Lecture II - Paths and Trees

¹ Department of Mathematics and Systems Analysis, Systems Analysis Laboratory, Aalto University, Finland

January 15, 2024

Aalto University

[Combinatorial](#page-0-0) Optimization

Useful [Definitions](#page-3-0) [Spanning Tree](#page-17-0)

[Previously on..](#page-1-0) [Shortest Path](#page-8-0) Previously on..

[Combinatorial](#page-0-0) Optimization

Useful [Definitions](#page-3-0) [Shortest Path](#page-8-0) [Spanning Tree](#page-17-0)

- Graphs
- Paths, Walks, Trials,
- BFS and DFS.

PREVIOUSLY ON...

[Combinatorial](#page-0-0) Optimization

Useful Definitions [Shortest Path](#page-8-0) Shortest Path [Spanning Tree](#page-17-0)

– [Combinatorial Optimization](#page-0-0) 4/31

Cycles

Aalto University

Combinatoria **Optimization**

[Previously on..](#page-1-0)

[Shortest Path](#page-8-0)

- Path P in G from u_1 to u_{k+1} :
	- Graph $({u_1, \ldots, u_{k+1}}, {a_1, \ldots, a_k})$ with $[u_1, a_1, u_2, \ldots, u_k, a_k, u_{k+1}]$ walk and $u_i \neq u_j$, $1 \leq i \leq j \leq k+1$
	- e.g. $[v_1, e_1, v_2, e_3, v_3, e_4, v_4]$
- Cycle C in G :
	- graph $({u_1, \ldots, u_k}, {a_1, \ldots, a_k})$ with $[u_1, a_1, u_2, \ldots, u_k, a_k, u_1]$ (closed) walk, $k \ge 2$ and $u_i \neq u_j, 1 \leq i < j \leq k$
	- e.g. $[v_2, e_3, v_3, e_4, v_4, e_5, v_2]$

Trees and forests

- A graph G without a cycle is called forest.
- A connected graph G without a cycle is called tree.

[Combinatorial](#page-0-0) Optimization

[Previously on..](#page-1-0)

[Shortest Path](#page-8-0)

Characterization of trees

Theorem

Let $G = (V, E)$ undirected graph with $|V| = n$. Then the following are equivalent:

- \bigcirc G is a tree, i.e., connected and cycle-free.
- **b**) G is cycle-free and has $n-1$ edges.
- \bigcirc G is connected and has $n-1$ edges.
- **①** G is minimally connected (removing an edge \Rightarrow not connected anymore).
- **e)** G is maximally cycle-free (adding an edge \Rightarrow cycle).
- **O** G contains a unique $u v$ path for any pair of vertices $u, v \in V$.

Combinatoria Optimization

[Previously on..](#page-1-0)

[Shortest Path](#page-8-0)

Spanning trees

Definition

Let $G = (V, E)$ undirected graph. $T = (V, E')$ with $E' \subseteq E$ is a spanning tree of G iff T is a tree.

Lemma

G is connected iff it contains a spanning tree.

Theorem

Let $K_n = (V, E)$ be the complete graph with $|V| = n$ vertices, i.e., for any $u, v \in V$ the edge $\{u, v\} \in E$ exists. Then the number of spanning trees in K_n is n^{n-2} .

Aalto University

Combinatoria Optimization

[Previously on..](#page-1-0)

[Shortest Path](#page-8-0)

[Combinatorial](#page-0-0) Optimization

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

[Shortest Path](#page-8-0) Shortest Path Shortest Path Shortest Path Shortest Path Shortest Path [Spanning Tree](#page-17-0)

Finding Paths

Finding the minimum path length between two nodes is trivial.

 \rightarrow BFS can be easily applied:

Finding the minimum path length between a node and all the others is also trivial.

 \rightarrow BFS apply to each node individually;

Challenge: finding the minimum-cost path from a node to all the other in a weighted graph.

Combinatoria Optimization

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

Flow Network

A weighted graph is a graph where all the edges has a specific value associated to them. It can also named as a **flow network**

Definition (Flow network)

A tuple $G = (V, E, f)$ is said to be a flow network if (V, E) where for every edge $(u, v) \in E$ we have an associated positive integer flow value f_{uv} .

It also satisfying conservation of flow for every $v \in V \setminus \{s,t\}$, where s is an unique source and t is unique sink.

$$
\sum_{(u,v)\in E} f_{uv} = \sum_{(v,w)\in E} f_{vw}.\tag{1}
$$

Combinatoria Optimization

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

[Combinatorial](#page-0-0) Optimization

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

[Spanning Tree](#page-17-0)

Goal: from a given node, what are the shortest path to each of the other vertices. Unfortunately, BFS will not suffice.

Shortest path may not have the fewest edges. Alternative: Dijkstra's algolrithm.

Dijkstra

Edsger Dijkstra (1930-2002)

Figure: Edsger W. Dijkstra

"Simplicity is prerequisite for reliability."

[Combinatorial](#page-0-0)

Optimization

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

[Combinatorial](#page-0-0) Optimization

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

- **1** Iteratively increase the "set of nodes with known shortest distances";
- 2 Any node outside this set will have a "best distance so far";
- 3 Update the "best distance so far" until add all nodes to set.

Dijkstra's Algorithm

[Combinatorial](#page-0-0) **Optimization**

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

[Spanning Tree](#page-17-0)

Algorithm: DIJKSTRA'S ALGORITHM - Calculation **Output:** d_v, p_v 1 while $Q \neq \emptyset$ do 2 $u \leftarrow$ node in Q with $\min d_u$ 3 remove u from Q 4 **for** each neighbor v of u still in Q do 5 $\vert d \leftarrow d_u + c_{uv}$ 6 if $alt < d_v$ then 7 $\begin{array}{|c|c|c|c|c|}\n\hline\n\text{7} & \text{8} & d_v \leftarrow \textit{alt} \quad \text{7} \quad \text{8} & \text{9} \quad \text{9} \quad \text{10} \quad \text{11} \quad \text{12} \quad \text{13} \quad \text{14} \quad \text{16} \quad \text{17} \quad \text{18} \quad \text{19} \quad \text{19} \quad \text{19} \quad \text{10} \quad \text{10} \quad \text{11} \quad \text{12} \quad \text{16} \quad \text{17} \quad \text{18} \quad$ 8 | | $p_v \leftarrow u$

9 return d_v, p_v

[Combinatorial](#page-0-0) Optimization

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

[Combinatorial](#page-0-0) Optimization

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

[Shortest Path](#page-8-0)

Minimal spanning trees

Minimum Spanning Tree Problem

Instance: An undirected, connected graph G, weights $c: E(G) \to \mathbb{R}$.

Task: Find a spanning tree T in G of minimum weight.

[Combinatorial](#page-0-0) Optimization

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

Optimality conditions

Theorem

Let (G, c) be an instance of the MST problem and T a spanning tree in G. Then the following are equivalent:

- \bullet T is optimal.
- **b**) For every $e = \{x, y\} \in E(G) \setminus E(T)$, no edge on the $x y$ path in T has higher cost than e.
- **•** For every $e \in E(T)$, e is a minimum cost edge of $\delta(V(C))$, where C is a connected component of $T - e$.
- \bigoplus We can order $E(T) = \{e_1, \ldots, e_{n-1}\}\$ such that for each $i \in \{1, \ldots, n-1\}\$ there exists a set $X\subseteq V(G)$ such that e_i is a minimum cost edge of $\delta(X)$ and $e_i \notin \delta(X)$ for all $j \in \{1, \ldots, i-1\}.$

Combinatoria Optimization

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

Optimality conditions

Aalto University

[Combinatorial](#page-0-0) Optimization

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

Two algorithms

Theorem

Let $G = (V, E)$ undirected graph with $|V| = n$. Then the following are equivalent:

- a) G is a tree, i.e., connected and cycle-free.
- d) G is minimally connected (removing an edge \Rightarrow not connected anymore).
- e) G is maximally cycle-free (adding an edge \Rightarrow cycle).

Kruskal

Prim

- guaranteed to be cycle-free
- greedily add edges until *maximally* cycle-free
- grow one connected component
- greedily add edges until *minimally* connected

Combinatoria Optimization

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

[Combinatorial](#page-0-0) **Optimization**

[Previously on..](#page-1-0) Useful [Definitions](#page-3-0) [Shortest Path](#page-8-0)

Algorithm: KRUSKAL'S ALGORITHM

Input: undirected, connected graph G, weights $c: E(G) \to \mathbb{R}$ **Output:** spanning tree T of minimum weight

- 1 sort edges such that $c(e_1) \leq c(e_2) \leq \ldots \leq c(e_m)$
- 2 set $T := (V(G), \emptyset)$
- 3 for $i = 1$ to m do
- if $T + e_i$ contains no cycle then
- $\begin{array}{ccc} \mid & \vdots \end{array} \begin{array}{c} \text{set } T := T + e_i \end{array}$

6 return T

Kruskal's algorithm

[Combinatorial](#page-0-0) Optimization

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

[Shortest Path](#page-8-0)

 v_1 $v₂$ $v₃$ v_4 v_5 $v₆$ 1 $2; e_3$ $2; e_4$ 4 5 5; e9 4 4; e7 3 3; e6 2 $1; e_2$ $1; e_1$ $4; e_8$ $2; e_5$

Test:

 $E(T) = \emptyset E(T) = \{e_1\}$ $E(T) = \{e_1, e_2\} E(T) = \{e_1, e_2, e_3\}$ $E(T) = \{e_1, e_2, e_3, e_5\}$ $E(T) = \{e_1, e_2, e_3, e_5, e_6\}$

$$
e_1 = \{v_1, v_3\} \lor e_2 = \{v_5, v_6\} \lor
$$

\n
$$
e_3 = \{v_1, v_2\} \lor e_4 = \{v_2, v_3\} \lor \neg \text{ cycle}
$$

\n
$$
e_5 = \{v_4, v_6\} \lor e_6 = \{v_3, v_6\} \lor
$$

\n
$$
e_7 = \{v_3, v_5\} \lor \neg \text{ cycle } e_8 = \{v_2, v_4\}
$$

\n
$$
\lor \neg \text{cycle } e_9 = \{v_3, v_5\} \lor \neg \text{cycle}
$$

Kruskal's algorithm – Correctness

Algorithm: KRUSKAL'S ALGORITHM **Input:** undirected, connected graph G , weights $c: E(G) \to \mathbb{R}$ **Output:** spanning tree T of minimum weight 1 sort edges such that $c(e_1) \leq c(e_2) \leq \ldots \leq c(e_m)$ 2 set $T := (V(G), \emptyset)$ 3 for $i := 1$ to m do 4 if $T + e_i$ contains no cycle then
5 set $T := T + e_i$ set $T := T + e_i$

6 return T

- T is maximally cycle-free (no further edge can be added) \Rightarrow T is a tree
- for $e_i = \{x, y\} \in E(G) \setminus E(T)$:
	- $T + e_i$ contains a cycle in line 4
	- there exists a $x y$ path in T at this point
	- all edges in T have lower weight than e_i at this point
- \Rightarrow T is MST

Aalto University

[Combinatorial](#page-0-0) **Optimization**

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

Kruskal's algorithm – Running time

Algorithm: KRUSKAL'S ALGORITHM **Input:** undirected, connected graph G , weights $c: E(G) \to \mathbb{R}$ **Output:** spanning tree T of minimum weight 1 sort edges such that $c(e_1) \leq c(e_2) \leq \ldots \leq c(e_m)$ 2 set $T := (V(G), \emptyset)$ 3 for $i = 1$ to m do $\begin{array}{|c|c|c|}\textbf{4} & \textbf{if} & T+e_i & \textbf{contains no cycle then} \end{array}$ $\begin{array}{|c|c|c|}\hline \textbf{5} & \text$ 6 return T

- sorting edges: $O(m \log m)$
- loop lines 3-5: checking m times for cycles
- checking for cycle containing $e = \{u, v\}$

\n- DFS starting from
$$
u
$$
 with at most n edges, check if v is reachable: $O(n)$
\n

$$
\leadsto \text{ total running time:}\newline O(mn)
$$

Combinatoria Optimization

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

Prim's algorithm

Algorithm: PRIM'S ALGORITHM

Input: undirected, connected graph G, weights $c: E(G) \to \mathbb{R}$

Output: spanning tree T of minimum weight

- 1 choose $v \in V(G)$
- 2 set $T := (\{v\}, \emptyset)$

3 while $V(T) \neq V(G)$ do

```
4 choose an edge e \in \delta_G(V(T)) of minimum weight
```
5
$$
\left\vert \right\vert
$$
 set $T := T + e$

6 return T

Combinatoria Optimization

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

Prim's algorithm

Aalto University

[Combinatorial](#page-0-0) Optimization

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

Prim's algorithm

$$
V(T) = \{v_1\}
$$

\n
$$
E(T) = \emptyset \ V(T) = \{v_1, v_3\}
$$

\n
$$
E(T) = \{\{v_1, v_3\}\} \ V(T) = \{v_1, v_3, v_2\}
$$

\n
$$
E(T) = \{\{v_1, v_3\}, \{v_2, v_3\}\} \ V(T) = \{v_1, v_3, v_2, v_6\}
$$

\n
$$
E(T) = \{\{v_1, v_3\}, \{v_2, v_3\}, \{v_3, v_6\}\} \ V(T) = \{v_1, v_3, v_2, v_6, v_5\}
$$

\n
$$
E(T) = \{\{v_1, v_3\}, \{v_2, v_3\}, \{v_3, v_6\}, \{v_5, v_6\}\} \ V(T) = \{v_1, v_3, v_2, v_6, v_5, v_4\}
$$

\n
$$
E(T) = \{\{v_1, v_3\}, \{v_2, v_3\}, \{v_3, v_6\}, \{v_5, v_6\}, \{v_4, v_6\}\}
$$

 $\delta_G(V(T)) =$ $\{\{v_1, v_2\}, \{v_1, v_3\}\}\$ $\{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_3, v_5\}, \{v_3, v_6\}\}\$ $\{\{v_2, v_4\}, \{v_3, v_4\}, \{v_3, v_5\}, \{v_3, v_6\}\}\$ $\{\{v_2, v_4\}, \{v_3, v_4\}, \{v_3, v_5\}, \{v_4, v_6\}, \{v_5, v_6\}\}$ $\{\{v_2, v_4\}, \{v_3, v_4\}, \{v_4, v_6\}\}$

Combinatoria Optimization

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

Summary running times MST

[Combinatorial](#page-0-0) Optimization

[Previously on..](#page-1-0)

Useful [Definitions](#page-3-0)

[Shortest Path](#page-8-0)

Kruskal naive implementation $O(mn)$ most optimal $O(m \log n)$

Prim

naive implement most optimal $O(m \log n)$

$$
Iationalation \quad O(m+n^2)
$$

$$
O(m \log n)
$$

