
LECTURE NOTES - WEEK III
Flows

Lecture Notes - Week III
Flows

Fernando Dias, Philine Schiewe and Piyalee Pattanaik

January 29, 2024

1

LECTURE NOTES - WEEK III
Flows

CHAPTER 1
Flows and Cuts

In graph theory, flow network is a directed graph G = (V ,E) where each edge has a capacity
u : E → R+ and each edge receives a flow f : E → R+, where the amount of flow allowed in each edge
cannot surpass its capacity (f (e) ≤ u(e), e ∈ E). Hence, the excess of a flow f at v ∈ V :

exf (v) :=
∑

e∈δ−(v)

f (e)−
∑

e∈δ+(v)

f (e)

δ−(v) = {e ∈ E : e = (u, v)} incoming edges

δ+(v) = {e ∈ E : e = (v , u)} outgoing edges

The flow in this type of graph also have the satisfy flow conservation which state that:

Definition 1 The total net flow entering a node v is zero for all nodes in the network except the source s
and sink t.

This can be also expressed based on the vale of flow through through a node. If f satisfies flow conversation
rule at v , then exf (v) = 0. When all nodes satisfy flow conservation exf (v) = 0 for all v ∈ V , we
express such behaviour as circulation. Finally, in a path between the source s and the sink t , the s-t-
flow : exf (s) ≤ 0, exf (v) = 0 for all v ∈ V \ {s, t}, in which the value of s-t-flow can be calculated as
value(f) = −exf (s) = exf (t).

s

v1

v2

v3

t

2

5

3 4

1

4 3

2; 2

3; 5

1; 3 1; 4

1; 1

0; 4 3; 3

value(f) = 5

CHAPTER 1. FLOWS AND CUTS 2

LECTURE NOTES - WEEK III
Flows

A cut in graph theory corresponds to a partition of the nodes in a graph splitting them into disjoint subsets.
For example, see Figure 1.1.

Figure 1.1: Example of a cut in a graph

A specific type of cut is a s-t-cut δ+(S) where S ⊆ V and s ∈ S, t /∈ S. Therefore:

δ+(S) = {e = (u, v) ∈ E : u ∈ S, v ∈ V \ S}

The capacity of such cut can be expressed as:

u(δ+(S)) =
∑

e∈δ+(S)

u(e)

s

v1

v2

v3

t

2

5

3 4

1

4 3

capacity u(δ+({s, v2, v3})) = 6

CHAPTER 1. FLOWS AND CUTS 3

LECTURE NOTES - WEEK III
Flows

1.1 WEEK DUALITY

Using the definitions of flows and cuts, we can establish the following conclusion:

Lemma 1 For any S ⊆ V with s ∈ S, t /∈ S and any s-t-flow f :

1. value(f) =
∑

e∈δ+(S) f (e)−
∑

e∈δ−(S) f (e)

2. value(f) ≤ u(δ+(S))

Proof 1 From the flow conservation for v ∈ S \ {s}:

value(f) = −exf (s)

=
∑

e∈δ+(s)

f (e)−
∑

e∈δ−(s)

f (e)

=
∑
v∈S

(∑
e∈δ+(v)

f (e)−
∑

e∈δ−(v)

f (e)
)

=
∑

e∈δ+(S)

f (e)−
∑

e∈δ−(S)

f (e)

This can also expressed as:

0 ≤ f (e) ≤ u(e)

CHAPTER 1. FLOWS AND CUTS 4

LECTURE NOTES - WEEK III
Flows

CHAPTER 2
Maximum Flows and Minimal Cuts

Once again, the task of find which flow and which cuts a graph can accept is not challenging. However,
whenever optimal values (either minimal or maximal) are required, the configuration of such problems
becomes challenging.

First, we state both problems:

Problem 1 Maximum Flow Problem (MaxFlow) Given a flow network represent as a digraph G = (v ,E)
with capacities u and unique source and unique sink s and t respectively, such that s, t ∈ V.
The goal is to find an s-t-flow of maximum value.

Problem 2 Minimum Cut Problem (MinCut) Given a flow network represent as a digraph G = (v ,E) with
capacities u and unique source and unique sink s and t respectively, such that s, t ∈ V.
The goal is to find an s-t-cut of minimum capacity.

Although those two problems might seem unrelated or even contradictory, they can be directly connected
via the following lemmas:

Lemma 2 Let G = (V ,E) be a digraph with capacities u and s, t ∈ V. Then

max{value(f) : f s-t-flow} ≤ min{u(δ+(S)) : δ+(S) s-t-cut}.

Lemma 3 Let G = (V ,E) be a digraph with capacities u and s, t ∈ V. Let f be an s-t-flow and δ+(S) be
an s-t-cut. If

value(f) = u(δ+(S))

then f is a maximal flow and δ+(S) is a minimal cut.

Hence, a single algorithm is enough to solve both problems.
Remark: in combinatorics, many problems can be expressed as another. This is a key point for future
lectures.

CHAPTER 2. MAXIMUM FLOWS AND MINIMAL CUTS 5

LECTURE NOTES - WEEK III
Flows

2.1 IDEA FOR FINDING MAXIMAL FLOWS

If there exists non-saturated s-t-path (f (e) < u(e) for all edges), then the flow f can be increased along this
path. This means that if the path is not satured, more flow can be put into that path.

However, non-existence of such a path does not guarantee optimality.

s

v1

v2

v3

t

1; 2

3; 5

0; 3 1; 4

0; 1

0; 4 3; 3

2; 2

3; 5

1; 3 1; 4

1; 1

0; 4 3; 3

2; 2

4; 5

0; 3 2; 4

1; 1

1; 4 3; 3

value(f) = 4 value(f) = 5 value(f) = 6
u(δ+({s, v2, v3})) = 6

In this context, we introduced another concept: residual graphs. Considering that G = (V ,E) is a digraph
with capacities u, f be an s-t-flow, a residual graph is the graph Gf = (V ,Ef) with Ef = E+ ∪ E− and
capacity uf :

• forward edges +e ∈ E+:
for e = (u, v) ∈ E with f (e) < u(r), add +e = (u, v) with residual capacity uf (+e) = u(e)− f (e)

• backward edges −e ∈ E−:
for e = (u, v) ∈ E with f (e) > 0, add −e = (v , u) with residual capacity uf (−e) = f (e)

Remark: Gf can have parallel edges even if G is simple.

s

v1

v2

v3

t

2; 2

3; 5

1; 3 1; 4

1; 1

0; 4 3; 3

CHAPTER 2. MAXIMUM FLOWS AND MINIMAL CUTS 6

LECTURE NOTES - WEEK III
Flows

s

v1

v2

v3

t

2

2 4

3
2 1

1

33

1

In addition, we can also define f -augmenting paths:

Definition 2 An s-t-path P in Gf is called augmenting path. The value:

f (P) = min
a∈E(P)

uf (a)

is called residual capacity of P.
Remark: f (P) > 0 as uf (a) > 0 for all a ∈ Ef .

s

v1

v2

v3

t

2

2 4

3
2 1

1

33

1

f (P) = 1

With this definition in mind, the following theorem is established.

Theorem 1 An s-t-flow is optimal if and only if there exists no f -augmenting path.

Proof idea:

⇒ P f -augmenting path. Construct s-t-flow

f̄ (e) =

f (e) + f (P) if + e ∈ E(P)

f (e)− f (P) if − e ∈ E(P)

f (e) otherwise

with higher value.

CHAPTER 2. MAXIMUM FLOWS AND MINIMAL CUTS 7

LECTURE NOTES - WEEK III
Flows

Proof idea:

⇐ There exists no f -augmenting path. Consider s-t-cut δ+(S) defined by connected component S of s
in Gf . Show that

value(f) = u(δ+(S)).

s

v1

v2

v3

t

3

1 3

2

2 2

1

34

1

s

v1

v2

v3

t

2; 2

4; 5

0; 3 2; 4

1; 1

1; 4 3; 3

With this previous theorem in mind, we can conclude that:

Theorem 2 (Ford and Fulkerson, 1956; Dantzig and Fulkerson, 1956)
In a digraph G with capacities u, the maximum value of an s-t-flow equals the minimum capacity of an
s-t-cut.

CHAPTER 2. MAXIMUM FLOWS AND MINIMAL CUTS 8

LECTURE NOTES - WEEK III
Flows

CHAPTER 3
Finding Maximal Flows

The most common algorithm for maximum flow was first published by L. R. Ford Jr. and D. R. Fulkerson in
in 1956. It is commonly known as Ford-Fulkerson algorithm. The algorithm is as follows:

Algorithm: FORD-FULKERSON ALGORITHM

Input: digraph G = (V ,E), capacities u : E → Z+, s, t ,∈ V
Output: maximal s-t-flow f

1 set f (e) = 0 for all e ∈ E
2 while there exists f -augmenting path in Gf do
3 choose f -augmenting path P
4 set f (P) = mina∈E(P) uf (a)
5 augment f along P by f (P)
6 update Gf

7 return f

s

v1

v2

v3

t

0; 2

0; 5

0; 3 0; 4

0; 1

0; 4 0; 3

0; 2

3; 5

0; 3 0; 4

0; 1

0; 4 3; 3

2; 2

3; 5

0; 3 2; 4

0; 1

0; 4 3; 3

2; 2

4; 5

0; 3 2; 4

1; 1

1; 4 3; 3

s

v1

v2

v3

t

2

5

3 4

1

4 3

2

2

3 4

1

4

3 3

2

3 2

1

4

3 3

2 2

1

3 2

4

4 3

2 2

1

1

f (P) = 3

f (P) = 2

f (P) = 1

Analysing the previous algorithms allow us to infer a few details. Lines 1, 4, 5 and 6 can be calculated in
linear time in terms the number of edges m in a graph. An efficient algorithm to apply in Line 3 is actually
DFS (Depth-First Search) which is also linear in the number of edges m. The WHILE loop requires up to
n ·U, where n is the number of nodes and U is maxe∈Eu(e). The entire algorithm has a runtime proportional
to O(n ·m · U) (polynomial).

CHAPTER 3. FINDING MAXIMAL FLOWS 9

LECTURE NOTES - WEEK III
Flows

Remark: flow f is integer.

An improved version of this algorithm allows for real values in the capacities. In this case, for non-integer
capacities, f can be arbitrarily small when P is not chosen carefully , resulting in a runtime O(n ·m2).

The resulting algorithm represent such adaption:

Algorithm: EDMONDS-KARP ALGORITHM

Input: digraph G = (V ,E), capacities u : E → R+, s, t ,∈ V
Output: maximal s-t-flow f

1 set f (e) = 0 for all e ∈ E
2 while there exists f -augmenting path in Gf do
3 choose f -augmenting path P with minimal number of edges
4 set f (P) = mina∈E(P) uf (a)
5 augment f along P by f (P)
6 update Gf

7 return f

Last but not least, there is also linear programming formulation for this problem. See full model below:

max
∑

e∈δ+(s)

fe (3.1a)

s.t.
∑

e∈δ−(v)

fe −
∑

e∈δ+(v)

fe = 0 v ∈ V \ {s, t} (3.1b)

fe ≤ u(e) e ∈ E (3.1c)

fe ≥ 0 e ∈ E (3.1d)

The flow conservation flow conversation constraints (3.1b) are part of many LPs and IPs, e.g. for shortest
path. The coefficient matrix of flow conversation constraints is node-arc-incidence matrix and it is totally
unimodular, i.e., all extreme points are integer.

CHAPTER 3. FINDING MAXIMAL FLOWS 10

	Flows and Cuts
	Week duality

	Maximum Flows and Minimal Cuts
	Idea for finding maximal flows

	Finding Maximal Flows

