Lecture II - Paths and Trees

 $^{\,\,1}$ Department of Mathematics and Systems Analysis, Systems Analysis Laboratory, Aalto University, Finland

January 15, 2024

Combinatorial Optimization

Previously on

Useful Definitions

Shortest Path

Spanning Tree

Previously on..

Combinatorial Optimization

Spanning Tree

PREVIOUSLY ON...

- Graphs
- Paths, Walks, Trials,
- BFS and DFS.

Combinatorial Optimization

Previously on

Useful Definitions

Shortest Path

Spanning Tree

Useful Definitions

Cycles

Aalto University

Combinatorial Optimization

Previously on.

Useful Definitions

Shortest Path

- v_1 v_2 v_2 v_3 v_4 v_4 v_4
- v_5 e_6 v_6

- Path P in G from u_1 to u_{k+1} :
 - Graph $(\{u_1,\ldots,u_{k+1}\},\{a_1,\ldots,a_k\})$ with $[u_1,a_1,u_2,\ldots,u_k,a_k,u_{k+1}]$ walk and $u_i\neq u_j$, $1\leq i< j\leq k+1$
 - e.g. $[v_1, e_1, v_2, e_3, v_3, e_4, v_4]$
- Cycle C in G:
 - graph $(\{u_1,\ldots,u_k\},\{a_1,\ldots,a_k\})$ with $[u_1,a_1,u_2,\ldots,u_k,a_k,u_1]$ (closed) walk, $k\geq 2$ and $u_i\neq u_i,\ 1\leq i< j\leq k$
 - e.g. $[v_2, e_3, v_3, e_4, v_4, e_5, v_2]$

Trees and forests

Combinatorial Optimization

Previously on

Useful Definitions

Definition

- A graph G without a cycle is called *forest*.
- A connected graph G without a cycle is called tree

Characterization of trees

Combinatorial Optimization

Theorem

Let G=(V,E) undirected graph with $\lvert V \rvert = n.$ Then the following are equivalent:

- \bullet G is a tree, i.e., connected and cycle-free.
- **⑤** G is cycle-free and has n-1 edges.
- **a** G is connected and has n-1 edges.
- **1** G is minimally connected (removing an edge \Rightarrow not connected anymore).
- **a** G is maximally cycle-free (adding an edge \Rightarrow cycle).
- lacktriangledight G contains a unique u-v path for any pair of vertices $u,v\in V$.

Spanning trees

Combinatorial Optimization

Previously on

Useful Definitions

Shortest Path

Spanning Tree

Definition

Let G=(V,E) undirected graph. T=(V,E') with $E'\subseteq E$ is a spanning tree of G iff T is a tree.

Lemma

G is connected iff it contains a spanning tree.

Theorem

Let $K_n = (V, E)$ be the complete graph with |V| = n vertices, i.e., for any $u, v \in V$ the edge $\{u, v\} \in E$ exists. Then the number of spanning trees in K_n is n^{n-2} .

Combinatorial Optimization

Previously on

Useful Definitions

Shortest Path

Spanning Tree

Shortest Path

Finding Paths

Combinatorial Optimization

1 reviously of

Definitions

Shortest Path

Spanning Tree

Finding the minimum path length between two nodes is trivial.

 \rightarrow **BFS** can be easily applied;

Finding the **minimum path length** between **a node and all the others** is also trivial.

→ **BFS** apply to each node individually;

Challenge: finding the **minimum-cost path** from a node to all the other in a **weighted** graph.

Flow Network

Combinatorial Optimization

Previously on

Useful Definitions

Shortest Path

A **weighted graph** is a graph where all the edges has a specific value associated to them. It can also named as a **flow network**.

Definition (Flow network)

A tuple G=(V,E,f) is said to be a *flow network* if (V,E) where for every edge $(u,v)\in E$ we have an associated positive integer *flow value* f_{uv} .

It also satisfying *conservation of flow* for every $v \in V \setminus \{s, t\}$, where s is an unique source and t is unique sink.

$$\sum_{(u,v)\in E} f_{uv} = \sum_{(v,w)\in E} f_{vw}.$$
 (1)

General Idea

Combinatorial Optimization

Previously on

Useful Definitions

Shortest Path

Spanning Tree

Goal: from a given node, what are the shortest path to each of the other vertices. Unfortunately, BFS will not suffice.

Shortest path may not have the fewest edges.

Alternative: Dijkstra's algolrithm.

Dijkstra

Aalto University

Combinatorial Optimization

Spanning Tree

Edsger Dijkstra (1930-2002)

Figure: Edsger W. Dijkstra

"Simplicity is prerequisite for reliability."

General Idea

Combinatorial Optimization

Spanning Tree

2 Any node outside this set will have a "best distance so far";

• Iteratively increase the "set of nodes with known shortest distances";

3 Update the "best distance so far" until add all nodes to set.

Dijkstra's Algorithm

Combinatorial Optimization

Previously on

Useful Definitions

Algorithm: DIJKSTRA'S ALGORITHM - Preparation

Input: undirected, connected graph G, weights $c \colon E(G) \to \mathbb{R}$, nodes V, source s

- 1 d_v distance to reach node v
- 2 $\,p_v$ node predecessor to node v
- 3 $Q \leftarrow \emptyset$ set of "unkown distance" nodes.
- 4 for each node v in V do

$$\begin{array}{c|c} \mathbf{5} & d_v \leftarrow \infty \\ \mathbf{6} & p_v \leftarrow FALSE \\ \mathbf{7} & \mathsf{add}\ v \ \mathsf{in}\ Q \end{array}$$

Dijkstra's Algorithm

9 return d_v, p_v


```
Combinatorial Optimization
```

Previously on

Useful Definitions

Shortest Path

Spanning Tree

```
Output: d_v, p_v

1 while Q \neq \emptyset do

2 | u \leftarrow node in Q with \min d_u

3 | remove u from Q

4 | for each neighbor v of u still in Q do

5 | d \leftarrow d_u + c_{uv}

6 | if alt < d_v then

7 | d_v \leftarrow alt

8 | v \leftarrow alt
```

Algorithm: DIJKSTRA'S ALGORITHM - Calculation

Combinatorial Optimization

Previously on

Useful Definitions

Shortest Path

Combinatorial

Minimal spanning trees

Combinatorial Optimization

Previously on

Useful Definitions

Shortest Pat

Spanning Tree

Minimum Spanning Tree Problem

Instance: An undirected, connected graph G,

weights $c \colon E(G) \to \mathbb{R}$.

Task: Find a spanning tree T in G of

minimum weight.

Optimality conditions

Combinatorial Optimization

Previously on

Useful Definitions

Theorem

Let (G,c) be an instance of the MST problem and T a spanning tree in G. Then the following are equivalent:

- \bullet T is optimal.
- **⑤** For every $e = \{x, y\} \in E(G) \setminus E(T)$, no edge on the x y path in T has higher cost than e.
- **(a)** For every $e \in E(T)$, e is a minimum cost edge of $\delta(V(C))$, where C is a connected component of T-e.
- **1** We can order $E(T) = \{e_1, \dots, e_{n-1}\}$ such that for each $i \in \{1, \dots, n-1\}$ there exists a set $X \subseteq V(G)$ such that e_i is a minimum cost edge of $\delta(X)$ and $e_i \notin \delta(X)$ for all $j \in \{1, \dots, i-1\}$.

Optimality conditions

Previously on

Useful Definitions

Shortest Path

Two algorithms

Theorem

Let G = (V, E) undirected graph with |V| = n. Then the following are equivalent:

- a) G is a tree, i.e., connected and cycle-free.
- d) G is minimally connected (removing an edge \Rightarrow not connected anymore).
- e) G is maximally cycle-free (adding an edge \Rightarrow cycle).

Kruskal

- guaranteed to be cycle-free
- greedily add edges until maximally cycle-free

Prim

- grow one connected component
- greedily add edges until minimally connected

Combinatorial Optimization

Previously on

Useful Definitions

Shortest Path

Kruskal's algorithm

Combinatorial Optimization

Previously on

Useful Definitions

Shortest Path

Input: undirected, connected graph G, weights $c: E(G) \to \mathbb{R}$

Output: spanning tree T of minimum weight

- 1 sort edges such that $c(e_1) \leq c(e_2) \leq \ldots \leq c(e_m)$
- $\mathbf{2} \ \operatorname{set} \ T := (V(G),\emptyset)$
- $\mathbf{3} \ \mathbf{for} \ i := 1 \ \mathbf{to} \ m \ \mathbf{do}$
- 4 if $T + e_i$ contains no cycle then
- ${f 6}$ return T

Kruskal's algorithm

Previously on.

Useful Definitions

Shortest Path

Spanning Tree

Test:

$$E(T) = \emptyset \ E(T) = \{e_1\}$$

$$E(T) = \{e_1, e_2\} \ E(T) = \{e_1, e_2, e_3\}$$

$$E(T) = \{e_1, e_2, e_3, e_5\}$$

$$E(T) = \{e_1, e_2, e_3, e_5, e_6\}$$

$$e_1 = \{v_1, v_3\} \checkmark e_2 = \{v_5, v_6\} \checkmark$$

$$e_3 = \{v_1, v_2\} \checkmark e_4 = \{v_2, v_3\} \checkmark \Rightarrow \text{cycle}$$

$$e_5 = \{v_4, v_6\} \checkmark e_6 = \{v_3, v_6\} \checkmark$$

$$e_7 = \{v_3, v_5\} \checkmark \Rightarrow \text{cycle } e_8 = \{v_2, v_4\}$$

$$\checkmark \Rightarrow \text{cycle } e_9 = \{v_3, v_5\} \checkmark \Rightarrow \text{cycle}$$

Kruskal's algorithm - Correctness

Algorithm: Kruskal's Algorithm

Input: undirected, connected graph G,

weights $c \colon E(G) \to \mathbb{R}$

Output: spanning tree T of minimum weight

1 sort edges such that

$$c(e_1) \le c(e_2) \le \ldots \le c(e_m)$$

$$\mathbf{2} \ \operatorname{set} \ T := (V(G),\emptyset)$$

3 for
$$i:=1$$
 to m do

4 | if
$$T + e_i$$
 contains no cycle then
5 | set $T := T + e_i$

 ${f 6}$ return T

 T is maximally cycle-free (no further edge can be added)

 $\Rightarrow T$ is a tree

• for

$$e_i = \{x, y\} \in E(G) \setminus E(T)$$
:

- $T + e_i$ contains a cycle in line 4
- there exists a x-y path in T at this point
- all edges in T have lower weight than e_i at this point

 $\Rightarrow T \text{ is MST}$

Combinatorial Optimization

Previously on

Useful Definitions

Shortest Path

Kruskal's algorithm - Running time

Algorithm: Kruskal's Algorithm

Input: undirected, connected graph G,

weights $c \colon E(G) \to \mathbb{R}$

1 sort edges such that

$$c(e_1) \le c(e_2) \le \ldots \le c(e_m)$$

$$\mathbf{2} \ \operatorname{set} \ T := (V(G),\emptyset)$$

3 for
$$i:=1$$
 to m do

4 if
$$T + e_i$$
 contains no cycle then

 $\mathbf{6}$ return T

- sorting edges: $O(m \log m)$
- loop lines 3-5: checking *m* times for cycles
- checking for cycle containing $e = \{u, v\}$
 - DFS starting from u with at most n edges, check if v is reachable: O(n)
- \rightarrow total running time: O(mn)

Combinatorial Optimization

Previously on.

Useful Definitions

Shortest Path

Prim's algorithm

Combinatorial Optimization

Previously on

Useful Definitions

Shortest Path

Spanning Tree

```
Algorithm: Prim's Algorithm
```

Input: undirected, connected graph G, weights $c \colon E(G) \to \mathbb{R}$

Output: spanning tree T of minimum weight

- 1 choose $v \in V(G)$
- $\mathbf{2} \ \operatorname{set} \ T := (\{v\}, \emptyset)$
- 3 while $V(T) \neq V(G)$ do
- 4 choose an edge $e \in \delta_G(V(T))$ of minimum weight
- ${f 6}$ return ${\cal T}$

Prim's algorithm

Combinatorial Optimization

Previously on.

Useful Definitions

Shortest Path

Prim's algorithm

Combinatorial Optimization

Previously on.

Useful Definitions

Shortest Path

```
V(T) = \{v_1\}
E(T) = \emptyset \ V(T) = \{v_1, v_3\}
E(T) = \{\{v_1, v_3\}\}\ V(T) = \{v_1, v_3, v_2\}
E(T) = \{\{v_1, v_3\}, \{v_2, v_3\}\}\ V(T) = \{v_1, v_3, v_2, v_6\}
E(T) = \{\{v_1, v_3\}, \{v_2, v_3\}, \{v_3, v_6\}\}\}\ V(T) = \{v_1, v_3, v_2, v_6, v_5\}
E(T) = \{\{v_1, v_3\}, \{v_2, v_3\}, \{v_3, v_6\}, \{v_5, v_6\}\}\}\ V(T) = \{v_1, v_3, v_2, v_6, v_5, v_4\}
E(T) = \{\{v_1, v_3\}, \{v_2, v_3\}, \{v_3, v_6\}, \{v_5, v_6\}, \{v_4, v_6\}\}\}
\delta_G(V(T)) =
\{\{v_1, v_2\}, \{v_1, v_3\}\}\ \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_3, v_5\}, \{v_3, v_6\}\}
\{\{v_2, v_4\}, \{v_3, v_4\}, \{v_3, v_5\}, \{v_3, v_6\}\}
\{\{v_2, v_4\}, \{v_3, v_4\}, \{v_3, v_5\}, \{v_4, v_6\}, \{v_5, v_6\}\}\
```

Summary running times MST

Combinatorial Optimization

Previously on

Useful Definitions

Shortest Path

Spanning Tree

 $\begin{array}{ll} \text{Prim} & & \\ \text{naive implementation} & O(m+n^2) \\ \text{most optimal} & O(m\log n) \end{array}$

Combinatorial Optimization

Previously on.

Useful Definitions

Shortest Path