Lecture III - Flows

¹ Department of Mathematics and Systems Analysis, Systems Analysis Laboratory, Aalto University, Finland

January 22, 2024

Aalto University

Aalto University

Combinatorial Optimization

Previously on

Previously on..

Aalto University

Combinatorial Optimization

Previously on

- Shortest Path: Dijkstra;
- Minimum Spanning Tree: Prim and Kruskal

PREVIOUSLY ON

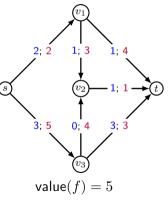
Flow

- G = (V, E) digraph with capacities $u \colon E \to \mathbb{R}_+$
- flow $f: E \to \mathbb{R}_+$ with $f(e) \le u(e)$, $e \in E$
- excess of a flow f at $v \in V$:

$$\mathsf{ex}_f(v) := \sum_{e \in \delta^-(v)} f(e) - \sum_{e \in \delta^+(v)} f(e)$$

$$\begin{split} \delta^-(v) &= \{e \in E \colon e = (u,v)\} \text{ incoming edges} \\ \delta^+(v) &= \{e \in E \colon e = (v,u)\} \text{ outgoing edges} \end{split}$$

- f satisfies flow conversation rule at v if $ex_f(v) = 0$
- circulation: $ex_f(v) = 0$ for all $v \in V$
- s-t-flow: $ex_f(s) \le 0$, $ex_f(v) = 0$ for all $v \in V \setminus \{s, t\}$
- value of s-t-flow: $value(f) = -ex_f(s) = ex_f(t)$



Cut

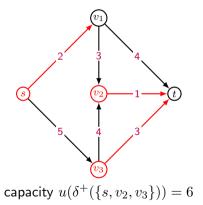
Combinatorial Optimization

- G = (V, E) digraph with *capacities* $u: E \to \mathbb{R}_+$
- s-t-cut $\delta^+(S)$: for $S \subseteq V$ with $s \in S, t \notin S$

$$\delta^+(S) = \{ e = (u, v) \in E \colon u \in S, v \in V \setminus S \}$$

• capacity of an *s*-*t*-cut:

$$u(\delta^+(S)) = \sum_{e \in \delta^+(S)} u(e)$$



Weak duality

Combinatorial Optimization

Lemma

- For any $S \subseteq V$ with $s \in S, t \notin S$ and any *s*-t-flow *f*:
 - 1 value $(f) = \sum_{e \in \delta^+(S)} f(e) \sum_{e \in \delta^-(S)} f(e)$
 - $2 \ \mathsf{value}(f) \leq u(\delta^+(S))$

$$ue(f) = -ex_f(s)$$

= $\sum_{e \in \delta^+(s)} f(e) - \sum_{e \in \delta^-(s)} f(e)$
= $\sum_{v \in S} \left(\sum_{e \in \delta^+(v)} f(e) - \sum_{e \in \delta^-(v)} f(e)\right)$
= $\sum_{e \in \delta^+(S)} f(e) - \sum_{e \in \delta^-(S)} f(e)$

1 flow conservation for $v \in S \setminus \{s\}$:

2 use $0 \le f(e) \le u(e)$

Proof.

val

Maximum Flow Problem (MaxFlow) Instance: digraph G = (v, E), capacities $u, s, t \in V$ Task: Find an *s*-*t*-flow of maximum value.

Minimum Cut Problem (MinCut) Instance: digraph G = (v, E), capacities $u, s, t \in V$ Task: Find an *s*-*t*-cut of minimum capacity.

Relationship between MaxFlow and MinCut

Lemma

Let G = (V, E) be a digraph with capacities u and $s, t \in V$. Then

 $\max\{\mathsf{value}(f): f \text{ } s\text{-}t\text{-}\mathsf{flow}\} \le \min\{u(\delta^+(S)): \delta^+(S) \text{ } s\text{-}t\text{-}\mathsf{cut}\}.$

Lemma

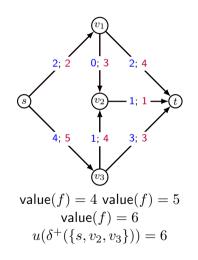
Let G = (V, E) be a digraph with capacities u and $s, t \in V$. Let f be an s-t-flow and $\delta^+(S)$ be an s-t-cut. If

$$\mathsf{value}(f) = u(\delta^+(S))$$

then f is a maximal flow and $\delta^+(S)$ is a minimal cut.

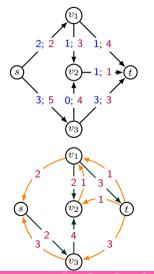
Idea for finding maximal flows

- If there exists non-saturated s-t-path (f(e) < u(e) for all edges), then the flow f can be increased along this path.
- Non-existence of such a path does not guarantee optimality.



Residual Graph

- G = (V, E) a digraph with capacities u, f be an s-t-flow
- residual graph $G_f = (V, E_f)$ with $E_f = E_+ \cup E_-$ and capacity u_f :
 - forward edges $+e \in E_+$: for $e = (u, v) \in E$ with f(e) < u(r) add +e = (u, v) with residual capacity $u_f(+e) = u(e) - f(e)$
 - backward edges $-e \in E_-$: for $e = (u, v) \in E$ with f(e) > 0 add -e = (v, u) with residual capacity $u_f(-e) = f(e)$
- \mathcal{C}_{f} can have parallel edges even if G is simple



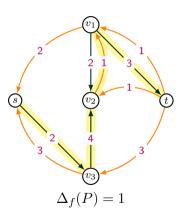
f-augmenting paths

Definition

- An *s*-*t*-path *P* in *G_f* is called *augmenting path*.
- The value

 $\Delta_f(P) = \min_{a \in E(P)} u_f(a)$

is called *residual capacity* of P. $\mathfrak{P} \Delta_f(P) > 0$ as $u_f(a) > 0$ for all $a \in E_f$



Augmenting path theorem

Theorem

An *s*-*t*-flow is optimal if and only if there exists no *f*-augmenting path. **Proof idea**

 \Rightarrow *P f*-augmenting path. Construct *s*-*t*-flow

$$\bar{f}(e) = \begin{cases} f(e) + \Delta_f(P) & \text{if } + e \in E(P) \\ f(e) - \Delta_f(P) & \text{if } - e \in E(P) \\ f(e) & \text{otherwise} \end{cases}$$

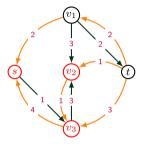
with higher value.

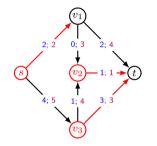
Proof idea

 $\Leftarrow \text{ There exists no } f\text{-augmenting path. Consider } s\text{-}t\text{-cut } \delta^+(S) \text{ defined by connected component } S \text{ of } s \text{ in } G_f. \text{ Show that }$

$$\mathsf{value}(f) = u(\delta^+(S)).$$

Augmenting path theorem





Theorem (Ford and Fulkerson, 1956; Dantzig and Fulkerson, 1956) In a digraph G with capacities u, the maximum value of an s-t-flow equals the minimum capacity of an s-t-cut.

Algorithm: FORD-FULKERSON ALGORITHM

Input: digraph G=(V,E), capacities $u\colon E\to \mathbb{Z}_+,\ s,t,\in V$

Output: maximal s-t-flow f

$$f(e)=0$$
 for all $e\in E$

2 while there exists f-augmenting path in G_f do

3 choose f-augmenting path P

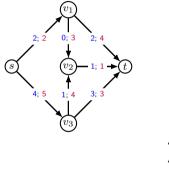
4 set
$$\Delta_f(P) = \min_{a \in E(P)} u_f(a)$$

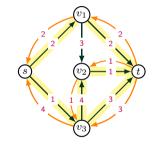
```
5 augment f along P by \Delta_f(P)
```

6 update
$$G_f$$

7 return f

Ford-Fulkerson Algorithm





$$\Delta_f(P) = 3$$

$$\Delta_f(P) = 2$$

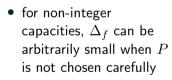
$$\Delta_f(P) = 1$$

Algorithm: FORD-FULKERSON ALGO-RITHM **Input:** digraph G = (V, E), capacities $u: E \to \mathbb{Z}_+, s, t \in V$ **Output:** maximal *s*-*t*-flow *f* 1 set f(e) = 0 for all $e \in E$ 2 while there exists *f*-augmenting path in G_f do choose f-augmenting path P3 set $\Delta_f(P) = \min_{a \in E(P)} u_f(a)$ 4 augment f along P by $\Delta_f(P)$ 5 update G_f 6 7 return f

- set $U = \max_{e \in E} u(e)$
- line 1, 5, 6: O(m)
- line 3: DFS O(m)
- line 4: O(m), $\Delta_f(P) \in \mathbb{Z}_+$
- iterations while loop in line 2: $O(n \cdot U)$ (value $(f) \leq n \cdot U$)
- $\Rightarrow O(n \cdot m \cdot U)$
- ${\ensuremath{\mathfrak{V}}}$ flow f is integer

Edmonds-Karp Algorithm

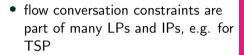
Edmonds-Karp Algorithm: ALGO-RITHM **Input:** digraph G = (V, E), capacities $u: E \to \mathbb{R}_+, s, t \in V$ **Output:** maximal *s*-*t*-flow *f* 1 set f(e) = 0 for all $e \in E$ 2 while there exists *f*-augmenting path in G_f do choose f-augmenting path P with 3 minimal number of edges set $\Delta_f(P) = \min_{a \in E(P)} u_f(a)$ 4 augment f along P by $\Delta_f(P)$ 5 update G_f 6 7 return f



• total runtime $O(n \cdot m^2)$

Linear programming formulation

$$\begin{array}{ll} \max & \sum_{e \in \delta^{-}(v)} f_e \\ \text{s.t.} & \sum_{e \in \delta^{-}(v)} f_e - \sum_{e \in \delta^{+}(v)} f_e = 0 & v \in V \setminus \{s, t\} \\ & f_e \leq u(e) \quad e \in E \\ & f_e \geq 0 & e \in E \end{array}$$



- coefficient matrix of flow conversation constraints is node-arc-incidence matrix
- coefficient matrix is *totally unimodular*, i.e., all extreme points are integer
- $\Rightarrow\,$ you can find integer solutions by linear programming

