
LECTURE NOTES - WEEK II
Paths and Trees

Lecture Notes - Week II
Paths and Trees

Fernando Dias, Philine Schiewe and Piyalee Pattanaik

January 29, 2024

1

LECTURE NOTES - WEEK II
Paths and Trees

CHAPTER 1
A few more definitions

Recalling the definitions from the previous lecture, we can further improve the definitions of paths and
cycles. For a path P in G from u1 to uk+1 (as an edge progression):

• Graph ({u1, . . . , uk+1}, {a1, . . . , ak}) with [u1, a1, u2, . . . , uk , ak , uk+1] walk and ui ̸= uj , 1 ≤ i < j ≤
k + 1

• e.g. [v1, e1, v2, e3, v3, e4, v4]

For cycles such C in G:

• graph ({u1, . . . , uk}, {a1, . . . , ak}) with [u1, a1, u2, . . . , uk , ak , u1] (closed) walk, k ≥ 2 and ui ̸= uj ,
1 ≤ i < j ≤ k

• e.g. [v2, e3, v3, e4, v4, e5, v2]

• connected if there is a u − v path in G for all u, v ∈ V (G)

v1

v2 v3

v4

v5 v6

e1

e2
e3

e4e5

e6

CHAPTER 1. A FEW MORE DEFINITIONS 2

LECTURE NOTES - WEEK II
Paths and Trees

1.1 NEWER DEFINITIONS

A graph G without a cycle is called forest, while a connected graph G without a cycle is called tree.

Now, let G = (V ,E) undirected graph with |V | = n. Then the following are equivalent:

1. G is a tree, i.e., connected and cycle-free.

2. G is cycle-free and has n − 1 edges.

3. G is connected and has n − 1 edges.

4. G is minimally connected (removing an edge⇒ not connected anymore).

5. G is maximally cycle-free (adding an edge⇒ cycle).

6. G contains a unique u − v path for any pair of vertices u, v ∈ V .

Let G = (V ,E) undirected graph. T = (V ,E ′) with E ′ ⊆ E is a spanning tree of G iff T is a tree. Hence,
G is connected if it contains a spanning tree. Let Kn = (V ,E) be the complete graph with |V | = n vertices,
i.e., for any u, v ∈ V the edge {u, v} ∈ E exists. Then the number of spanning trees in Kn is nn−2.

v1 v2

v3v4

CHAPTER 1. A FEW MORE DEFINITIONS 3

LECTURE NOTES - WEEK II
Paths and Trees

CHAPTER 2
Finding Paths

The most useful instance of paths is to identify the shortest path in a graph. Finding the minimum path
length between two nodes is trivial, and via BFS, it can be easily applied. At the same time, finding the
minimum path length between a node and all the others is also trivial and BFS apply to each node
individually would suffice.

Challenge: finding the minimum-cost path from a node to all the other in a weighted graph.

A weighted graph is a graph where all the edges have a specific value. It can also named as a flow
network.

Definition 1 (Flow network) A tuple G = (V ,E , f) is said to be a flow network if (V ,E) where for every
edge (u, v) ∈ E we have an associated positive integer flow value fuv .

It also satisfying conservation of flow for every v ∈ V \ {s, t}, where s is an unique source and t is unique
sink.

∑
(u,v)∈E

fuv =
∑

(v ,w)∈E

fvw . (2.1)

Therefore, the goal is to calculate the shortest path from a node to each other vertices. Unfortunately, BFS
will not suffice (because the shortest path may not have the fewest edges).

Alternative: Dijkstra’s algorithm.

Edsger Dijkstra (1930-2002) was a Dutch computer scientist, programmer, software engineer, and science
essayist and very influential in Computer Science and Discrete Mathematics. One of this most famous
quotes is (which is encapsulated in his most famous algorithm):

”Simplicity is a prerequisite for reliability.”

Speaking of algorithm, it is general idea for Dijkstra’s approach is as follows:

CHAPTER 2. FINDING PATHS 4

LECTURE NOTES - WEEK II
Paths and Trees

Figure 2.1: Edsger W. Dijkstra

1. Iteratively increase the ”set of nodes with known shortest distances”;

2. Any node outside this set will have a ”best distance so far”;

3. Update the ”best distance so far” until add all nodes to set.

The resulting algorithm is:

Algorithm: DIJKSTRA’S ALGORITHM

Input: undirected, connected graph G, weights c : E(G)→ R, nodes V , source s
1 dv distance to reach node v
2 pv node predecessor to node v
3 Q ← ∅ set of ”unkown distance” nodes.
4 for each node v in V do
5 dv ←∞
6 pv ← FALSE
7 add v in Q

8 ds ← 0
9 while Q ̸= ∅ do

10 u ← node in Q with min du

11 remove u from Q
12 for each neighbor v of u still in Q do
13 d ← du + cuv

14 if alt < dv then
15 dv ← alt
16 pv ← u

17 return dv ,pv

v1

v2

v3

v4

v5

v6

1

2 2

4

5

4

3

2

1

In terms of runtime, this algorithm, when implemented to its best, has a runtime to O(m + n · log(n), where
m is the amount of edges and n is the number of nodes.

CHAPTER 2. FINDING PATHS 5

LECTURE NOTES - WEEK II
Paths and Trees

Alternatively, there is also an integer linear programming which can be applied (although not recommend):

min
∑

(u,v)∈E

fuv xuv (2.2a)

subject to: (2.2b)∑
(s,v)∈E

xsv = 1, (2.2c)∑
(u,t)∈E

xut = 1, (2.2d)∑
(u,v)∈E

xuv −
∑

(v ,w)∈E

xvwi = 0, (2.2e)

xuv ∈ {0, 1}, ∀(u, v) ∈ E (2.2f)

Constraints (2.2c) and (2.2d) ensures that a path starts in the source and ends in the sink, while constraint

(2.2e) guarantees that intermediary nodes have a single edge in and a single edge out. The objective
minimizes the total combined weight of the edges in that path.

CHAPTER 2. FINDING PATHS 6

LECTURE NOTES - WEEK II
Paths and Trees

CHAPTER 3
Minimal Spanning Trees

For spanning trees, the goal is to find an algorithm for a minimum spanning tree (MST). First, formally
establishing the problem:

Instance: An undirected, connected graph G, weights c : E(G)→ R.

Task: Find a spanning tree T in G of minimum weight.

v1

v2

v3

v4

v5

v6

1

2 2

4

5

4

3

2

1

The optimality conditions for such a problem are as follows:

Theorem 1 Let (G, c) be an instance of the MST problem and T a spanning tree in G. Then the following
are equivalent:

1. T is optimal.

2. For every e = {x , y} ∈ E(G) \ E(T), no edge on the x − y path in T has higher cost than e.

3. For every e ∈ E(T), e is a minimum cost edge of δ(V (C)), where C is a connected component of
T − e.

4. We can order E(T) = {e1, . . . , en−1} such that for each i ∈ {1, . . . , n − 1} there exists a set
X ⊆ V (G) such that ei is a minimum cost edge of δ(X) and ej /∈ δ(X) for all j ∈ {1, . . . , i − 1}.

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

1

2 2

4

5

4

3

2

12

4

5

4

3

24

3

δ(X) = {{u, v} ∈ E : u ∈ X , v /∈ x}
edges from X to V (G) \ X

CHAPTER 3. MINIMAL SPANNING TREES 7

LECTURE NOTES - WEEK II
Paths and Trees

This problem has been studied to extension, and two algorithms have been proposed from the literature.
The starting point comes from the following theorem:

Theorem 2 Let G = (V ,E) undirected graph with |V | = n. Then the following are equivalent:

1. G is a tree, i.e., connected and cycle-free.

2. G is cycle-free and has n − 1 edges.

3. G is connected and has n − 1 edges.

4. G is minimally connected (removing an edge⇒ not connected anymore).

5. G is maximally cycle-free (adding an edge⇒ cycle).

6. G contains a unique u − v path for any pair of vertices u, v ∈ V.

3.1 KRUSKAL’S ALGORITHM

The first option (in no particular order) is Kruskal’s algorithm (proposed by Joseph Kruskal in 1956).

Algorithm: KRUSKAL’S ALGORITHM

Input: undirected, connected graph G, weights c : E(G)→ R
Output: spanning tree T of minimum weight

1 sort edges such that c(e1) ≤ c(e2) ≤ . . . ≤ c(em)
2 set T := (V (G), ∅)
3 for i := 1 to m do
4 if T + ei contains no cycle then
5 set T := T + ei

6 return T

In the following picture, it is shown how each step is calculated:

‘

v1

v2

v3

v4

v5

v6

1

2 2

4

5

4

3

2

1

1; e1

2; e3 2; e4

4; e8

5; e9

4; e7

3; e6

2; e5

1; e2

1; e1

2; e3 2; e4

4; e8

5; e9

4; e7

3; e6

2; e5

1; e2

CHAPTER 3. MINIMAL SPANNING TREES 8

LECTURE NOTES - WEEK II
Paths and Trees

Execution:
E(T) = ∅
E(T) = {e1}
E(T) = {e1, e2}
E(T) = {e1, e2, e3}
E(T) = {e1, e2, e3, e5}
E(T) = {e1, e2, e3, e5, e6}

Test:
e1 = {v1, v3} ✓

e2 = {v5, v6} ✓

e3 = {v1, v2} ✓

e4 = {v2, v3} ✗⇝ cycle
e5 = {v4, v6} ✓

e6 = {v3, v6} ✓

e7 = {v3, v5} ✗ ⇝ cycle
e8 = {v2, v4} ✗ ⇝ cycle
e9 = {v3, v5} ✗ ⇝ cycle

In terms of correctness, T is maximally cycle-free (no further edge can be added), which is contemplated
as a tree. For each edge ei = {x , y} ∈ E(G) \ E(T):

• T + ei contains a cycle in line 4;

• there exists a x − y path in T at this point;

• all edges in T have lower weight than ei at this point.

Hence, T is MST.

In terms of runtime:

• sorting edges: O(m logm)

• loop lines 3-5: checking m times for cycles

• checking for cycle containing e = {u, v}

– DFS starting from u with at most n edges, check if v is reachable: O(n)

⇝ total running time: O(mn)

To sum up, Kruskal’s algorithm is guaranteed to be cycle-free and greedily add edges until maximally
cycle-free.

3.2 PRIM’S ALGORITHM

An alternative is Prim’s algorithm (developed in 1930 by Czech mathematician Vojtěch Jarnı́k and later re-
discovered and republished by computer scientists Robert C. Prim in 1957 and Edsger W. Dijkstra in 1959).

Algorithm: PRIM’S ALGORITHM

Input: undirected, connected graph G, weights c : E(G)→ R
Output: spanning tree T of minimum weight

1 choose v ∈ V (G)
2 set T := ({v}, ∅)
3 while V (T) ̸= V (G) do
4 choose an edge e ∈ δG(V (T)) of minimum weight
5 set T := T + e

6 return T

CHAPTER 3. MINIMAL SPANNING TREES 9

LECTURE NOTES - WEEK II
Paths and Trees

Using the following figure as an example:

v1

v2

v3

v4

v5

v6

1

2 2

4

5

4

3

2

12

4

5

4

3

2

1

2 3

2

1

Execution:
V (T) = {v1}
E(T) = ∅
V (T) = {v1, v3}
E(T) = {{v1, v3}}
V (T) = {v1, v3, v2}
E(T) = {{v1, v3}, {v2, v3}}
V (T) = {v1, v3, v2, v6}
E(T) = {{v1, v3}, {v2, v3}, {v3, v6}}
V (T) = {v1, v3, v2, v6, v5}
E(T) = {{v1, v3}, {v2, v3}, {v3, v6}, {v5, v6}}
V (T) = {v1, v3, v2, v6, v5, v4}
E(T) = {{v1, v3}, {v2, v3}, {v3, v6}, {v5, v6}, {v4, v6}}

Test:
δG(V (T)) =
{{v1, v2}, {v1, v3}}
{{v1, v2}, {v2, v3}, {v3, v4}, {v3, v5}, {v3, v6}}
{{v2, v4}, {v3, v4}, {v3, v5}, {v3, v6}}
{{v2, v4}, {v3, v4}, {v3, v5}, {v4, v6}, {v5, v6}}
{{v2, v4}, {v3, v4}, {v4, v6}}

Regarding runtime, the best performance can be achieved as O(m log n).

Finally, a ILP formulation for MST (known as Martin formulation):

min
∑

(u,v)∈E

fuv xuv (3.1a)

subject to: (3.1b)∑
(u,v)∈E

xuv = n − 1, (3.1c)

yk
uv + yk

vi = xuv , (u, v) ∈ E , k ∈ V (3.1d)∑
k∈V\{(u,v)}

yv
uk + xuv = 1, ∀(i, j) ∈ E (3.1e)

xuv , yk
uv , y

k
vu ∈ {0, 1}, ∀(u, v) ∈ E , k ∈ V (3.1f)

In the formulation above, yk
uv denotes that edge (u, v) is in the spanning tree and node k is on the side of v .

The constraint (3.1d) guarantees that if (u, v) ∈ E is selected into the tree, any node k ∈ V must be on
either side of v (depending if yk

uv = 1 or yk
vu = 1). If (u, v) ∈ E is not in the tree, any node k cannot be on

the side of v or u.

The final constraint ensures that if (u, v) ∈ E is in the tree, edges (u, k) which connects u are on the side
of u. If it is not in the tree, there must be and edge (u, k) such that v is on the side of k (yv

uk = 1 for some
k).

CHAPTER 3. MINIMAL SPANNING TREES 10

	A few more definitions
	Newer definitions

	Finding Paths
	Minimal Spanning Trees
	Kruskal's Algorithm
	Prim's Algorithm

