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• Shortest Path: Dijkstra;

• Minimum Spanning Tree: Prim and
Kruskal
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Flow

• G = (V ,E) digraph with capacities u : E → R+

• flow f : E → R+ with f(e) ≤ u(e), e ∈ E

• excess of a flow f at v ∈ V :

exf (v) :=
∑

e∈δ−(v)

f(e)−
∑

e∈δ+(v)

f(e)

δ−(v) = {e ∈ E : e = (u, v)} incoming edges
δ+(v) = {e ∈ E : e = (v,u)} outgoing edges

• f satisfies flow conversation rule at v if exf (v) = 0

• circulation: exf (v) = 0 for all v ∈ V

• s-t-flow: exf (s) ≤ 0, exf (v) = 0 for all v ∈ V \ {s, t}
• value of s-t-flow: value(f) = −exf (s) = exf (t)
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Cut

• G = (V ,E) digraph with capacities
u : E → R+

• s-t-cut δ+(S): for S ⊆ V with s ∈ S, t /∈ S

δ+(S) = {e = (u, v) ∈ E : u ∈ S, v ∈ V \ S}

• capacity of an s-t-cut:

u(δ+(S)) =
∑

e∈δ+(S)

u(e)
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Weak duality

Lemma
For any S ⊆ V with s ∈ S, t /∈ S and any
s-t-flow f :

1 value(f) =∑
e∈δ+(S) f(e)−

∑
e∈δ−(S) f(e)

2 value(f) ≤ u(δ+(S))

Proof.

1 flow conservation for v ∈ S \ {s}:

value(f) = −exf (s)

=
∑

e∈δ+(s)

f(e)−
∑

e∈δ−(s)

f(e)

=
∑
v∈S

( ∑
e∈δ+(v)

f(e)−
∑

e∈δ−(v)

f(e)
)

=
∑

e∈δ+(S)

f(e)−
∑

e∈δ−(S)

f(e)

2 use 0 ≤ f(e) ≤ u(e)
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Maximum Flow Problem (MaxFlow)

Instance: digraph G = (v,E), capacities u, s, t ∈ V
Task: Find an s-t-flow of maximum value.

Minimum Cut Problem (MinCut)

Instance: digraph G = (v,E), capacities u, s, t ∈ V
Task: Find an s-t-cut of minimum capacity.
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Relationship between MaxFlow and MinCut

Lemma
Let G = (V ,E) be a digraph with capacities u and s, t ∈ V . Then

max{value(f) : f s-t-flow} ≤ min{u(δ+(S)) : δ+(S) s-t-cut}.

Lemma
Let G = (V ,E) be a digraph with capacities u and s, t ∈ V . Let f be an s-t-flow
and δ+(S) be an s-t-cut. If

value(f) = u(δ+(S))

then f is a maximal flow and δ+(S) is a minimal cut.
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Idea for finding maximal flows

• If there exists non-saturated s-t-path
(f(e) < u(e) for all edges), then the flow f
can be increased along this path.

N Non-existence of such a path does not
guarantee optimality.
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Residual Graph

• G = (V ,E) a digraph with capacities u, f
be an s-t-flow

• residual graph Gf = (V ,Ef ) with
Ef = E+ ∪ E− and capacity uf :

• forward edges +e ∈ E+: for e = (u, v) ∈ E
with f(e) < u(r) add +e = (u, v) with
residual capacity uf (+e) = u(e)− f(e)

• backward edges −e ∈ E−: for
e = (u, v) ∈ E with f(e) > 0 add
−e = (v,u) with residual capacity
uf (−e) = f(e)

N Gf can have parallel edges even if G is
simple
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f -augmenting paths

Definition
• An s-t-path P in Gf is called augmenting
path.

• The value

∆f (P ) = min
a∈E(P )

uf (a)

is called residual capacity of P .

N ∆f (P ) > 0 as uf (a) > 0 for all a ∈ Ef
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Augmenting path theorem

Theorem
An s-t-flow is optimal if and only if there exists no f -augmenting path.

Proof idea

⇒ P f -augmenting path. Construct s-t-flow

f̄(e) =


f(e) + ∆f (P ) if + e ∈ E(P )

f(e)−∆f (P ) if − e ∈ E(P )

f(e) otherwise

with higher value.

Proof idea

⇐ There exists no f -augmenting path. Consider s-t-cut δ+(S) defined by
connected component S of s in Gf . Show that

value(f) = u(δ+(S)).
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Augmenting path theorem
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MaxFlow-MinCut theorem

Theorem (Ford and Fulkerson, 1956; Dantzig and Fulkerson, 1956)

In a digraph G with capacities u, the maximum value of an s-t-flow equals the
minimum capacity of an s-t-cut.
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Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

Input: digraph G = (V ,E), capacities u : E → Z+, s, t,∈ V
Output: maximal s-t-flow f

1 set f(e) = 0 for all e ∈ E
2 while there exists f -augmenting path in Gf do
3 choose f -augmenting path P
4 set ∆f (P ) = mina∈E(P ) uf (a)

5 augment f along P by ∆f (P )
6 update Gf

7 return f
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm – Analysis

Algorithm: Ford-Fulkerson Algo-
rithm
Input: digraph G = (V ,E), capacities

u : E → Z+, s, t,∈ V
Output: maximal s-t-flow f

1 set f(e) = 0 for all e ∈ E
2 while there exists f -augmenting path in

Gf do
3 choose f -augmenting path P
4 set ∆f (P ) = mina∈E(P ) uf (a)

5 augment f along P by ∆f (P )
6 update Gf

7 return f

• set U = maxe∈E u(e)

• line 1, 5, 6: O(m)

• line 3: DFS O(m)

• line 4: O(m),
∆f (P ) ∈ Z+

• iterations while loop in
line 2: O(n · U)
(value(f) ≤ n · U)

⇒ O(n ·m · U)

N flow f is integer
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Edmonds-Karp Algorithm

Algorithm: Edmonds-Karp Algo-
rithm
Input: digraph G = (V ,E), capacities

u : E → R+, s, t,∈ V
Output: maximal s-t-flow f

1 set f(e) = 0 for all e ∈ E
2 while there exists f -augmenting path in

Gf do
3 choose f -augmenting path P with

minimal number of edges
4 set ∆f (P ) = mina∈E(P ) uf (a)

5 augment f along P by ∆f (P )
6 update Gf

7 return f

• for non-integer
capacities, ∆f can be
arbitrarily small when P
is not chosen carefully

• total runtime O(n ·m2)
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Linear programming formulation

max
∑

e∈δ+(s)

fe

s.t.
∑

e∈δ−(v)

fe −
∑

e∈δ+(v)

fe = 0 v ∈ V \ {s, t}

fe ≤ u(e) e ∈ E

fe ≥ 0 e ∈ E

• flow conversation constraints are
part of many LPs and IPs, e.g. for
TSP

• coefficient matrix of flow
conversation constraints is
node-arc-incidence matrix

• coefficient matrix is totally
unimodular, i.e., all extreme points
are integer

⇒ you can find integer solutions by
linear programming

– Combinatorial Optimization 19/20



Combinatorial
Optimization

– Combinatorial Optimization 20/20


	Previously on..
	Flows and Cuts
	Maximum Flows and Minimal Cuts
	Finding Maximal Flows

