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Motivation

* Slow down progressive dysarthria
 Economical, consistent
* Facilitate communication for people with dysarthria



Research Gap

* Previous approaches:
* Prosodic features as input
* Time-frequency representation as input
 ANNs and CNNs
e Baseline model: CQT-CNN

* Need for an efficient understanding of the spectral representation of
speech

* Novel approach :
* Multi-head attention
* Multi-task learning



Proposed Model Block Diagram
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Attention

* Characteristic embeddings are in short segments of the whole
utterance

* An expert with knowledge of where to look and what to look for
would be able to perceive these embeddings

* Hypothesis: the attention mechanism could locate the salience
periods from the spectrograms and could leverage the dysarthria
severity recognition task

* Possible characteristics: , effects of slurring, long pauses
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Self-attention and Multi-head attention

* Limits of the encoding-decoding
e Self attention mechanism
 Multi head attention mechanism

* Interpretation: find the important
portions of an image to look at and
Interpret
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https://arxiv.org/abs/1706.03762

Multi-task learning

* Inspired by human learning:
o Knowledge from different correlated tasks is integrated

* Improves data efficiency

e Can lead to faster learning for related tasks under data stringent
conditions

* Hypothesis: the inherent differences in gender, age and the type of
dysarthria can be learned jointly through MTL, and can mitigate the
high intra-class variability in dysarthria severity estimation



Results: preview

* 95.75% accuracy of proposed model vs 84.24% accuracy of baseline
model COT-CNN and 87.14% accuracy of RES-CNN (ablation)
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Fig. 4. t-SNE plots of the baseline model (left), ResCNN model (middle) and the proposed model (right).
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The Proposed Model
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Input features
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Log mel spectrogram

Wk | Dysarthric speech tends to have lower

frequency content

 Mel scale has higher resolution in the
lower frequencies, like human hearing

* Intuitively: intelligibility rate is a

| . perception task
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Resized spectrogram

e Silence trimmed instead of clipping to constant length!
* Resized to 64x64 dimension for the CNN classifier

e Poor articulation is visible in the reduced sharpness of the
spectrogram
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Feature encoding
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CNN encoder

L

* Motivation: extraction of salient features from the e
resized spectrogram

* Convolutional filters (32, 64): size 5x5, stride 2x2
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Multi-head attention module
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Multi-head attention module

* Three attributes: Queries, Values and Keys

* Multiple projections (h)
» Different projections from the same input
* Parallel computing

* Allows for recognition of varied dysarthric
speech charectaristics present in different
severity levels
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Mathematical description of MHA

4
Vg

attention(Q, K, V') = so ftmax( W

MHA(Q, K,V) = concat(head, ..., headh)WO
head; = attention(QWiQ, Kw Xk vw.")

Q — queries, K — keys, V —values, W — projection matrix
d — dimensions, h — projections
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Classifier Neural Network
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Description of MTL loss
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Experiment

* UA-Speech Database; no healthy speakers!

* Training with common words, testing with uncommon words
* Robustness measure
* Per speaker: 465 words for training, 300 words for testing

e Stochastic Gradient Descent with momentum 0.9 for 60 epochs

* Proposed Model * Baseline model: CQT-CNN
e Short-Time Fourier Transform on e Constant-Q transform
the log mel scale e CNN with two hidden layers

* CNN only for feature extraction
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Experiment: the speakers of UA-Speech

Dysarthric speaker description of the UA-Speech database.

Severity List of speakers Age Type
HIGH MO1, M04 < 30 Spastic
M12 <30 Mixed
FO3 >= 30 Spastic
MEDIUM FO02, M07, M16 >= 3() Spastic
LOW FO4 < 30 Athetoid
MO5 < 30 Spastic
M11 >= 30 Athetoid
VERY LOW FO5, M08, M09 < 30 Spastic
M10 < 30 Mixed

M14 >= 30 Spastic
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Results: hyper-parameters

Method Parameter Accuracy
MHA Heads 1 2 . 8
h 82.67 84.27 87.49 86.15
MTL Loss weights 0.25 0.5 0.75 1
p 59.42 91.20 90.69 89.28
Y 63.55 47.89 67.55 33.33
0 89.31 89.31 90.09 90.75

* Impact of number of attention heads

* Impact of loss weights
o Hard parameter sharing prevents overfitting
o Tuning loss weights
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Results: ablation study

Table 3
Severity classification accuracy of the different classifiers (%) (the best
result in bold).

SI no. Classifier Accuracy
1 CQT-CNN (Chandrashekar et al., 2020) 84.24
2 ResCNN 87.14
3 ResCNN + MHA 87.49
4 ResCNN + MTL 91.11
5 ResCNN + MTL2 92.02
6 ResCNN + MHA + MTL2 95.75

* More tasks leads to less overfitting
* Negative transfer of auxiliary learning tasks
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Fig. 5. Confusion matrix given by the baseline model (left), ResCNN model (middle) and the proposed model (right).

* Major recall gain in the ‘very low’ severity class
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Results: t-SNE clustering
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Fig. 4. t-SNE plots of the baseline model (left), ResCNN model (middle) and the proposed model (right).

* Better differentiation for severity classes
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Results: contingency tables

Proposed Model Proposed Model Proposed Model Proposed Model
correct wrong correct wrong

correct

3755 2 3830 2

CQT-CNN
ResCNN
correct

wrong

554 96 479 94

CQT-CNN
ResCNN
wrong

Fig. 6. Contingency tables given by the proposed model against the CQT-CNN model (left) and the ResCNN model (right).

e Results are statistically significant (a = 0.05) by the t statistic
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Results: statistical measures

Precision (P), recall (R), F1 score and area under the ROC curve (AUC) measures of the different classifiers.

: CQT-CNN ResCNN Proposed model
Severity level
P R F1 AUC ¥ R F1 AUC P R F1 AUC
Very low 0.95 0.72 0.82 0.85 0.98 0.72 0.83 0.86 0.99 0.93 0.95 0.96
Low 0.91 0.93 0.91 0.95 0.88 0.95 0.91 0.96 0.96 0.97 0.97 0.98
Medium 0.67 0.91 .77 0.90 0.72 0.97 0.83 0.94 0.96 0.97 0.96 0.98

High 0.91 0.93 0.91 0.95 0.92 0.94 0.93 0.95 0.93 0.98 .85 0.97




Experiment 2: Speaker-dependency check

» Speaker Independent (SID) setting
e Leave One Speaker Out (LOSO)

* Acceptable results for border classes, poor results for intermediate
classes; UA-Speech is unbalanced

e Test 1: known words, Test 2: for unknown words

) Test 1 Test 2
Severity level
CQT-CNN ResCNN Proposed model CQT-CNN ResCNN Proposed model
Very low 52.13 51.01 64.52 53.80 36.53 47.80
Low 1.22 6.67 16.27 0.33 7.77 15.55
Medium 0.51 10.03 11.90 0.88 16.22 21.22
High 20.59 42.47 42.42 21.99 41.83 46.25

Total 23.21 31.67 38.45 24.04 28.13 35.62
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Discussion

* Tripathi et. al 2020b report an accuracy of 54% in the SID setting
e 1000 hours of training data vs 17 hours

* MHA and MTL can improve performance in data-scarce situations
* Age was found not to correlate with severity



Conclusion and Future Work

* MHA and MTL: or the joint learning of different subspace
representations is novel and promising approach in enhancing the
performance of dysarthria severity classification in data-scarce
settings.

» Better time-frequency representation
* Gabor spectrograms

e Residual networks with squeeze-excitation
* Data augmentation



Thank you for listening!




Assignment

* 1. Given the figures below, which of them in a spectrogram on the
normal scale and which is the spectrogram on the mel scale? Why is

the mel scale important?

e 2. What is the main limitation of the UA-speech
database?

* 3. How does the paper address this limitation?

form

Wave

.......
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