

Lecture Notes - Week III

Flows

Fernando Dias, Philine Schiewe and Piyalee Pattanaik

CHAPTER **1** Flows and Cuts

In graph theory, flow network is a directed graph G = (V, E) where each edge has a capacity $u: E \to \mathbb{R}_+$ and each edge receives a flow $f: E \to \mathbb{R}_+$, where the amount of flow allowed in each edge cannot surpass its capacity ($f(e) \le u(e)$, $e \in E$). Hence, the *excess* of a flow f at $v \in V$:

$$\mathsf{ex}_f(v) := \sum_{oldsymbol{e} \in \delta^-(v)} f(oldsymbol{e}) - \sum_{oldsymbol{e} \in \delta^+(v)} f(oldsymbol{e})$$

 $\delta^{-}(v) = \{ e \in E : e = (u, v) \}$ incoming edges

 $\delta^+(v) = \{ e \in E : e = (v, u) \}$ outgoing edges

The flow in this type of graph also have the satisfy **flow conservation** which state that:

Definition 1 The total net flow entering a node v is zero for **all nodes** in the network except the source s and sink t.

This can be also expressed based on the vale of flow through through a node. If *f* satisfies *flow conversation rule* at *v*, then $ex_f(v) = 0$. When **all nodes** satisfy flow conservation $ex_f(v) = 0$ for all $v \in V$, we express such behaviour as *circulation*. Finally, in a path between the source *s* and the sink *t*, the *s*-*t*-*flow*: $ex_f(s) \le 0$, $ex_f(v) = 0$ for all $v \in V \setminus \{s, t\}$, in which the *value of s*-*t*-*flow* can be calculated as $value(f) = -ex_f(s) = ex_f(t)$.

A cut in graph theory corresponds to a partition of the nodes in a graph splitting them into disjoint subsets. For example, see Figure 1.1.

Figure 1.1: Example of a cut in a graph

A specific type of cut is a *s*-*t*-cut $\delta^+(S)$ where $S \subseteq V$ and $s \in S$, $t \notin S$. Therefore:

 $\delta^+(S) = \{ e = (u, v) \in E \colon u \in S, v \in V \setminus S \}$

 $u(\delta^+(S)) = \sum_{e\in \delta^+(S)} u(e)$

The capacity of such cut can be expressed as:

1.1 WEEK DUALITY

Using the definitions of flows and cuts, we can establish the following conclusion:

Lemma 1 For any $S \subseteq V$ with $s \in S$, $t \notin S$ and any s-t-flow f:

- 1. value(f) = $\sum_{e \in \delta^+(S)} f(e) \sum_{e \in \delta^-(S)} f(e)$
- 2. value(f) $\leq u(\delta^+(S))$

Proof 1 From the flow conservation for $v \in S \setminus \{s\}$:

$$value(f) = -ex_f(s)$$
$$= \sum_{e \in \delta^+(s)} f(e) - \sum_{e \in \delta^-(s)} f(e)$$
$$= \sum_{v \in S} \left(\sum_{e \in \delta^+(v)} f(e) - \sum_{e \in \delta^-(v)} f(e) \right)$$
$$= \sum_{e \in \delta^+(S)} f(e) - \sum_{e \in \delta^-(S)} f(e)$$

This can also expressed as:

$$0 \leq f(e) \leq u(e)$$

CHAPTER 2

Maximum Flows and Minimal Cuts

Once again, the task of find which flow and which cuts a graph can accept is **not challenging**. However, whenever **optimal values** (either minimal or maximal) are required, the configuration of such problems becomes challenging.

First, we state both problems:

Problem 1 Maximum Flow Problem (MaxFlow) Given a flow network represent as a digraph G = (v, E) with capacities u and unique source and unique sink s and t respectively, such that s, $t \in V$. The goal is to find an s-t-flow of **maximum** value.

Problem 2 Minimum Cut Problem (MinCut) Given a flow network represent as a digraph G = (v, E) with capacities u and unique source and unique sink s and t respectively, such that $s, t \in V$. The goal is to find an s-t-cut of **minimum capacity**.

Although those two problems might seem **unrelated** or even **contradictory**, they can be directly connected via the following lemmas:

Lemma 2 Let G = (V, E) be a digraph with capacities u and $s, t \in V$. Then

 $\max\{\operatorname{value}(f): f \ s\text{-}t\text{-}\operatorname{flow}\} \le \min\{u(\delta^+(S)): \delta^+(S) \ s\text{-}t\text{-}\operatorname{cut}\}.$

Lemma 3 Let G = (V, E) be a digraph with capacities u and $s, t \in V$. Let f be an s-t-flow and $\delta^+(S)$ be an s-t-cut. If

value(
$$f$$
) = $u(\delta^+(S))$

then f is a maximal flow and $\delta^+(S)$ is a minimal cut.

Hence, a single algorithm is enough to solve **both** problems. **Remark:** in combinatorics, many problems can be expressed as another. This is a key point for future lectures.

2.1 IDEA FOR FINDING MAXIMAL FLOWS

If there exists non-saturated *s*-*t*-path (f(e) < u(e) for all edges), then the flow *f* can be increased along this path. This means that if the path is not satured, more flow can be put into that path.

However, non-existence of such a path does not guarantee optimality.

In this context, we introduced another concept: **residual graphs**. Considering that G = (V, E) is a digraph with capacities u, f be an *s*-*t*-flow, a residual graph is the graph $G_f = (V, E_f)$ with $E_f = E_+ \cup E_-$ and capacity u_f :

- forward edges $+e \in E_+$: for $e = (u, v) \in E$ with f(e) < u(r), add +e = (u, v) with residual capacity $u_f(+e) = u(e) - f(e)$
- backward edges $-e \in E_-$: for $e = (u, v) \in E$ with f(e) > 0, add -e = (v, u) with residual capacity $u_f(-e) = f(e)$

Remark: G_f can have parallel edges even if G is simple.

In addition, we can also define *f*-augmenting paths:

Definition 2 An s-t-path P in G_f is called augmenting path. The value:

$$\blacksquare_f(P) = \min_{a \in E(P)} u_f(a)$$

is called residual capacity of *P*. **Remark:** $\blacksquare_f(P) > 0$ as $u_f(a) > 0$ for all $a \in E_f$.

With this definition in mind, the following theorem is established.

Theorem 1 An *s*-*t*-flow is optimal if and only if there exists no *f*-augmenting path.

Proof idea:

 \Rightarrow *P f*-augmenting path. Construct *s*-*t*-flow

$$\bar{f}(e) = \begin{cases} f(e) + \blacksquare_f(P) & \text{if } + e \in E(P) \\ f(e) - \blacksquare_f(P) & \text{if } - e \in E(P) \\ f(e) & \text{otherwise} \end{cases}$$

with higher value.

Proof idea:

 \leftarrow There exists no *f*-augmenting path. Consider *s*-*t*-cut $\delta^+(S)$ defined by connected component *S* of *s* in *G*_{*f*}. Show that

$$value(f) = u(\delta^+(S)).$$

With this previous theorem in mind, we can conclude that:

Theorem 2 (Ford and Fulkerson, 1956; Dantzig and Fulkerson, 1956)

In a digraph G with capacities u, the maximum value of an s-t-flow equals the minimum capacity of an s-t-cut.

CHAPTER **3** Finding Maximal Flows

The most common algorithm for maximum flow was first published by L. R. Ford Jr. and D. R. Fulkerson in in 1956. It is commonly known as **Ford-Fulkerson algorithm**. The algorithm is as follows:

Algorithm: FORD-FULKERSON ALGORITHM

Input: digraph G = (V, E), capacities $u \colon E \to \mathbb{Z}_+$, $s, t \in V$

Output: maximal *s*-*t*-flow *f*

1 set f(e) = 0 for all $e \in E$

- **2** while there exists f-augmenting path in G_f do
- 3 choose *f*-augmenting path *P*
- 4 set $\blacksquare_f(P) = \min_{a \in E(P)} u_f(a)$
- s augment f along P by $\blacksquare_f(P)$
- 6 update G_f
- 7 return f

Analysing the previous algorithms allow us to infer a few details. Lines 1, 4, 5 and 6 can be calculated in **linear time** in terms the number of edges *m* in a graph. An efficient algorithm to apply in Line 3 is actually **DFS** (Depth-First Search) which is also **linear** in the number of edges *m*. The *WHILE* loop requires up to $n \cdot U$, where *n* is the number of nodes and *U* is $max_{e \in E}u(e)$. The entire algorithm has a runtime proportional to $O(n \cdot m \cdot U)$ (**polynomial**).

Remark: flow *f* is integer.

An improved version of this algorithm allows for **real values in the capacities**. In this case, for non-integer capacities, \blacksquare_f can be arbitrarily small when *P* is not chosen carefully, resulting in a runtime $O(n \cdot m^2)$.

The resulting algorithm represent such adaption:

 Algorithm: EDMONDS-KARP ALGORITHM

 Input: digraph G = (V, E), capacities $u: E \to \mathbb{R}_+$, $s, t, \in V$

 Output: maximal s-t-flow f

 1 set f(e) = 0 for all $e \in E$

 2 while there exists f-augmenting path in G_f do

 3
 choose f-augmenting path P with minimal number of edges

 4
 set $\blacksquare_f(P) = \min_{a \in E(P)} u_f(a)$

 5
 augment f along P by $\blacksquare_f(P)$

 6
 update G_f

 7
 return f

Last but not least, there is also linear programming formulation for this problem. See full model below:

max

$$\sum_{e \in \delta^+(s)} f_e \tag{3.1a}$$

s.t.

$e \in 0^+(S)$		
$\sum f_{e} - \sum f_{e} = 0$	$m{v}\inm{V}\setminus\{m{s},t\}$	(3.1b)
$e{\in}\delta^-(u)$ $e{\in}\delta^+(u)$		

$f_{m{e}} \leq u(m{e})$	$oldsymbol{e}\in oldsymbol{E}$	(3.1c)
$f_e \geq 0$	<i>e</i> ∈ <i>E</i>	(3.1d)

The flow conservation flow conversation constraints (3.1b) are part of many LPs and IPs, e.g. for **shortest path**. The coefficient matrix of flow conversation constraints is **node-arc-incidence matrix** and it is **totally unimodular**, i.e., all extreme points are integer.