Applications of Partial Derivatives
Optimization
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Lecture 6: Optimization - Extreme
values

Learning goals:
@ What are extreme values?
@ What are necessary conditions for extreme values?

© How to classify critical points?

Where to find the material?
Corral 2.5

Guichard et friends 14.7
Active Calculus 10.7
Adams-Essex 14.1
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http://www.mecmath.net/VectorCalculus.pdf
https://www.whitman.edu/mathematics/calculus_online/chapter14.html

Extreme values
f: D — R, where D C R", has
@ a local maximum at the point xg in its domain D if f(x) < f(xq) for
all points x in the domain D that are sufficiently close to the point xg
@ a global maximum (or absolute maximum) at the point xq in its
domain D if f(x) < f(xg) for all points x in the domain D
@ a local minimum at the point xg in its domain D if f(x) > f(xq) for
all points x in the domain D that are sufficiently close to the point xq
@ a global minimum (or absolute minimum) at the point xq in its
domain D if f(x) > f(xg) for all points x in the domain D
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Necessary conditions for extrema values

@ Recall: for single variable f: | — R extremas can occur
@ at the critical points of the function f: i.e. at the points where
f'(x) =0,
@ at points where the derivative is not defined, and
© on the edge of the set /
@ Next, we generalize the conditions of the function f: D C R" — R to
the case of f: D C R" — R.
@ For multivariable function extrema values can occur:
@ at the critical points of the function f i.e. at the points where

Vif(x) =0,
@ at points where V£ is not defined, and
© on the boundary of the domain D

@ A critical point that is not maximum or minimum is a saddle point
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Example 1

The function f(x,y) =1 — x? — y? has a local maximum £(0,0) = 1 at
point (0,0). This point is a critical point of the function f, because

V£(0,0) = (—2x, —2y)‘(0 5 =0




Example 2

Function f(x,y) = y? — x? has a saddle point at (0,0). The point is a
critical point, because

V£(0,0) = (—2x,2y) 00) 0.




Example 3

All the points on the line x = 0 are saddle points for a function
f(x,y) = —x3.

V£(0,y) = (-3x2,0) =0forally eR.
(0,y)



Example 4

Function f(x,y) = v/x? + y? has a global minimum £(0,0) = 0 at the
point (0,0). The function f is continuous, but its gradient V£ is not
defined at (0,0).




y) =1 — x does not have extremes, if it is defined in the

R2.

{(x,y) : x2 + y? < 1}, then the function has maximum

f(—1,0) = 2 and minimum £(1,0) = 0 at the boundary of D.

)

Example 5
The function f(x
whole plain D

If we take D
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Classification of critical values: introduction

o Consider the quantity
Af = f(x+h) — f(x)

at the critical point x € D.

o If Af takes only positive values (when ||h|| is small), the point x is a
(local) minimum, and if it takes only negative values, the point x is a
(local) maximum. If Af changes sign, then the point x is neither a
minimum nor a maximum (= saddle point).
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The second derivative test

@ We want to see how the change of function changes — second
derivative test

@ The single variable second derivative test:

Q If f(x) < 0, the function f has a local maximum at the point x.

@ If f(x) > 0, the function f has a local minimum at the point x.

@ If f(x) = 0, the test does not give an answer and the question must
be solved in another way.

o Next, we will generalize this idea to the multivariable case.
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Second derivative for multivariable function

o Let f: D CR" — R be a function f: D C R” — R with continuous
second-order partial derivatives.

@ The natural derivative of the function f is a gradient which is itself a
vector-valued function Vf: R” — R".

@ Thus the second derivative of a function f is a matrix, which we call
the Hessian matrix

2 5 -
88—);12 f(x) 8X2ax1 f(x) ... 78)(‘38)(1 f(x)
0 82
FZ—f e 24—
Hf(X) _ Ox10x2 (X) 8X2 (X) (9X,,8x.2 X)
> - 2 :
_ax?ax,, f(X) 8x§8x,, f(X) e 86X,% f(x) ]

@ Since all second order partial derivatives of f are continuous, the
order of the derivation can be changed, and the matrix is symmetric.
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Hessian matrix
Why are we interested in the Hessian matrix?
@ The Gradient allows us to write an linear (first-order) approximation
for the function f: D C R" — R,
@ The Hessian matrix gives a quadratic refinement:

f(x+h) ~ f(x) +h-VFf(x)+ %th(x)hT,

where the (horizontal) vector h = (hy, hy, ..., hy) is small.

@ This is actually just a new way of writing second-order Taylor
approximation

o A term of the form zAz' is the quadratic form for a n x n-matrix A
where z is the n-row vector.

@ Thus for the point V1 (x) = 0, we have approximation

1
Af = f(x+h) — f(x) ~ 5th(x)hT.

and by thinking that h ~ 0 we can use this to determinate the type of
the critical value.
] January 25, 2024 13/19



Definiteness of the matrix

What does the positivity or negativity of an symmetric matrix mean?
If Ais a symmetric matrix, then

@ A is called positive definite if its all eigenvalues are positive.
@ A is said to be negative definite if its all eigenvalues are negative.

@ A is said to be indefinite, if it has at least one positive and one
negative eigenvalue.

A is a positive semidefinite if its eigenvalues are nonnegative.

A matrix A is negative semidefinite if all its eigevalues are nonpositive.

Positive/negative definite matrices have many of the same properties as
positive/negative real numbers.
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Definiteness of the matrix and the quadratic form

The definiteness or indefiniteness of a symmetric matrix A is inherited to
the corresponding quadratic form.

o If Ais a positive definite, then xAx” > 0 for all nonzero (horizontal)
vectors x € R".

o If Ais a negative definite, then xAx” < 0 for all nonzero (horizontal)
vectors x € R".

o If Ais an indefinite, then xAx' gets both negative and positive values.

These can be proved by diagonalizing the symmetric matrix A to the form
A = UTAU, where the diagonal matrix A contains the eigenvalues of A
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Second derivative test for multivariable functions

Let f: D C R" — R be a function with continuous second partial
derivatives around the critical point x € D. Then:

a) If He(x) is a positive definite, then f has a local minimum at x.
b) If He(x) is a negative definite, then f has a local maximum at x.
c) If H¢(x) is an indefinite, then f has a saddle point at x.

)

d) Otherwise, the test gives no information about the function f.

These follow from the approximation f(x + h) — f(x) ~ %th(x)hT when
h =~ 0.
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Example when n = 2

Find and classify the critical points of the function

f(x,y) =x*+y* — 2xy

There is a simpler test for two variable functions based on the determinant
of the Hessian matrix, see Guichard et friends 14.7
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https://www.whitman.edu/mathematics/calculus_online/section14.07.html

Example when n =3

e Find and classify the critical points of the function
f(x,y,z) = X%y + y?z + 2% — 2x.
@ The equations for the critical points (Vf = 0) are

O f(x,y,z) =2xy — 2,
Daf(x,y,2z) = X* + 2yz,
= f(x,y,z) =y*>+2z.

@ Solving these we see that the only critical point of the function f is
P=(1,1,-1/2).
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Example when n = 3 continues

o The Hessian matrix is He(1,1, —1/2) = [(%) _21 %}
@ Let's calculate the eigenvalues of the matrix using MATLAB, for
example
> a=1[220,;2-12,;02 2]
a =
2 2 0
2 -1 2
0 2 2
>> eig(a)
ans =
—2.7016
2.0000
3.7016

@ So the function f has a saddle point at the point P = (1,1, —1/2).
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