace{F_4}_{$$

• Nested version (P₁, P₂ are ray hit points)

$$L_2(x,y) = L(P_1 \leftarrow \omega_1)$$

$$\int_{\Omega(P_1)} \int_{\Omega(P_2)} E(r(P_2,\omega_2) \rightarrow P_2) f_r(P_2,\omega_2 \rightarrow -\omega_1) \cos\theta_2 \mathrm{d}\omega_2$$

$$f_r(P_1,\omega_1 \rightarrow \mathrm{eye}) \cos\theta_1 \mathrm{d}\omega_1$$

$$\lim_{\text{Aalto CS-E5520 Spring 2024-Lehtinen}} Light source$$

Example: 1 Indirect Bounce $P_2 = r(P_1, \omega_1)$

• Flat version, 4D integral

$$L_2(x,y) = \int E(r(P_2,\omega_2) \to P_2) \times f_r(P_2,\omega_2) \to f_r(P_2,\omega_2 \to -\omega_1) f_r(P_1,\omega_1 \to \text{eye}) \times f_r(P_2,\omega_2 \to -\omega_1) f_r(P_1,\omega_1 \to \text{eye}) \times f_r(P_2,\omega_2 \to -\omega_1) f_r(P_2,\omega_1) f_r(P_2,\omega_1) f_r(P_2,\omega_1) f_r(P_2,\omega_1) f_r(P_2,\omega_1) f_r(P_2,\omega_1) f_r(P_2,\omega_1) f_r(P_2,\omega_1) f_$$

This really is just as simple as going from two nested 1D integrals to a 2D area integral!

Full Solution

• The full solution is a sum over paths of all lengths

$$L(x,y) = \sum_{i=0}^{\infty} L_i(x,y), \quad \text{with } L_0(x,y) = E(P_1 \leftarrow \text{eye})$$

- Notice how we've "unwrapped" the recursive rendering equation into a sum of terms
 - -n bounce lighting is an integral over screen $\times \underbrace{\Omega \times \ldots \times \Omega}_{n \text{times}}$
 - This is the same as directly estimating the terms of the Neumann series $E + \mathcal{T}E + \mathcal{T}\mathcal{T}E + \dots$

What's a Sample?

• For the *i*th bounce, the points in the integration domain

screen
$$\times \underline{\Omega \times \ldots \times \Omega}$$
ntimes

are vectors $(x, y, \omega_1, \omega_2, \ldots, \omega_n)$

• That is: the screen coordinates, direction from 1st hemisphere, direction from 2nd hemisphere, etc.

What's a Sample?

• For the *i*th bounce, the points in the integration domain

screen
$$\times \underline{\Omega \times \ldots \times \Omega}$$
ntimes

are vectors $(x, y, \omega_1, \omega_2, \ldots, \omega_n)$

- That is: the screen coordinates, direction from 1st hemisphere, direction from 2nd hemisphere, etc.
- How do we draw random samples for Monte Carlo?
 - -In particular, how do we do importance sampling?

Sampling Paths

• "Local path sampling" proceeds bounce to bounce, always importance sampling according to local BRDF

Sampling Paths

- "Local path sampling" proceeds bounce to bounce, always importance sampling according to local BRDF
- That is, for each sample (path):
 - -First sample screen (x, y), then trace ray to get P_1
 - -At primary hit P_1 :
 - 1. importance sample ω_1 from BRDF at P_1 using knowledge of incoming direction!
 - 2. trace ray to get P₂
 - -At secondary hit P₂, repeat to get ω_2
 - -And so on
- How do we get the PDF for the entire path?

Computing the Path PDF

• Denote the full path $\bar{x} = (x, y, \omega_1, \omega_2, \ldots)$

Then
$$p(\bar{x}) = p(x, y, \omega_1, \omega_2, \ldots, \omega_n) =$$

$$p(x,y)$$
.
 $p(\omega_1|x,y)$.
 $p(\omega_2|x,y,\omega_1)$.

PDF of screen sample

PDF of 1st direction
given screen sample
PDF of 2nd direction
given screen sample and 1st dir.

 $p(\omega_n|x,y,\ldots,\omega_{n-1})$

- At every step, we importance sample a single direction conditioned on all the things we sampled before
 - -In practice, we just look at the incoming direction

Brute Force Path Tracing, Eye Part

$$L(x \to \mathbf{v}) = \int_{\Omega} L(x \leftarrow \mathbf{l}) f_r(x, \mathbf{l} \to \mathbf{v}) \cos \theta \, d\mathbf{l}$$
+ $E(x \to \mathbf{v})$

```
for each pixel
  Lout = 0, w=0
  for i=1 to #samples
   generate xi,yi inside pixel with p(x,y)
   ray_i = generatecameraray(xi,yi)
   Lout += f(xi,yi) * trace(ray_i)/p(x,y)
   w += f(xi,yi)/p(x,y)
   endfor
   L(pixel) = Lout/w
endfor

(Assuming, for simplicity, that only one pixel filter is nonzero. Look back to previous lecture for full treatment.)
```

Brute Force Path Tracing

$$L(x \to \mathbf{v}) = \int_{\Omega} L(x \leftarrow \mathbf{l}) f_r(x, \mathbf{l} \to \mathbf{v}) \cos \theta \, d\mathbf{l} + E(x \to \mathbf{v})$$

Brute Force Path Tracing

$$L(x \to \mathbf{v}) = \int_{\Omega} L(x \leftarrow \mathbf{l}) f_r(x, \mathbf{l} \to \mathbf{v}) \cos \theta \, d\mathbf{l}$$
$$+ E(x \to \mathbf{v})$$

```
trace(ray)
 hit = intersect(scene, ray)
 result = emission(hit,-dir(ray)) // 0 if no light
 // sample outgoing direction
 [w,pdf] = sampleReflection(hit,dir(ray))
 // recursively estimate incoming radiance, apply BRDF
 result += BRDF(hit,-dir(ray),w)*
            cos(theta)*
            trace(ray(hit,w))/pdf
 return result
// when we apply the PDF like this we are implicitly
  multiplying them for all bounces like shown before
```

- sampleReflection() chooses a direction with which to estimate reflectance integral for indirect part
 - −I.e. importance sample according to BRDF

Why "Brute Force"?

- We're waiting for the sampler to hit the light on its own
 - -Often not a good idea
 - -But sometimes we can't do too much else
 - -Think of an architectural model where all the light comes through several specular bounces through windows
- In simple cases we can help by adding an explicit direct light sampling step to each bounce

This Doesn't Work!

Brute Force Path Tracing

- Trace only one secondary ray per recursion
 - -Otherwise number of rays explodes!
- But send many primary rays per pixel (antialiasing)

Path Tracing w/ Light Sampling

- At each hit, also sample a light and shoot a shadow ray
- The standard way of doing path tracing
- Also called "next event estimation"

Importance of Sampling the Light

Without explicit With explicit light sampling light sampling 1 path per pixel 4 paths per pixel

Aalto CS-E5520 Spring 2024 - Lehtinen

Path Tracing w/ Light Sampling

Interpretation of Shadow Rays

• Recall: the full lighting solution is a sum over paths of all lengths

$$L(x,y) = \sum_{i=0}^{\infty} L_i(x,y),$$
 with $L_0(x,y) = E(P_1 \leftarrow \text{eye})$

- Notice how we've "unwrapped" the recursive rendering equation into a sum of terms
 - -n bounce lighting is an integral over screen $\times \underbrace{\Omega \times \ldots \times \Omega}_{n \text{times}}$
 - But now we've replaced the final hemisphere with lights by solid-angle-to-area conversion: screen $\times \omega \times \omega \dots \times$ lights

A Different Parameterization

• In hemisphere form, the domain for *n* bounces is

screen
$$\times \underline{\Omega \times \ldots \times \Omega}$$
ntimes

For shadow ray sampling, it is

Path Tracing Pseudocode

$$L(x \to \mathbf{v}) = \int_{\Omega} L(x \leftarrow \mathbf{l}) f_r(x, \mathbf{l} \to \mathbf{v}) \cos \theta \, d\mathbf{l} + E(x \to \mathbf{v})$$

```
trace(ray)
 hit = intersect(scene, ray)
 if ray is from camera // only add "very direct" light here
  result = emission(hit,-dir(ray))
 // G(hit,y) contains the usual cosine/r^2 of the
 // hemisphere-to-area variable change
 result += V(hit,y)*E(y,y->hit)*BRDF*cos*G(hit,y)/pdf1
 [w,pdf] = sampleReflection(hit,dir(ray)) // like before
 result += BRDF(hit,-dir(ray),w)*
          cos(theta)*
          trace(ray(hit,w))/pdf
 return result
```

Notes 2

- sampleLightsource() picks a point on the light source and evaluates its PDF
 - -You're doing this in the first part of your radiosity assignment
 - -..and we saw this already on the first MC lecture
 - -We're (again) applying the solid angle-to-area variable change (i.e. we're integrating over the surface of the light source)
- When you have multiple light sources, you pick *one* at random, and build this into the PDF
 - –Simple: just multiply the light source p(y) with the probability of picking that particular light source

Picking Lights

• It makes sense to importance sample the light you pick

• E.g. doesn't make sense to sample dim, far-away lights as often as bright, nearby ones!

One Small Problem

One Small Problem

- Yes, it doesn't terminate if you just keep going
 - -Fortunately, there's still something we can do!

Russian Roulette

- The usual MC estimate is $E\{\frac{f(x)}{p(x)}\}_p$
 - -f/p is a random variable because x is a random variable

Russian Roulette

- The usual MC estimate is $E\{\frac{f(x)}{p(x)}\}_p$
 - -f/p is a random variable because x is a random variable
- Let's multiply this by another specially constructed random variable R
 - -R(x)=0 with probability $\alpha(x)$, and $R=1/(1-\alpha)$ otherwise
 - -Also assume α and x are uncorrelated (independent). Then:

$$E\{\frac{R \cdot f(x)}{p(x)}\} = E\{R\} E\{\frac{f(x)}{p(x)}\} = E\{\frac{f(x)}{p(x)}\}$$

Russian Roulette: What is Going On?

• R(x)=0 with probability $\alpha(x)$, and $R=1/\alpha$ otherwise

$$E\{\frac{R \cdot f(x)}{p(x)}\} = E\{R\} E\{\frac{f(x)}{p(x)}\} = E\{\frac{f(x)}{p(x)}\}$$

- We've given ourselves permission to sometimes replace the value of the integrand with zero without introducing bias to the result
 - —When we don't set it to zero, we multiply the result by $1/\alpha$
- This means, for instance, that we can probabilistically terminate light paths without tracing them to infinity

Path Tracing w/ RR

$$L(x \to \mathbf{v}) = \int_{\Omega} L(x \leftarrow \mathbf{l}) f_r(x, \mathbf{l} \to \mathbf{v}) \cos \theta \, d\mathbf{l}$$
+ $E(x \to \mathbf{v})$

```
trace(ray)
 hit = intersect(scene, ray)
 if ray is from camera // only add "very direct" light here
  result = emission(hit,-dir(ray))
 result += E(y,y->hit)*BRDF*cos*G(hit,y)/pdf1
 [w,pdf] = sampleReflection(hit,dir(ray))
 // russian roulette with alpha=0.5
 terminate = uniformrandom() < 0.5
 if !terminate
  result += BRDF(hit,-dir(ray),w)*
           cos(theta)*
           trace(ray(hit,w))/pdf/0.5 // 1/0.5 =mult. by 2!
 return result
                    Aalto CS-F5520 Spring 2024 - Lehtinen
```

"Path Space"

- Earlier we wrote n-bounce lighting as a simultaneous integral over n hemispheres
- We can just as well integrate over surfaces instead
 - –We just need to add in the geometry terms like before
 - $1/r^2$, visibility, the other cosine
- The space of paths of length n is then simply

$$\underbrace{S \times \ldots \times S}_{n \text{ times}}$$

with S being the set of 2D surfaces of the scene

See <u>Eric Veach's PhD</u>

Bigger Picture

- We are shooting rays from the camera, propagating them along, and kind of hoping we will find light
 - -Actively try to hit it by the light source samples
- What about more difficult cases?
 - -In a *caustic*, the light propagates through a series of specular refractions and reflections before hitting a diffuse surface

wikipedia

Problem With Caustics

- All we can do is shoot shadow rays towards the light
 - -Not very helpful here!

