Artificial Intelligence for Dysarthria Assessment in Children With Ataxia: A Hierarchical Approach

Tartarisco et al.

Presented by F.San Koktas & Jyri Korhonen

Overview

1. Introduction

2. Methods

- a. Methods
- b. Data collection
- c. Signal Processing
- d. Feature Extraction for Machine Learning
- e. Feature Extraction for Deep Learning
- f. Classification
- g. Performance metrics
- 3. Results
- 4. Discussion
- 5. Limitations
- 6. Conclusion
 - a. Main Findings
 - b. Future research
- 7. Assignments

PART 1: INTRODUCTION

Introduction (i)

- Ataxia \rightarrow a-taxis \rightarrow non-order/coordination
 - Neurological disease
 - Poor muscle control
 - Diagnosis (for speech):
 - Expert listener rates 21 parameters
 - Rater variability
 - Loss of accuracy
 - Rating:
 - The Scale for the Assessment and Rating of Ataxia (SARA)
 - No cure, no medicine to treat symptoms

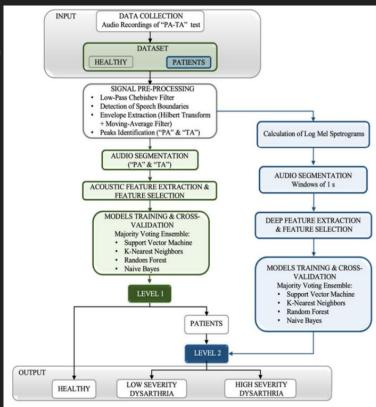
- **Dysarthria** \rightarrow dys (difficulty) + arthron (articulation) \rightarrow difficulty speaking
 - Caused by weak speech muscles

Introduction (ii)

- Why do we need a AI-powered method to diagnose ataxia?
 - For some patients, it takes so long to be diagnosed with traditional methods.
 - Expert listener might sometimes be wrong.
 - It is especially quite hard to manually rate the kids.
 - Every expert listener rates the parameters differently (rater variability).
 - For monitoring, patients need to go to clinic frequently, which is inconvenient.
 - Especially for ataxia patients in wheelchair who don't live close to the hospital, traveling each time for monitoring must be so annoying.
 - In countries where free healthcare is not provided, frequent visits may be costly.

Methods

- Hierarchical machine learning model (HMLM)
 - "PATA" test recordings
 - Healthy vs Low severity vs High severity
- Level 1
 - Machine Learning
 - Healthy vs patients
- Level 2
 - Deeplearning
 - Assess severity



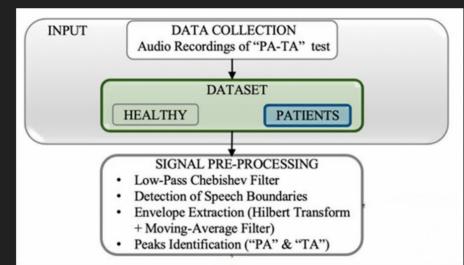
Data collection

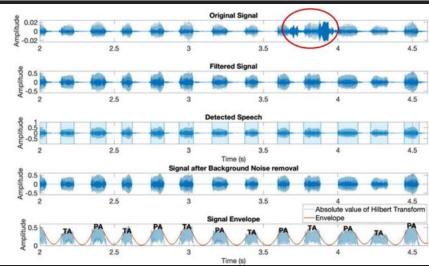
- 55 subjects
 - 18 healthy (H)
 - 21 progressive ataxia (PA)
 - 16 congenital non progressive ataxia (CA)
- Each performed "PATA" test for 10 seconds
- Test was repeated for 21 patients with PA or CA after 12 months
- Total of 76 audio recordings
- The patients were scored using standardized clinical scale by experts
 - Scale for the Assessment and Rating of Ataxia (SARA)

Signal processing

• Reduce background noise

- Patients voice is mostly under 1 kHz
- Low-Pass Chebishev filter with 1 kHz cut-off
- Hanning window
- Detection of Speech Boundaries
 - threshold short-term energy
 - spectral spread
- Envelope Extraction
 - Hilbert Transform
 - zero-phase moving-average filter
- "PA" & "TA" peaks Identification
 - Detected from the envelope

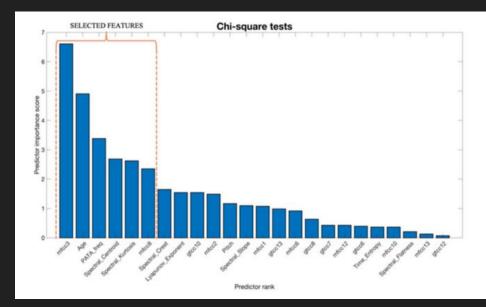




Feature extraction for Machine Learning

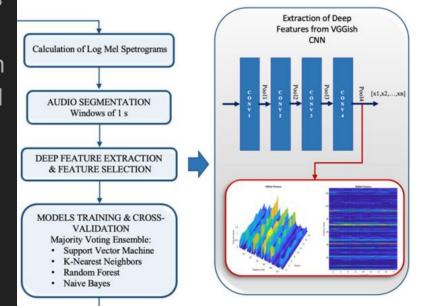
Features were ranked according to the predictor importance score and optimal subset was chosen

- Mel-Frequency Cepstral Coefficients (MFCCs)
- Subject age
- PATA frequency
- Spectral Centroid
 - Indicates where most of signal energy is contained
- Spectral Kurtosis
 - Measure of the flatness of the spectrum around its mean value



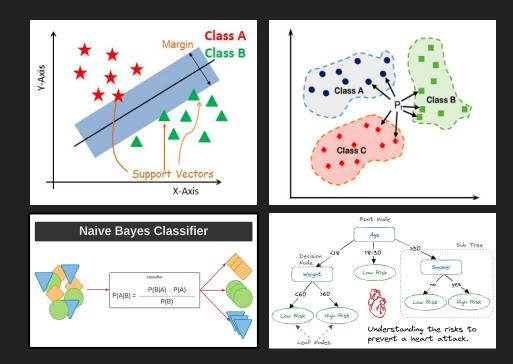
Feature extraction for Deep Learning

- Training Deep Learning Network requires a large amount of data
- Transfer Learning with Feature Extraction
- Pre-trained VGGish Convolutional Neural Network
 - Developed by Google for audio classification tasks
- Out of 12288 extracted features, 1444 were selected with addition of age and PATA frequency



Classification

- Two binary classifiers
 - Level 1 healthy vs patient
 - Level 2 low vs high severity
- Cross-validation
- Majority voting ensemble
 - Support Vector Machine (SVM)
 - k-Nearest Neighbours (k-NN)
 - Naïve Bayes (NB)
 - $\circ \quad \text{Decision Tree} \quad$



Performance metrics

- Accuracy
- Precision
- Recall
- F1-Score

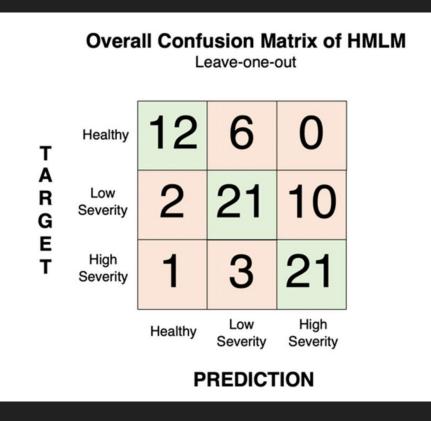
Measure	Binary Classification	Multi-class Classification	Hierarchical Classification	
Accuracy	$\frac{tp+tn}{tp+tn+fp+fn}$	$\frac{\sum_{i=1}^{l} \frac{tp_i + tn_i}{tp_i + tn_i + fp_i + fn_i}}{l}$	$\frac{\sum_{i=1}^{l} \frac{tp_i + tn_i}{tp_i + tn_i + fp_i + fn_i}}{l}$	
Precision	$\frac{tp}{tp+fp}$	$P_{\mu} = \frac{\sum_{i=1}^{l} tp_i}{\sum_{i=1}^{l} (tp_i + fp_i)}$ $P_{M} = \frac{\sum_{i=1}^{l} \frac{tp_i}{tp_i + fp_i}}{l}$	$P_{\downarrow} = \frac{ C_{\downarrow}^{c} \cap C_{\downarrow}^{d} }{ C_{\downarrow}^{c} }$	
Recall	$\frac{tp}{tp+fn}$	$R_{\mu} = \frac{\sum_{i=1}^{l} tp_i}{\sum_{i=1}^{l} (tp_i + fn_i)}$ $R_{M} = \frac{\sum_{i=1}^{l} \frac{tp_i}{tp_i + fn_i}}{l}$	$R_{\downarrow} = \frac{ C_{\downarrow}^{c} \cap C_{\downarrow}^{d} }{ C_{\downarrow}^{d} }$	
F1-Score	$2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$	$F1S_{\mu} = 2 \cdot \frac{P_{\mu} \cdot R_{\mu}}{P_{\mu} + R_{\mu}}$ $F1S_{M} = 2 \cdot \frac{P_{M} \cdot R_{M}}{P_{M} + R_{M}}$	$F1S_{\downarrow} = 2 \cdot \frac{P_{\downarrow} \cdot R_{\downarrow}}{P_{\downarrow} + R_{\downarrow}}$	

PART 3: RESULTS

Results (i)

Measure	Machine Learning		Transfer Learning		Combination: Machine Learning (Level 1) + Transfer Learning (Level 2)				
	5-FOLD	10-FOLD	LEAVE- ONE-OUT	5-FOLD	10-FOLD	LEAVE- ONE-OUT	5-FOLD	10-FOLD	LEAVE- ONE-OUT
Accuracy	1: 88.08% 2: 61.02% Total: 57.89%	1: 86.84% 2: 51.72% Total: 51.32%	1: 88.16% 2: 60.66% Total: 56.58%	1: 78.95% 2: 75% Total: 60.53%	1: 84.11% 2: 77.42% Total: 65.79%	1: 84.21% 2: 78.33% Total: 67.11%	1: 93.42% 2: 78.69% Total: 76.32%	1: 88.16% 2: 75.44% Total: 69.74%	1: 88.16% 2: 78.69% Total: 71.05%
Precision	1: 91.53% 2: 58.52% Total: 73%	1: 91.38% 2: 48.95% Total: 68.48%	1: 90.16% 2: 56.37% Total: 72.37%	1: 87.50% 2: 79.18% Total: 69.96%	1: 87.10% 2: 77.81% Total: 74.73%	1: 88.33% 2: 78.70% Total: 75.66%	1: 93.44% 2: 78.55% Total: 84.67%	1: 92.98% 2: 75.62% Total: 78.93%	1. 90.16% 2. 78.87% Total: 78.61%
Recall	1: 93.10% 2: 55.36% Total: 73%	1: 91.38% 2: 49.02% Total: 68.48%	1: 94.83% 2: 53.66% Total: 72.37%	1: 84.48% 2: 75.52% Total: 69.96%	1: 93.10% 2: 77.81% Total: 79.28%	1: 91.33% 2: 79.86% Total: 75.66%	1: 98.28% 2: 79.50% Total: 84.67%	1: 91.38% 2: 76.60% Total: 78.93%	1. 94.83 2. 80.24% Total: 78.61%
F1-Score	1: 92.31% 2: 56.90% Total: 73%	1: 91.38% 2: 48.98% Total: 48.95%	1: 92.44% 2: 54.98% Total: 72.37%	1: 85.96% 2: 75.26% Total: 69.96%	1: 90% 2: 78.54% Total: 74.73%	1: 89.33% 2: 79.28% Total: 75.66%	1: 95.80% 2: 79.02% Total: 84.67%	1: 92.98% 2: 75.62% Total: 78.93%	1. 92.44 2. 79.55% Total: 78.61%

Results (ii)



Results (iii)

	Hierarchical App. (ML+DL)	Flat-multi class App.	
Level 1 Accuracy	about 90%	-	
Level 2 Accuracy	about 80%	-	
Overall accuracy	about 76%	about 65%	
Overall precision, recall, and f1 score	about 85%	about 55%	

PART 4: DISCUSSION

Discussion

- Conventional features work better at the 1st Level (healthy vs patient)
- Transfer learning based method was more suitable to assess the severity of dysarthria
- HMLM outperforms flat multi-class approach
 - overall accuracy 76.32% vs 65.58% for 5-fold cross-validation

PART 5: LIMITATIONS

Limitations

- Lack of variability of speech disturbance score
 - None of the patients had a higher severity than 3 while the highest number is 6.

• Small number of available subjects

- Ataxic symptoms are very rare (26/100,000).
- Still, the collected dataset was the first and biggest.
- Sometimes same clinical scores were used for different classes (e.g. healthy & low severity)
 - Reason of most of the errors.
 - It's really hard for doctors to tell the difference between subtle changes in speech problems.

PART 6: CONCLUSIONS

Main Findings

- Voice and speech can help doctors to track ataxia at every stage of the disease (early or advanced).
- Patients can record their voices at home using phones. Doctors can track patients condition even though they don't come to clinic.
 - This can reduce cost and make patients' and their families' lives easier.
- Since AI objectively evaluates the condition, doctors can have more reliable results.
 - Manual evaluations conducted by humans can vary due to individual differences
- The model described in the study can be a **useful tool** to screen for ataxia and monitor patients by just recording their voices.

Future Research

- Larger dysarthric speech databases are needed.
 - TORGO and NEMOURS have no more than 15 subjects.
- For AI-powered approach to fully replace manual approach, increasing the accuracy even more is needed.
- A better scale than SARA might be beneficial to combat the issues caused by different classes having the same rating from time to time.
- Model needs to be validated on greater number of subjects.

PART 7: ASSIGNMENT

Assignment

- Please listen to the speech patterns of <u>this individual with ataxia</u>, then contrast them with your own. Identify at least three distinctions you observe in how they speak compared to yourself.
- 2. Watch this video about ataxia. By combining the experience of Tallullah and Dan with your own thoughts on ataxia, explain why AI-powered ataxia diagnosis might be useful for patients.
- 3. In one sentence, explain why did the researchers of this paper use low-pass Chebishev filter for pre-processing?

Thanks for listening

We would be happy to answer your questions about the paper.

Citations

 Tartarisco, Gennaro & Bruschetta, Roberta & Summa, Susanna & Ruta, Liliana & Favetta, Martina & Busa, Mario & Romano, Alberto & Castelli-gattinara, Guido & Flavia, Marino & Cerasa, Antonio & Schirinzi, Tommaso & Petrarca, Maurizio & Bertini, Enrico & Vasco, Gessica & Pioggia, Giovanni. (2021). Artificial Intelligence for Dysarthria Assessment in Children With Ataxia: A Hierarchical Approach. IEEE Access. PP. 1-1. 10.1109/ACCESS.2021.3135078.

Diagrams in slides 6-11, charts in slides 13-14, as well as all the information on this paper are taken from this paper.