

ELEC-E5531 - Speech and Language Processing Seminar V D

"A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification"

Mehedi Bijoy & Jack Bergkulla

Human Voice Production

Overview of Human Voice Generation:

- Begins with air filling the lungs.
- Released air passes through the larynx, creating a sound wave.

The Larynx - Voice Box:

- Larynx contains vocal cords or vocal folds.
- Also known as the voice box.

Spasmodic Dysphonia (SD) and Muscle Tension Dysphonia (MTD)

- SD and MTD are voice disorders with similar characteristics.
 - Differentiation requires experienced voice clinicians.
- Diagnosis challenging due to shared symptoms.
 - SD is a larynx focal dystonia → neurological disease, treated with surgery or botulinum toxin injections.
 - MTD is functional disorder, correctable with voice therapy.

Spasmodic Dysphonia (SD) and Muscle Tension Dysphonia (MTD)

- <u>Spasmodic Dysphonia (SD)</u>
 - Types include adductor SD (AdSD) and abductor SD (AbSD).
 - AdSD involves strong contraction causing strained voice, breaks.
 - AbSD is less common, spasms in muscles opening vocal folds.
 - Incidence is rare, affecting 30,000–50,000 in North America.
- <u>Muscle Tension Dysphonia (MTD)</u>
 - MTD involves excessive muscular tension during speech.
 - Vocal folds appear normal at rest but exhibit abnormal contraction during speech.

Importance of Automatic Classification of SD and MTD

- Precise treatment selection.
- Early intervention and improved prognosis.
- Resource optimization \rightarrow cost-effective and sustainable healthcare.
- Customized patient care and patient empowerment.
- Advancements in research and understanding.
 - More comprehensive dataset
 - A deeper understanding of the distinctive acoustic features
 - Automation in voice pathology

Limitations Identified by the Authors and Their Contributions in the Paper

Limitation Spotlights

- Diagnostic challenges due to clinical expertise and absence of criteria.
 - Complex voice disorders including variability and overlap in symptoms.
- Earlier efforts only focused on normal vs. pathological voices.

<u>Contributions</u>

- Automatic differentiation of AdSD, MTD, and normal voice.
- Comparision between Neural Network and SVM.
- Analysis of acoustic parameters from sustained vowels samples.

Data

• Speaker Composition

- Dysphonic Speakers: 36 => 15 (MTD) + 21 (AdSD)
- Normal Speakers: 53
- Speech Signals
 - Speech Type: Sustained Vowel /a/ (for at least 3 seconds at a comfortable pitch and loudness)
 - Eight selected acoustic measures have been extracted.
- Diagnostic Confirmation
 - History, physical examination. MRI of the brain. Laryngeal EMG, Laboratory tests, Neurological evaluation, and Videostroboscopy.

Visualization

Feature Extraction

- **Degree of Voice Breaks (Unvoiceness)** → Reflects the presence of voice breaks.
- Local F0 Ratio (Jitter) \rightarrow Indicates variations in the pitch of the voice.
- **Relative Average Perturbation (RAP)** → Provides information about pitch perturbations.
- Five-Point Period Perturbation Quotient (PPQ5) → Quantifies pitch perturbations.
- Intensity (Shimmer) \rightarrow Represents variations in the amplitude of the speech signal.
- Three-Point Amplitude Perturbation Quotient (APQ3) → Assess amplitude perturbations in the speech signal.
- Eleven-Point Amplitude Perturbation Quotient (APQ11) → Offers a more detailed analysis of amplitude perturbations.
- **Harmonics-to-Noise Ratio (HNR)** → Reflects the ratio of harmonics to noise in the speech signal, with decreased values indicating certain voice disorders.

Methodology

- Neural Network
 - The feature dimensionality is reduced using PCA.
 - Utilized multilayer perceptron (MLP)
- Support Vector Machine
- Leave-One-Out Method (LOO)
 - Applied LOO method due to the small dataset.

Principal Component Analysis

- 1. Take 8 dimensional dataset
- 2. Compute mean of each dimension
- 3. Calculate covariance matrix: $cov(X, Y) = \frac{1}{2} \sum_{n=1}^{n} (x - \overline{x}) (y - \overline{y})$

$$ov(X, Y) = \frac{1}{n} \sum_{i=1}^{n} (x - x) (y - y)$$

- 4. Find eigenvectors and eigenvalues: $det(A - \lambda I) = 0$
- 5. Sort the eigenvectors by decreasing eigenvalues.
- 6. Transform samples to new subspace.

Method - MLP

- Input dimension is reduced from 8 to 6 using PCA.
- Number of neurons in hidden layer varied from 8 to 34.
- Output: Adductor SD, MTD, and Normal.
- Activation function: TanH
- Epoch: 100
- Evaluation: Accuracy using Leave-One-Out method

Method - SVM

- Finds a hyperplane that best separates the data.
- Mathematical formulation: $y(x) = \sum_{i=1}^{N} g_i K(x, x^{(i)}) + b$ where, x is the input feature vector, K(x, x^i) is the kernel function and b is the bias.
- Kernel tricks:
 - Polynomial: $(\mathbf{x}^T\mathbf{y}+1)^p$
 - Gaussian Radial Basis Function: $\exp(-\frac{1}{2\sigma^2} \|\mathbf{x} \mathbf{y}\|^2)$
- Unlike MLP, SVM does not depend on weight initialization.

Results - Neural Network

Results - Neural Network

TABLE 2.

MLP NNs: Best Confusion Matrix for 14 Hidden Units

Actual Class	Pre	edicted (Correct	
	AdSD	MTD	Normal	Classifications (%)
AdSD	20	1	0	95.24
MTD	5	10	0	66.67
Normal	0	0	53	100.00
Total				93.26

TABLE 4.

MLP NNs:	Best	Confusion	Matrix for	22 Hidden	Units

Actual Class	Pre	edicted (Correct	
	AdSD	MTD	Normal	Classifications (%)
AdSD	18	3	0	85.71
MTD	3	12	0	80.00
Normal	0	0	53	100.00
Total				93.26

TABLE 3. MLP NNs: Best Confusion Matrix for 16 Hidden Units

Actual Class	Pre	edicted (Correct	
	AdSD	MTD	Normal	Classifications (%)
AdSD	17	4	0	80.95
MTD	2	13	0	86.67
Normal	0	0	53	100.00
Total				93.26

TABLE 5.

MLP NNs: Average of the 100 Confusion Matrices for 32 Hidden Units

Actual Class	Pre	edicted (Correct	
	AdSD	MTD	Normal	Classifications (%)
AdSD	15.78	4.48	0.74	75.14
MTD	4.45	10.44	0.11	69.60
Normal	0.01	0.01	52.98	99.96
Total				88.99

Results - SVM

TABLE 9.

Confusion Matrix for SVMs. Classification in Two Classes with Polynomial Kernel (p = 2) $\,$

Actual	Predicted	Correct		
Class	Pathological	Normal	Classifications (%	
Pathological	35	1	97.22	
Normal	1	52	98.11	
Total			97.75	

TABLE 10. Confusion Matrix for SVMs. Classification in Two Classes

with RBF Kernel, $\sigma = 0.5$

Actual	Predicted	Correct		
Class	Pathological	Normal	Classifications (%	
Pathological	34	2	94.44	
Normal	3	50	94.34	
Total			94.38	

TABLE 7. Confusion Matrix for SVMs. Classification in Three Classes with Polynomial Kernel (p = 2)

Actual Class	Pre	edicted (Correct	
	AdSD	MTD	Normal	Classifications (%)
AdSD	18	3	0	85.71
MTD	5	9	1	60.00
Normal	0	1	52	98.11
Total				88.76

TABLE 8.Confusion Matrix for SVMs. Classification in ThreeClasses with RBF Kernel, $\sigma = 0.5$

Actual Class	Pre	edicted (Correct	
	AdSD	MTD	Normal	Classifications (%)
AdSD	16	2	3	76.19
MTD	4	9	2	60.00
Normal	0	0	53	100.00
Total				87.64

Comparison with Concurrent Papers

Paper	Dataset Split: P/N	Features	Classification method	Result	
	••••••				Summary:
[1]	Total: 124 Split: 50/50%	Mean energy of speech	Random Forest	93.5 % accuracy with a population of 100 trees	 A larger dataset does not guarantee better performance. (ref. [2]) Number of extracted features shows a linear relationship with model performance. (ref.
[2]	Total: 2000+ Split: 33/66 %	Frequency, intensity, Harmonic to Noise Ratio	K-Nearest Neighbor, SVM, Decision Tree (DT)	DT algorithm yielded best classification accuracy of roughly 86.66 %.	
[3]	Total: 120 Split: 50/50 %	Number of features between 42-60.	Naïve-Bayes (NB), MLP, SVM, Random Forest	100% accuracy using NB. NB > RF > MLP > SVM Vowel a and e best results	
This Paper	Total: 89 Split: 60/40 %	Unvoiceness, Jitter, shimmer, RAP, PPQ5, APQ3, APQ11, HNR	MLP, SVM	93.26\$ accuracy using MLP MLP > SVM	[3])

[1] A Novel Algorithm for Detecting Spasmodic Dysphonia Voice Pathology using Random Forest Frame Work

[2] Spasmodic Dysphonia Detection Using Machine Learning Classifiers

Aalto University School of Electrical Engineering

[3] Vocal Test Analysis for the Assessment of Adductor-type Spasmodic Dysphonia

Findings and Contributions

- Automatic classification of SD and MTD using MLP and SVM based on acoustic features extracted from sustained vowel **/a/** samples.
- In the case of MLP, they experimented with various sizes of hidden units.
 - Stabilized error rate observed after 10 hidden units.
 - Best results:
 - 14 hidden units for AdSD and 16 hidden units for MTD.
- In the case of SVM, polynomial kernel outperformed Gaussian radial basis function kernel for both two-class (normal and pathological) and three-class classification (MTD, AdSD, and normal).

Limitations of the Paper

- Small Dataset \rightarrow may restrict the generalizability of the findings.
- Single Speech Sample \rightarrow may not fully capture the characteristics of disease.
- Limited Acoustic Features \rightarrow only from sustained vowel /a./ and avoiding others.
- Insufficient External Validation \rightarrow limits the robustness.
- Lack of Interpretability \rightarrow limits the applicability.
- Absence of Comprehensive Evaluation \rightarrow precision, recall, and F1 score.
- Issues Associated with the Proposed MLP:
 - Missing information to reproduce the model: Loss, optimizer.
 - Vanishing gradient: TanH
- Lack of Comprehensive Analysis with Other Concurrent Methods.

Future Research Direction

- Creation of a more diverse dataset.
- Exploration of alternative acoustic feature selection strategies.
- More advanced machine learning and deep learning models.
- Integration of multimodal method: Incorporate facial expression along with voice.
- Domain Adaptation for similar diseases.
 - Transfer learning.
 - Meta learning.
- Development of explainable automatic voice disorder classifier.

Thank You!

Any Questions?

Mehedi Bijoy & Jack Bergkulla

Assignment

- What are the major types of spasmodic dysphonia? Briefly explain their characteristics with appropriate examples.
- Record yourself pronouncing the sustained vowel /a/ for 2 seconds. Then, create a spectrogram of your recording. In your answer, include the spectrogram you created with "Spectrogram of the Audios.png", and compare your spectrogram to the spectrograms of a healthy person (Audio #1) and a person with Spasmodic Dysphonia (Audio #2).
 - Audio Files and their Spectrograms: <u>link</u>

