# ECON-L1350 - Empirical Industrial Organization PhD I: Static Models Lecture 3

Tanja Saxell

#### Practicalities

- Exercises, slides, and reading liston MyCourses (https://mycourses.aalto.fi/course/view.php?id=39506)
- Return your exercise answers to MyCourses as a pdf or html and include the code
- Exercise nbr 1 (logit, nested logit), due 1 Feb
- Questions about practicalities or exercises? Email to Helena Rantakaulio (helena.rantakaulio@aalto.fi)
- My email: tanja.saxell@aalto.fi

# Outline: Previous Lectures (Toivanen)

- Discrete choice models
  - Logit
  - Nested logit
- These models are intuitive and easy to implement.
- Why not enough?

# Outline: Lectures 3-4 (Saxell)

- Reminder: problems with logit/nested logit
- Random coefficients logit consumer heterogeneity in preferences, rich substitution patterns
  - Estimator
  - Algorithm
  - Aggregate product-level data
- Challenges and extensions such as
  - Micro data
  - Combination of aggregate and micro data

# Literature: Lectures 3-4 (Saxell)

- Key papers:
  - Aggregate data: BLP = Berry, Steven, Levinsohn, J., and Pakes, A. (1995). "Automobile Prices in Market Equilibrium," Econometrica, 63(4), 841–890.
  - Aggregate + micro data: Berry, S., and P. Haile. 2021. "Chapter 1 Foundations of demand estimation," The Handbook of Industrial Organization, Editor(s): Kate Ho, Ali Hortaçsu, Alessandro Lizzeri, Elsevier, Volume 4, Issue 1, 2021, 1-62.
- For practitioners:
  - Nevo, Aviv. 2000. "A Practitioner's Guide to Estimation of Random Coefficients Logit Models of Demand," Journal of Economics & Management Strategy, 9(4), 513–548.
  - Conlon, C. and Gortmaker, J. 2020. Best practices for differentiated products demand estimation with PyBLP. The RAND Journal of Economics, 51: 1108-1161.

# Outline: Later Lectures (5-8)

- Lectures 5-6 (Toivanen): Supply side
- Lectures 7-8 (Vehviläinen): Mergers and market power

- Independence of irrelevant alternatives (IIA)
  - IIA states that the probability of choosing one product over another does not depend on the presence or absence of other "irrelevant" alternatives.
  - In other words, whatever else is on offer does not matter in the choice between j and m.
  - Implication: when the probability of choosing a given alternative changes, all other choice probabilities change in proportion.

# Problems with Logit

• Often unrealistic price elasticities:

$$e_{jk} = \begin{cases} -\alpha p_j (1 - s_j) & \text{if } k = j \\ \alpha p_k s_k & \text{if } k \neq j. \end{cases}$$
(1)

• The own price elasticity  $e_{jj}$  is increasing in price (absolute value). Why this is unrealistic - given an example!

# Problems with Logit

• Often unrealistic price elasticities:

$$e_{jk} = \begin{cases} -\alpha p_j (1 - s_j) & \text{if } k = j \\ \alpha p_k s_k & \text{if } k \neq j. \end{cases}$$
(1)

- The own price elasticity  $e_{jj}$  is increasing in price (absolute value). Why this is unrealistic given an example!
  - We would think people who buy expensive products are less sensitive to price.
- The cross-elasticity  $e_{jk}$ ,  $k \neq j$  depends only on market share and price of k (but not j!) but not on similarities between goods (IIA).

- Source of the problem: no correlation in the preference shock across products.
  - E.g., when the preference shock to BMW is high, the preference shock to Mercedes Benz should also be high, while the preference shock to Fiat should be relatively independent.
- Therefore, the preference shocks between two alternatives should be more correlated when they are closer in the characteristics space.
- Most of the extensions try to correct for the above.

# Why Important?

The main reason to estimate demand is to quantify demand parameters/elasticities:

- determine responses to and welfare effects of price changes
- determine responses to counterfactual policies (mergers, entry, tax changes etc.)
- used with a supply model to infer markups and market power

### Solutions

- Nested logit: assume a particular correlation structure among the structural errors  $e_{ij}$ . Within a nest, alternatives are "closer substitutes" than across-nest alternatives.
- Extensions: multi-level tree structure.
- One big problem with nested-logit: need to a-priori group products to nests, this is not trivial (examples?).

### Solutions

- Nested logit: assume a particular correlation structure among the structural errors  $e_{ij}$ . Within a nest, alternatives are "closer substitutes" than across-nest alternatives.
- Extensions: multi-level tree structure.
- One big problem with nested-logit: need to a-priori group products to nests, this is not trivial (examples?).
  - E.g. housing choice: Level 1: Location (Neighborhood), level 2: Housing Type (Rent, Buy, House, Apt); and Level 3: Housing (Bedrooms)?
  - Or some other combination of these?
- Different nest structures can produce very different results.
- The random coefficients models will try to solve this and provide more general treatment.

Random coefficients model: Berry, Levisohn and Pakes or BLP (1995)

- Workhorse empirical model of demand (and supply) of differentiated products.
- Many of the ideas in Berry (1994), mostly for simpler models (without random coefs.).
- Many extensions and variations.

- $\bullet\,$  Random coefficients with individuals heterogeneity  $\rightarrow$  rich substitution patterns.
- Requires only aggregate (product and market) level data.
  - Because we can construct the aggregated data from individual level data, all the arguments should go through with the individual choice level data.

- Explicit about unobservables (to the econometrician), including the nature of endogeneity problem.
  - For example, the econometrician may not observe brand values that are created by advertisement and perceived by consumers.
  - Such unobserved product characteristics are likely to be correlated with the price.
- Use the model to reveal appropriate instruments (based on market competition).
- Propose an algorithm for consistent estimation of the model and standard errors.

#### **Demand Model**

- A consumer chooses one of the available options (unit demand).
- There are J differentiated products or inside goods (e.g., different types of cars) j = 1, .., J.
- One options should be the outside good, (*j* = 0) i.e. none of the products above (e.g., do not buy a car).
- Note that the model is fairly general, a single option could also be a product bundle, e.g. milk+cheese, shirt+jeans...

#### **Demand Model**

• Specification for the conditional indirect utility of consumer *i* for product *j* in market *t*:

$$u_{ijt} = x_{jt}\beta_{it} - \alpha p_{jt} + \xi_{jt} + e_{ijt}.$$
(2)

#### x<sub>jt</sub>, p<sub>jt</sub>: observable product/market characteristics

- $\xi_{jt}$  unobserved product/market characteristic (demand shock e.g. brand/quality, structural errors on the demand side).
- $e_{ijt}$  idiosyncratic taste for the product.
- Only utility differences matter, so need a normalization for the outside good, e.g.  $u_{i0t} = e_{i0t}$ .

### Outside Good and Income Effect

- Could also have the utilities to depend on income y<sub>i</sub>
- How the preference for the outside good is modeled determines how the individual income affects the choice
- For example, assume (Nevo, 2000)

$$u_{ijt} = x_{jt}\beta_{it} + \alpha(y_i - p_{jt}) + \xi_{jt} + e_{ijt}$$
(3)

$$u_{i0t} = \alpha y_i + \xi_{0t} + e_{ijt} \tag{4}$$

- The income level does not affect the choice because the term is common and constant across choices (there is no income effect)
- This is in contrast to the case where we have  $\alpha \ln(y_i p_j)$  instead of  $\alpha(y_i p_j)$  in () and  $\alpha \ln(y_i)$  instead of  $\alpha y_i$  in () as in BLP
- For simplicity, assume that there is no income effect

# Heterogeneity in Preferences

Utility specification:  $u_{ijt} = x_{jt}\beta_{it} - \alpha p_{jt} + \xi_{jt} + e_{ijt}$ 

- Random coefficients:  $\beta_{it} = \beta + \sigma v_{it}$ 
  - For simplicity, just for  $x_{jt}$  but could be also for  $p_{jt}$
- eijt, vit iid across consumers and markets, often:
  - $e_{ijt}$ : iid type 1 extreme value distributed (logit)
  - $v_{it}$ : N(0,1) or drawn from the distribution of demographics (e.g. income) in market t (mean and std observed in aggregate data)

# Random Coefficients

- Products differ in different ways, consumers have heterogeneous preferences over these differences.
- For example, consumers with strong taste for one electricity car will probably like other electricity cars too.
- Random coefficients on product characteristics can capture this.
- Large  $\beta_{it}^k$ , strong taste for characteristic  $x^k$
- Consumer *i*'s first (and also second) choice have high values of  $x^k$ .
- Key issue as a reminder: produces more sensible substitution patterns.
  - As a result, the degree of competition depends on the degree to which similar products are available.



- The data set includes information on (essentially) all car models marketed during the 20 year period beginning in 1971 and ending in 1990.
- Unbalanced panel: car models both appear and exit over this period.
- Identify retail list prices (transaction prices are not easy to find) and other product characteristics.
- Distinguishes which firms produce which model
  - Crucial for the supply model and also for the IVs
- In total, N=2217 model/year observations.

# Available Products (BLP)

TABLE 1

DESCRIPTIVE STATISTICS

| Year | No. of<br>Models | Quantity | Price  | Domestic | Japan | European | HP/Wt | Size  | Air   | MPG   | MP\$  |
|------|------------------|----------|--------|----------|-------|----------|-------|-------|-------|-------|-------|
| 1971 | 92               | 86.892   | 7.868  | 0.866    | 0.057 | 0.077    | 0.490 | 1.496 | 0.000 | 1.662 | 1.850 |
| 1972 | 89               | 91.763   | 7.979  | 0.892    | 0.042 | 0.066    | 0.391 | 1.510 | 0.014 | 1.619 | 1.875 |
| 1973 | 86               | 92.785   | 7.535  | 0.932    | 0.040 | 0.028    | 0.364 | 1.529 | 0.022 | 1.589 | 1.819 |
| 1974 | 72               | 105.119  | 7.506  | 0.887    | 0.050 | 0.064    | 0.347 | 1.510 | 0.026 | 1.568 | 1.453 |
| 1975 | 93               | 84.775   | 7.821  | 0.853    | 0.083 | 0.064    | 0.337 | 1.479 | 0.054 | 1.584 | 1.503 |
| 1976 | 99               | 93.382   | 7.787  | 0.876    | 0.081 | 0.043    | 0.338 | 1.508 | 0.059 | 1.759 | 1.696 |
| 1977 | 95               | 97.727   | 7.651  | 0.837    | 0.112 | 0.051    | 0.340 | 1.467 | 0.032 | 1.947 | 1.835 |
| 1978 | 95               | 99,444   | 7.645  | 0.855    | 0.107 | 0.039    | 0.346 | 1.405 | 0.034 | 1.982 | 1.929 |
| 1979 | 102              | 82,742   | 7.599  | 0.803    | 0.158 | 0.038    | 0.348 | 1.343 | 0.047 | 2.061 | 1.657 |
| 1980 | 103              | 71.567   | 7.718  | 0.773    | 0.191 | 0.036    | 0.350 | 1.296 | 0.078 | 2.215 | 1.466 |
| 1981 | 116              | 62.030   | 8.349  | 0.741    | 0.213 | 0.046    | 0.349 | 1.286 | 0.094 | 2.363 | 1.559 |
| 1982 | 110              | 61.893   | 8.831  | 0.714    | 0.235 | 0.051    | 0.347 | 1.277 | 0.134 | 2.440 | 1.817 |
| 1983 | 115              | 67.878   | 8.821  | 0.734    | 0.215 | 0.051    | 0.351 | 1.276 | 0.126 | 2.601 | 2.087 |
| 1984 | 113              | 85.933   | 8.870  | 0.783    | 0.179 | 0.038    | 0.361 | 1.293 | 0.129 | 2.469 | 2.117 |
| 1985 | 136              | 78.143   | 8.938  | 0.761    | 0.191 | 0.048    | 0.372 | 1.265 | 0.140 | 2.261 | 2.024 |
| 1986 | 130              | 83,756   | 9.382  | 0.733    | 0.216 | 0.050    | 0.379 | 1.249 | 0.176 | 2.416 | 2.856 |
| 1987 | 143              | 67.667   | 9.965  | 0.702    | 0.245 | 0.052    | 0.395 | 1.246 | 0.229 | 2.327 | 2.789 |
| 1988 | 150              | 67.078   | 10.069 | 0.717    | 0.237 | 0.045    | 0.396 | 1.251 | 0.237 | 2.334 | 2.919 |
| 1989 | 147              | 62.914   | 10.321 | 0.690    | 0.261 | 0.049    | 0.406 | 1.259 | 0.289 | 2.310 | 2.806 |
| 1990 | 131              | 66.377   | 10.337 | 0.682    | 0.276 | 0.043    | 0.419 | 1.270 | 0.308 | 2.270 | 2.852 |
| All  | 2217             | 78.804   | 8.604  | 0.790    | 0.161 | 0.049    | 0.372 | 1.357 | 0.116 | 2.099 | 2.086 |

Note: The entry in each cell of the last nine columns is the sales weighted mean.

# Substitution to Outside Good (BLP)

TABLE VII

SUBSTITUTION TO THE OUTSIDE GOOD

|                  | Given a price increase, the percentage<br>who substitute to the outside good<br>(as a percentage of all<br>who substitute away.) |        |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------|--------|--|--|
| Model            | Logit                                                                                                                            | BLP    |  |  |
| Mazda 323        | 90.870                                                                                                                           | 27.123 |  |  |
| Nissan Sentra    | 90.843                                                                                                                           | 26.133 |  |  |
| Ford Escort      | 90.592                                                                                                                           | 27.996 |  |  |
| Chevy Cavalier   | 90.585                                                                                                                           | 26.389 |  |  |
| Honda Accord     | 90.458                                                                                                                           | 21.839 |  |  |
| Ford Taurus      | 90.566                                                                                                                           | 25.214 |  |  |
| Buick Century    | 90.777                                                                                                                           | 25.402 |  |  |
| Nissan Maxima    | 90.790                                                                                                                           | 21.738 |  |  |
| Acura Legend     | 90.838                                                                                                                           | 20.786 |  |  |
| Lincoln Town Car | 90.739                                                                                                                           | 20.309 |  |  |
| Cadillac Seville | 90.860                                                                                                                           | 16.734 |  |  |
| Lexus LS400      | 90.851                                                                                                                           | 10.090 |  |  |
| BMW 735 <i>i</i> | 90.883                                                                                                                           | 10.101 |  |  |

# Exogenous and Endogenous Characteristics

Utility specification:  $u_{ijt} = x_{jt}\beta_{it} - \alpha p_{jt} + \xi_{jt} + e_{ijt}$ 

- exogenous product characteristics  $x_{jt}$  (uncorrelated with  $\xi_{jt}$ )
- endogenous product characteristics p<sub>jt</sub>, usually the price
  - firms know  $\xi_{jt}$  when setting prices.
  - each price depends on  $\xi_t = (\xi_{1t}, ..., \xi_{Jt})$ .
  - need instruments
- But note that we dot estimate the equation above, utilities are not observable.
- Observed prices and quantities/market shares are both endogenous (simultaneously determined).

# Utility Specification: Mean Utility

• Redefine the utility specification:

$$u_{ijt} = x_{jt}\beta_{it} - \alpha p_{jt} + \xi_{jt} + e_{ijt}$$
(5)  
=  $\delta_{jt}(x_{jt}, p_{jt}, \xi_{jt}, \theta_1) + u_{ijt}(x_{jt}, v_{it}, \theta_2) + e_{ijt},$ (6)

where

- $\delta_{jt} = x_{jt}\beta \alpha p_{jt} + \xi_{jt}$  is the mean utility of product j in market t, with  $\delta_{0t} = 0$  (normalization)
- a deviation from that mean:

$$\mu_{ijt} = u_{ijt} + e_{ijt} \tag{7}$$

$$= x_{jt}\sigma v_{it} + e_{ijt}$$
(8)  
$$= x_{jt}\tilde{\beta}_i + e_{ijt}$$
(9)

• 
$$\theta_1 = (\beta, \alpha), \ \theta_2 = \sigma$$

# Consumer Choice and Market Share

• Consumer *i*''s choice:

.

 $a_{it} = \arg \max_{i} u_{ijt}.$ 

# Consumer Choice and Market Share

• Consumer *i*''s choice:

 $a_{it} = \arg \max_{j} u_{ijt}.$ 

• The market share of product j is just an integral over the mass of consumers in the region  $A_{jt}$ :

$$s_{jt} = P(a_{it} = j) = \int_{A_{jt}} dF(v, e)$$

$$= \int_{A_{jt}} dF_v(v) dF_e(e) \text{ (independence assumption)}$$

where

.

$$A_{jt}(\delta_t, x_t, \theta_2) = \{ (v_{it}, e_{i0t}, ..., e_{iJt}) : u_{ijt} \ge u_{ikt} \text{ for all } k \in \{0, ..., J\} \}$$

With Type 1 extreme value distributed error terms (e) and random coefficients, the predicted market share is:

$$s_j(\delta_t, x_t, heta_2) = \int rac{\exp[\delta_{jt} + x_{jt} ilde{eta}_i]}{1 + \sum_k \exp[\delta_{kt} + x_{kt} ilde{eta}_i]} dF_{ ilde{eta}}( ilde{eta}_i| heta_2)$$

#### Total Demand for Each Product

• If  $M_t$  is a measure of the total number of potential consumers in market t, the total demand for product j is in market t:

$$q_{jt} = M_t \times s_j(\delta_t, x_t, \theta_2) \tag{10}$$

• And for the outside good:

$$q_{0t} = M_t - \sum_{j=1}^J M_t \times s_j(\delta_t, x_t, \theta_2)$$
(11)

Data and Estimation

#### Data

- Market and product level data (observable):  $x_t$ ,  $p_t$ ,  $s_t$ ,  $M_t$  and  $z_t$  (instruments).
  - Could also use aggregate data on demographics such as income (later).
- How would you measure  $M_t$  and the market share of the outside good  $s_{0t} = 1 \sum_{j=1}^{J} s_{jt} / M_t$ ?

#### Data

- Market and product level data (observable):  $x_t$ ,  $p_t$ ,  $s_t$ ,  $M_t$  and  $z_t$  (instruments).
  - Could also use aggregate data on demographics such as income (later).
- How would you measure  $M_t$  and the market share of the outside good  $s_{0t} = 1 \sum_{i=1}^{J} \frac{s_{it}}{M_t}$ ?
  - BLP:  $M_t$  is the number of households in the U.S. taken for each year from the Statistical Abstract of the U.S.
- Perform robustness checks on market size assumptions; might matter a lot for the estimates and outcomes!
  - See a job market paper by Zhang, L. (2023): "Identification and Estimation of Market Size in Discrete Choice Demand Models."

- Assume that  $\theta_2$  (and the distributions  $F_v$  and  $F_e$ ) are already known.
- For each market t, find  $\delta_t \in R^J$  such that  $s_j(\delta_t, x_t, \theta_2) = s_{jt} \forall j$ .
  - Invert market shares to recover mean utilities  $\delta_t$ .
  - Done this way,  $\delta_t$  is such that the predicted market shares fit the observed market shares exactly.

#### Estimation: To-Do

- Instruments
- Inversion step: from market shares to mean utilities
- Formally, define an estimator and algorithm
- (Add supply model)

# Price Endogeneity

- Identification concerns: price endogeneity (correlates with  $\xi_{jt}$ ).
- Need instruments: variables that exogenously shift prices and quantities independently.

- IVs based on market competition.
  - In oligopolistic competition, firm *j* sets the price as a function of characteristics of products produced by competing firms.
  - However, characteristics of competing products should not depend on a consumer's valuation of firm j's product.
  - Similarly, for multiproduct firms, can construct IVs using characteristics of all other products produced by same firm *j*.

#### **BLP** Instruments

• The following are used as IVs for the price of product in a given market,  $p_{jt}$ 



where f is the firm that owns product j and  $\mathcal{F}_f$  is the set of products firm f owns

• For example, if one of the characteristics is the size of a car, then the IVs for product *j* includes the sum of size across own-firm products and the sum of size across rival firm products

### Alternative Instruments

- Traditional cost shifters; however need variation in costs across alternatives
- Proxies of cost shifters; price of the same product in other markets (Hausman instruments), valid if demand shocks are uncorrelated across markets
- Characteristics of nearby markets (Waldfogel instruments, after Waldfogel 2003)
- Exogenous shifters of market structure (e.g., firm ownership) that affect prices through equilibrium markups
- More on instruments and identification later (Hyytinen, lectures 5-6)

### Inversion Step

• Find  $\delta_t$  solves the nonlinear system  $s_t = s(\delta_t, x_t, \theta_2)$ , or equivalently

$$\delta_{t} = \delta_{t} + \underbrace{ln(s_{t})}_{Data!} - \underbrace{ln(s(\delta_{t}, x_{t}, \theta_{2}))}_{Model \ prediction!}$$
(12)

- They show that under mild conditions on the linear random coef. random utility model,  $T(\delta_t) = \delta_t + \ln(s_t) - \ln(s(\delta_t, x_t, \theta_2))$  is a contraction mapping.
- This means that
  - it has a (unique) fixed point in  $\delta_t$ .
    - $s_t = s(\delta_t, x_t, \theta_2)$  has an inverse  $\delta_t = D^{-1}(s_t, x_t, \theta_2)$ .
    - We can therefore perform a non-linear change of variables from observed market shares  $(s_t)$ ,  $x_t$  and  $\theta_2$  to  $\delta_t$  (see Berry and Haile, 2014).

Recall the utility specification:

$$u_{ijt} = x_{jt}\beta - \alpha p_{jt} + \xi_{jt} + \varepsilon_{ijt}, \quad s_{jt} = \frac{\exp[x_{jt}\beta - \alpha p_{jt} + \xi_{jt}]}{1 + \sum_{k} \exp[x_{kt}\beta - \alpha p_{kt} + \xi_{kt}]}$$

- $\xi_{jt}$  potentially correlated with price  $Corr(\xi_{jt}, p_{jt}) \neq 0$
- But not characteristics  $E[\xi_{jt}|x_{jt}] = 0$ .

# Analytical Inversion: Logit

Taking logs:

$$\ln(s_{0t}) = -\ln\left(1 + \sum_{k} \exp[x_{kt}\beta + \xi_{kt}]\right)$$
$$\ln(s_{jt}) = [x_{jt}\beta - \alpha p_{jt} + \xi_{jt}] - \ln\left(1 + \sum_{k} \exp[x_{kt}\beta + \xi_{kt}]\right)$$
$$\underbrace{\ln(s_{jt}) - \ln(s_{0t})}_{\text{Datal}} = x_{jt}\beta - \alpha p_{jt} + \xi_{jt}$$

Exploit the fact that we have one  $\xi_{it}$  for every share  $s_{it}$  (one to one mapping)

\_

- **1** Transform the data:  $\ln(s_{jt}) \ln(s_{0t})$ .
- 2 IV Regression of:  $\ln(s_{jt}) \ln(s_{0t})$  on  $x_{jt}\beta \alpha p_{jt} + \xi_{jt}$  with IV  $z_{jt}$ .

# Analytical Inversion: Nested Logit (Berry 1994)

For nested logit, the same as logit plus an extra term  $\ln(s_{j|g})$  the within group share:

$$\underbrace{\frac{\ln(s_{jt}) - \ln(s_{0t}) - \sigma \ln(s_{j|gt})}{D_{ata!}}_{D(s_{jt}) - \ln(s_{0t})} = x_{jt}\beta - \alpha p_{jt} + \xi_{jt}$$

- Note that  $\ln(s_{j|g})$  is also endogenous we are regressing Y on a function of Y.
- A common instrument is the number of products within the nest.

# Inversion: BLP (Random Coefficients)

We can't solve for  $\delta_{jt}$  analytically this time.

$$s_j(\delta_t, x_t, \theta_2) = \int rac{\exp[\delta_{jt} + x_{jt} \tilde{eta}_i]}{1 + \sum_k \exp[\delta_{kt} + x_{kt} \tilde{eta}_i]} dF_{\tilde{eta}}(\tilde{eta}_i | heta_2)$$

- This is a  $J \times J$  system of equations for each t.
- Model predictions s<sub>j</sub>(δ<sub>t</sub>, x<sub>t</sub>, θ<sub>2</sub>) involve high-dimensional integrals, use simulation (Monte Carlo Integration) to approximate it ("method of simulated moments" instead of GMM).
- There is a unique vector  $\delta_t$  that solves it for each market t.
- We can solve  $\delta_t$  recursively (because the contraction mapping has a unique fixed point) at each trial value of  $\theta_2$  (BLP "nested fixed point algorithm").

# BLP Estimator (Without Supply Side)

• GMM estimator of  $\theta = (\theta_1, \theta_2)$ :

 $\min_{\theta} g(\xi(\theta))' Wg(\xi(\theta)) \text{ s.t.}$ 

• 
$$g(\xi(\theta)) = \frac{1}{N} \sum_{j,t} \xi_{jt}(\theta)' z_{jt}$$
  
•  $\xi_{jt}(\theta) = \delta_{jt}(\theta_2) - x_{jt}\beta - \alpha p_{jt}$  where  $\delta_{jt}(\theta_2) \equiv \delta_j(s_t, x_t, \theta_2)$   
•  $s_{jt} = s_j(\delta_t, x_t, \theta_2)$   
•  $s_j(\delta_t, x_t, \theta_2) = \int \frac{\exp[\delta_{jt}(\theta_2) + x_{jt}\tilde{\beta}_i]}{1 + \sum_k \exp[\delta_{kt}(\theta_2) + x_{kt}\tilde{\beta}_i]} dF_{\tilde{\beta}}(\tilde{\beta}_i|\theta_2)$ , approximation via simulation

• W: standard GMM weighting matrix: a consistent estimate of  $E(z'\xi\xi'z)^{-1}$ 

# BLP Estimator (Without Supply Side)

• GMM estimator of  $\theta = (\theta_1, \theta_2)$ :

 $\min_{\theta} g(\xi(\theta))' Wg(\xi(\theta)) \text{ s.t.}$ 

• 
$$g(\xi(\theta)) = \frac{1}{N} \sum_{j,t} \xi_{jt}(\theta)' z_{jt}$$
  
•  $\xi_{jt}(\theta) = \delta_{jt}(\theta_2) - x_{jt}\beta - \alpha p_{jt}$  where  $\delta_{jt}(\theta_2) \equiv \delta_j(s_t, x_t, \theta_2)$   
•  $s_{jt} = s_j(\delta_t, x_t, \theta_2)$ 

- $s_j(\delta_t, x_t, \theta_2) = \int \frac{\exp[\delta_{jt}(\theta_2) + x_{jt}\tilde{\beta}_i]}{1 + \sum_k \exp[\delta_{kt}(\theta_2) + x_{kt}\tilde{\beta}_i]} dF_{\tilde{\beta}}(\tilde{\beta}_i | \theta_2)$ , approximation via simulation
- W: standard GMM weighting matrix: a consistent estimate of  $E(z'\xi\xi'z)^{-1}$ 
  - At the true parameter value,  $\theta^*$ , the moment condition  $E(z_t\xi_t(\theta^*)) = 0$
  - The weight matrix defines the metric by which we measure how close to zero we are
  - By using the inverse of the variance-covariance matrix of the moments, we give less weight to those moments that have a higher variance

### Contraction: BLP

BLP propose an algorithm to find  $\delta_{jt}$  s.t.  $s_{jt} = s_j(\delta_t, x_t, \theta_2)$ . Fix  $\theta_2$  and solve for  $\delta_t$ .

$$\delta_{jt}^{(k)} = \delta_{jt}^{(k-1)} + \left[\underbrace{\ln(s_{jt})}_{Data!} - \underbrace{\ln(s_j(\delta_t^{(k-1)}, x_t, \theta_2))}_{Model \ prediction!}\right]$$

- Idea: begin by evaluating the right-hand side of eq. at some initial guess for vector  $\delta_t^0$ , obtain a new  $\delta_t^1$  as the output of this calculation for all j in market t, substitute it back into the right hand side of eq., and repeat this process until convergence.
- If iterate until  $|\delta_t^{(k)} \delta_t^{(k-1)}| < \epsilon_{tol}$  you can recover the  $\delta$ 's so that the observed shares and the predicted shares are identical.
- $\epsilon_{tol}$  has to be small (loose tolerance value can make performance poor).
- s(δ<sub>t</sub><sup>(k-1)</sup>, θ<sub>2</sub>) requires computing the numerical integral each time (e.g., via monte carlo, later on this).

### BLP Algorithm: Basic Idea

- Outer loop: search over trial values of the parameter vector  $\theta = (\theta_1, \theta_2)$
- Inner loop: given  $\theta$ , find a solution for  $\delta_t(\theta_2)$  in each market t such that  $s_{jt} = s_j(\delta_t, x_t, \theta)$  as fixed point iteration

• Then calculate 
$$\xi_{jt} \equiv \delta_{jt}(\theta_2) - (x_{jt}\beta - \alpha p_{jt})$$

```
begin outer loop
```

try new  $\theta$ 

begin inner loop solve contraction mapping (fixed point iteration) end inner loop calculate GMM criterion end outer loop

#### **BLP** Pseudocode

From the outside, in:

• Outer loop: search over parameters  $\theta = (\theta_1, \theta_2)$  to minimize GMM objective:

$$\widehat{\theta_{BLP}} = \arg\min_{\theta} g(\xi(\theta))' Wg(\xi(\theta))$$
(13)

#### **BLP** Pseudocode

From the outside, in:

• Outer loop: search over parameters  $\theta = (\theta_1, \theta_2)$  to minimize GMM objective:

$$\widehat{\theta_{BLP}} = \arg\min_{\theta} g(\xi(\theta))' Wg(\xi(\theta))$$
(13)

- Inner Loop:
  - Fix a guess of  $\theta_2$ .
  - Solve for  $\delta_{jt}$  which satisfies  $s_j(\delta_t, x_t, \theta_2) = s_{jt}$ .
    - Simulated moments: computing  $s_j(\delta_t, x_t, \theta_2)$  requires numerical integration (simulation).

#### **BLP** Pseudocode

From the outside, in:

• Outer loop: search over parameters  $\theta = (\theta_1, \theta_2)$  to minimize GMM objective:

$$\widehat{\theta_{BLP}} = \arg\min_{\theta} g(\xi(\theta))' Wg(\xi(\theta))$$
(13)

- Inner Loop:
  - Fix a guess of  $\theta_2$ .
  - Solve for  $\delta_{jt}$  which satisfies  $s_j(\delta_t, x_t, \theta_2) = s_{jt}$ .
    - Simulated moments: computing  $s_j(\delta_t, x_t, \theta_2)$  requires numerical integration (simulation).
- We can do IV-GMM to recover  $\theta$

$$\delta_{jt}(\theta_2) = x_{jt}\beta - \alpha p_{jt} + \xi_{jt} \rightarrow \xi_{jt}(\theta_1, \theta_2)$$

- Use  $\hat{\xi}( heta)$  to approximate  $g(\xi( heta)) pprox rac{1}{JT} \sum_{j,t} Z'_{jt} \xi_{jt}$
- Plug into the GMM objective function and approximate W( )
- Iterate until convergence
- Standard errors: standard MSM (method of simulated moments)

# Linear and Nonlinear Parameters

- Important simplification:  $\theta_1$  enter objective function and  $\xi_{jt} \equiv \delta_{jt}(\theta_2) (x_{jt}\beta \alpha p_{jt})$  linearly
- Given  $\theta_2$  and W, we have closed-form expression for optimal  $\theta_1$  (as a function of  $\theta_2$ )
- Outer loop (nonlinear) search only involves  $\theta_2$ 
  - The nonlinear parameters  $\theta_2$  solve for the mean utility levels  $\delta_{jt}$  that set the predicted market shares equal to the observed market shares

# Approximating Market Shares: Numerical Integration

- Model predictions  $s_j(\delta_t, x_t, \theta_2)$  involve high-dimensional integrals, a common approach is to use Monte Carlo Integration to approximate them
- MC integration is a technique for numerical integration using random numbers
- Particularly useful for higher-dimensional integrals

### Numerical Integration: Example



# Numerical Integration: Approximate $I = \int_a^b f(x) dx$

 In the simplest (deterministic) approach, the integral is approximated by a summation over N points at a regular interval △x for x:

$$\hat{I} = \sum_{i=1}^{N} f(x_i) \bigtriangleup x$$

where 
$$x_i = a + (i - 0.5) \bigtriangleup x$$
 and  $\bigtriangleup x = \frac{b-a}{N}$ , i.e.

$$\hat{I} = \frac{b-a}{N} \sum_{i=1}^{N} f(x_i)$$

• Takes the value of *f* from the midpoint of each interval

# Numerical Integration: Approximate $I = \int_a^b f(x) dx$

 In the simplest (deterministic) approach, the integral is approximated by a summation over N points at a regular interval △x for x:

$$\hat{I} = \sum_{i=1}^{N} f(x_i) \bigtriangleup x$$

where 
$$x_i = a + (i - 0.5) \bigtriangleup x$$
 and  $\bigtriangleup x = \frac{b-a}{N}$ , i.e.

$$\hat{I} = \frac{b-a}{N} \sum_{i=1}^{N} f(x_i)$$

- Takes the value of *f* from the midpoint of each interval
- The sampling method for MC integration is very similar to the simple approach
- Instead of sampling at regular intervals  $\triangle x$ , we now sample at random points  $x_i$ , and then take the average over *NS* values of these

# BLP: Approximating Market Shares

- Approximation of predicted shares, given  $\theta$  $s_j(\delta_t, x_t, \theta_2) = \int \frac{\exp[\delta_{jt}(\theta_2) + x_{jt}\tilde{\beta}_i]}{1 + \sum_k \exp[\delta_{kt}(\theta_2) + x_{kt}\tilde{\beta}_i]} dF_{\tilde{\beta}}(\tilde{\beta}_i | \theta_2).$
- Draw NS values of  $v_{it}$  e.g. from N(0,1) to get  $\tilde{\beta}_{it} = \sigma v_{it}$ .
- Approximate:  $s_j(\delta_t, x_t, \theta_2) \approx \frac{1}{NS} \sum_{i=1}^{NS} \frac{\exp[\delta_{it}(\theta_2) + x_{jt}\tilde{\beta}_{it}]}{1 + \sum_k \exp[\delta_{kt}(\theta_2) + x_{kt}\tilde{\beta}_{it}]}$ .
- Use the same set of draws for each value  $\theta$  (outer loop).

# Illustrating Benefits of BLP - Reminder of Problems with Logit

- Logit model had the problem of IIA (independence of irrelevant alternatives)
- Under the IIA, the ratio of choice probabilities between two alternatives depend only on the mean utility of these two alternatives and are independent of irrelevant alternatives

$$\frac{s_j(\delta_t)}{s_l(\delta_t)} = \frac{\exp[x_{jt}\beta - \alpha p_{jt} + \xi_{jt}]}{\exp[x_{lt}\beta - \alpha p_{lt} + \xi_{lt}]}$$

# Illustrating Benefits of BLP - Reminder of Problems with Logit

- The own price elasticity e<sub>jj</sub> was increasing in price (absolute value)
- The cross-elasticity e<sub>jk</sub>, k ≠ j depended only on market share and price of k (but not j!) but not on similarities between goods (IIA)

### BLP: No IIA

• There is no IIA at the aggregate (market) level:

$$\frac{s_{j}(\delta_{t}, x_{t}, \theta_{2})}{s_{l}(\delta_{t}, x_{t}, \theta_{2})} = \frac{\int \frac{\exp[\delta_{jt}(\theta_{2}) + x_{jt}\tilde{\beta}_{i}]}{1 + \sum_{k} \exp[\delta_{kt}(\theta_{2}) + x_{kt}\tilde{\beta}_{i}]} dF_{\tilde{\beta}}(\tilde{\beta}_{i}|\theta_{2})}{\int \frac{\exp[\delta_{lt}(\theta_{2}) + x_{lt}\tilde{\beta}_{i}]}{1 + \sum_{k} \exp[\delta_{kt}(\theta_{2}) + x_{kt}\tilde{\beta}_{i}]} dF_{\tilde{\beta}}(\tilde{\beta}_{i}|\theta_{2})}$$

• The ratio of market shares depends on the price and characteristics of all the other products

• Finally, using the predicted market shares, the price elasticities are

$$e_{jk} = \begin{cases} -\frac{p_{jt}}{s_{jt}} \int \alpha s_{ijt} (1 - s_{ijt}) dF_{\tilde{\beta}}(\tilde{\beta}_i | \theta_2) & \text{if } j = k \\ \frac{p_{kt}}{s_{jt}} \int \alpha s_{ijt} s_{ikt} dF_{\tilde{\beta}}(\tilde{\beta}_i | \theta_2) & \text{otherwise,} \end{cases}$$

where  $s_{ijt} = \frac{\exp[\delta_{jt}(\theta_2) + x_{jt}\tilde{\beta}_i]}{1 + \sum_k \exp[\delta_{kt}(\theta_2) + x_{kt}\tilde{\beta}_i]}$ 

(14)

# BLP: Price Elasticities (Nevo, 2000)

- The price elasticities depend on the density of unobserved consumer types
- Each individual will have a different price sensitivity, which will be averaged to a mean price sensitivity using the individual specific probabilities of purchase as weights
- The price elasticity will be different for different brands
- So if, for example, consumers of BMW have low price sensitivity, then the own-price elasticity of BMW will be low despite the high prices

# BLP: Price Elasticities (Nevo, 2000)

- Therefore, substitution patterns are not driven by functional form, but by the differences in the price sensitivity
- The full model also allows for flexible substitution patterns, which are not constrained by a priori segmentation of the market (vs nested logit)

# Part 1: Summary

- BLP give us both a statistical estimator and an algorithm to obtain estimates.
- Attractive for many differentiated products markets
- Flexible substitution patterns, addressing endogeneity concerns
- Widely used in IO but also in other fields:
  - Economics is about making choices (demand and supply)
  - Choices differ, usually in some unobservable ways
- Computationally demanding, progress on these challenges
- Many variations of the model in the literature