
Lecture III - Flows

1 Department of Mathematics and Systems Analysis,
Systems Analysis Laboratory, Aalto University, Finland

January 22, 2024

Combinatorial
Optimization

Previously on..

Previously on..

– Combinatorial Optimization 2/20

Combinatorial
Optimization

Previously on..

• Shortest Path: Dijkstra;

• Minimum Spanning Tree: Prim and
Kruskal

– Combinatorial Optimization 3/20

Combinatorial
Optimization

Flow

• G = (V ,E) digraph with capacities u : E → R+

• flow f : E → R+ with f(e) ≤ u(e), e ∈ E

• excess of a flow f at v ∈ V :

exf (v) :=
∑

e∈δ−(v)

f(e)−
∑

e∈δ+(v)

f(e)

δ−(v) = {e ∈ E : e = (u, v)} incoming edges
δ+(v) = {e ∈ E : e = (v,u)} outgoing edges

• f satisfies flow conversation rule at v if exf (v) = 0

• circulation: exf (v) = 0 for all v ∈ V

• s-t-flow: exf (s) ≤ 0, exf (v) = 0 for all v ∈ V \ {s, t}
• value of s-t-flow: value(f) = −exf (s) = exf (t)

s

v1

v2

v3

t

2

5

3 4

1

4 3

2; 2

3; 5

1; 3 1; 4

1; 1

0; 4 3; 3

value(f) = 5

– Combinatorial Optimization 4/20

Combinatorial
Optimization

Cut

• G = (V ,E) digraph with capacities
u : E → R+

• s-t-cut δ+(S): for S ⊆ V with s ∈ S, t /∈ S

δ+(S) = {e = (u, v) ∈ E : u ∈ S, v ∈ V \ S}

• capacity of an s-t-cut:

u(δ+(S)) =
∑

e∈δ+(S)

u(e)

s

v1

v2

v3

t

2

5

3 4

1

4 3

capacity u(δ+({s, v2, v3})) = 6

– Combinatorial Optimization 5/20

Combinatorial
Optimization

Weak duality

Lemma
For any S ⊆ V with s ∈ S, t /∈ S and any
s-t-flow f :

1 value(f) =∑
e∈δ+(S) f(e)−

∑
e∈δ−(S) f(e)

2 value(f) ≤ u(δ+(S))

Proof.

1 flow conservation for v ∈ S \ {s}:

value(f) = −exf (s)

=
∑

e∈δ+(s)

f(e)−
∑

e∈δ−(s)

f(e)

=
∑
v∈S

(∑
e∈δ+(v)

f(e)−
∑

e∈δ−(v)

f(e)
)

=
∑

e∈δ+(S)

f(e)−
∑

e∈δ−(S)

f(e)

2 use 0 ≤ f(e) ≤ u(e)

– Combinatorial Optimization 6/20

Combinatorial
Optimization

Maximum Flow Problem (MaxFlow)

Instance: digraph G = (v,E), capacities u, s, t ∈ V
Task: Find an s-t-flow of maximum value.

Minimum Cut Problem (MinCut)

Instance: digraph G = (v,E), capacities u, s, t ∈ V
Task: Find an s-t-cut of minimum capacity.

– Combinatorial Optimization 7/20

Combinatorial
Optimization

Relationship between MaxFlow and MinCut

Lemma
Let G = (V ,E) be a digraph with capacities u and s, t ∈ V . Then

max{value(f) : f s-t-flow} ≤ min{u(δ+(S)) : δ+(S) s-t-cut}.

Lemma
Let G = (V ,E) be a digraph with capacities u and s, t ∈ V . Let f be an s-t-flow
and δ+(S) be an s-t-cut. If

value(f) = u(δ+(S))

then f is a maximal flow and δ+(S) is a minimal cut.

– Combinatorial Optimization 8/20

Combinatorial
Optimization

Idea for finding maximal flows

• If there exists non-saturated s-t-path
(f(e) < u(e) for all edges), then the flow f
can be increased along this path.

N Non-existence of such a path does not
guarantee optimality.

s

v1

v2

v3

t

1; 2

3; 5

0; 3 1; 4

0; 1

0; 4 3; 3

2; 2

3; 5

1; 3 1; 4

1; 1

0; 4 3; 3

2; 2

4; 5

0; 3 2; 4

1; 1

1; 4 3; 3

value(f) = 4 value(f) = 5
value(f) = 6

u(δ+({s, v2, v3})) = 6

– Combinatorial Optimization 9/20

Combinatorial
Optimization

Residual Graph

• G = (V ,E) a digraph with capacities u, f
be an s-t-flow

• residual graph Gf = (V ,Ef) with
Ef = E+ ∪ E− and capacity uf :

• forward edges +e ∈ E+: for e = (u, v) ∈ E
with f(e) < u(r) add +e = (u, v) with
residual capacity uf (+e) = u(e)− f(e)

• backward edges −e ∈ E−: for
e = (u, v) ∈ E with f(e) > 0 add
−e = (v,u) with residual capacity
uf (−e) = f(e)

N Gf can have parallel edges even if G is
simple

s

v1

v2

v3

t

2; 2

3; 5

1; 3 1; 4

1; 1

0; 4 3; 3

s

v1

v2

v3

t

2

2 4

3
2 1

1

33

1

– Combinatorial Optimization 10/20

Combinatorial
Optimization

f -augmenting paths

Definition
• An s-t-path P in Gf is called augmenting
path.

• The value

∆f (P) = min
a∈E(P)

uf (a)

is called residual capacity of P .

N ∆f (P) > 0 as uf (a) > 0 for all a ∈ Ef

s

v1

v2

v3

t

2

2 4

3
2 1

1

33

1

∆f (P) = 1

– Combinatorial Optimization 11/20

Combinatorial
Optimization

Augmenting path theorem

Theorem
An s-t-flow is optimal if and only if there exists no f -augmenting path.

Proof idea

⇒ P f -augmenting path. Construct s-t-flow

f̄(e) =


f(e) + ∆f (P) if + e ∈ E(P)

f(e)−∆f (P) if − e ∈ E(P)

f(e) otherwise

with higher value.

Proof idea

⇐ There exists no f -augmenting path. Consider s-t-cut δ+(S) defined by
connected component S of s in Gf . Show that

value(f) = u(δ+(S)).
– Combinatorial Optimization 12/20

Combinatorial
Optimization

Augmenting path theorem

s

v1

v2

v3

t

3

1 3

2
2 2

1

34
1

s

v1

v2

v3

t

2; 2

4; 5

0; 3 2; 4

1; 1

1; 4 3; 3

– Combinatorial Optimization 13/20

Combinatorial
Optimization

MaxFlow-MinCut theorem

Theorem (Ford and Fulkerson, 1956; Dantzig and Fulkerson, 1956)

In a digraph G with capacities u, the maximum value of an s-t-flow equals the
minimum capacity of an s-t-cut.

– Combinatorial Optimization 14/20

Combinatorial
Optimization

Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

Input: digraph G = (V ,E), capacities u : E → Z+, s, t,∈ V
Output: maximal s-t-flow f

1 set f(e) = 0 for all e ∈ E
2 while there exists f -augmenting path in Gf do
3 choose f -augmenting path P
4 set ∆f (P) = mina∈E(P) uf (a)

5 augment f along P by ∆f (P)
6 update Gf

7 return f

– Combinatorial Optimization 15/20

Combinatorial
Optimization

Ford-Fulkerson Algorithm

s

v1

v2

v3

t

0; 2

0; 5

0; 3 0; 4

0; 1

0; 4 0; 3

0; 2

3; 5

0; 3 0; 4

0; 1

0; 4 3; 3

2; 2

3; 5

0; 3 2; 4

0; 1

0; 4 3; 3

2; 2

4; 5

0; 3 2; 4

1; 1

1; 4 3; 3

s

v1

v2

v3

t

2

5

3 4

1

4 3

2

2

3 4

1

4
3 3

2

3 2

1

4
3 3

2 2

1

3 2

4
4 3

2 2

1

1

∆f (P) = 3
∆f (P) = 2
∆f (P) = 1

– Combinatorial Optimization 16/20

Combinatorial
Optimization

Ford-Fulkerson Algorithm – Analysis

Algorithm: Ford-Fulkerson Algo-
rithm
Input: digraph G = (V ,E), capacities

u : E → Z+, s, t,∈ V
Output: maximal s-t-flow f

1 set f(e) = 0 for all e ∈ E
2 while there exists f -augmenting path in

Gf do
3 choose f -augmenting path P
4 set ∆f (P) = mina∈E(P) uf (a)

5 augment f along P by ∆f (P)
6 update Gf

7 return f

• set U = maxe∈E u(e)

• line 1, 5, 6: O(m)

• line 3: DFS O(m)

• line 4: O(m),
∆f (P) ∈ Z+

• iterations while loop in
line 2: O(n · U)
(value(f) ≤ n · U)

⇒ O(n ·m · U)

N flow f is integer

– Combinatorial Optimization 17/20

Combinatorial
Optimization

Edmonds-Karp Algorithm

Algorithm: Edmonds-Karp Algo-
rithm
Input: digraph G = (V ,E), capacities

u : E → R+, s, t,∈ V
Output: maximal s-t-flow f

1 set f(e) = 0 for all e ∈ E
2 while there exists f -augmenting path in

Gf do
3 choose f -augmenting path P with

minimal number of edges
4 set ∆f (P) = mina∈E(P) uf (a)

5 augment f along P by ∆f (P)
6 update Gf

7 return f

• for non-integer
capacities, ∆f can be
arbitrarily small when P
is not chosen carefully

• total runtime O(n ·m2)

– Combinatorial Optimization 18/20

Combinatorial
Optimization

Linear programming formulation

max
∑

e∈δ+(s)

fe

s.t.
∑

e∈δ−(v)

fe −
∑

e∈δ+(v)

fe = 0 v ∈ V \ {s, t}

fe ≤ u(e) e ∈ E

fe ≥ 0 e ∈ E

• flow conversation constraints are
part of many LPs and IPs, e.g. for
TSP

• coefficient matrix of flow
conversation constraints is
node-arc-incidence matrix

• coefficient matrix is totally
unimodular, i.e., all extreme points
are integer

⇒ you can find integer solutions by
linear programming

– Combinatorial Optimization 19/20

Combinatorial
Optimization

– Combinatorial Optimization 20/20

	Previously on..
	Flows and Cuts
	Maximum Flows and Minimal Cuts
	Finding Maximal Flows

