

Lecture Notes - Week IV

Matching

Fernando Dias, Philine Schiewe and Piyalee Pattanaik

снартея **1** Matching

As always, a definition at first:

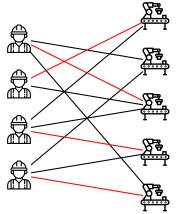
Definition 1 Matching in an undirected graph is a set of edges without common vertices.

Also known as **independent edge set**, this problem goal is to find a subset of the edges as a matching if each node appears in at most one edge of that matching.

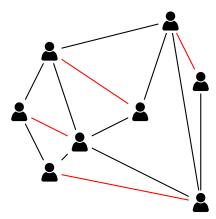
From an undirected graph G = (V, E), $M \subset E$ is called *matching* if all $e \in M$ are pairwise disjoint, i.e., if the endpoints are different. In addition, $M \subset E$ is a *maximum matching* in G if M is a matching with highest cardinality, i.e.,

 $|M'| \leq |M|$ for all matchings M'

Some illustrations as example:



Assignment different workers to different tasks in order that there is no conflict or overlapping.



Setting pairs for homework assignments.

For this problem, a simple integer linear programming formulation can be calculated:

where $\delta(v)$ is the set of incident edges of $v \in V$, such that:

$$\delta(\mathbf{v}) = \{\mathbf{e} \in \mathbf{E} \colon \mathbf{e} = \{\mathbf{v}, \mathbf{w}\}\}$$

Like flow problems, we can also define *M*-augmenting paths. Let G = (V, E) be an undirected graph and $M \subseteq E$ matching. A node $v \in V$ is said to be covered by *M* if $v \in e$ for some $e \in M$ and it is exposed by *M* if $v \notin e$ for all $e \in M$.

With those, two types of paths can be defined *M*-alternating path *P*, where edges E(P) are alternately in *M* and not in *M* (or not in *M* and in *M*) and *M*-augmenting path *P* that is a special type of *M*-alternating path, where the first and last vertex exposed.

Remark: *M*-augmenting paths have odd number of edges.

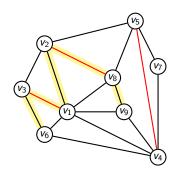
According to Berge's Theorem:

Theorem 1 (Petersen (1891), Berge (1957)) Let G be a graph with some matching M. Then M is the maximum if and only if there is no M-augmenting path.

Proof 1 Proof idea \Rightarrow : By contraposition: Let $P = (v_0, e_1, \dots, e_k, v_k)$ be an M-augmenting path.

- by definition: v_0 , v_k exposed
- $\Rightarrow |E(P) \setminus M| = |E(P) \cap M| + 1$

- \Rightarrow $M' = (M \setminus E(P)) \cup (E(P) \setminus M)$ is matching with |M'| = |M| + 1
- \Rightarrow *M* not maximum



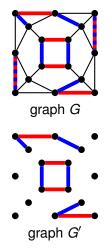
From this theorem, we can derive a few lemmas, such as

Lemma 1 Let G be a graph with two matchings M, M'. Let $G' = (V, E' = M \blacksquare M')$, with symmetric difference

$$M \blacksquare M' = (M \cup M') \setminus (M \cap M').$$

Then, the connected components of G' are

- isolated vertices
- cycles C with $|E(C)| \in 2\mathbb{N}$ where edges in C are alternately in M and M'
- paths $P = (v_0, e_1, \dots, e_k, v_k)$ where edges are alternately in M and M'



Proof 2 *Proof idea: Let M, M' matchings:*

 $|\{e \in M : v \in e\}| \le 1, v \in V$ $|\{e \in M' : v \in e\}| \le 1, v \in V$ $\Rightarrow |\{e \in E' : v \in e\}| \le 2, v \in V$

If $g_{G'}(v) = |\{e \in E' : v \in e\}| = 2$: $\exists ! e \in M : v \in e$ and $\exists ! e \in M' : v \in e$.

• isolated vertices $v \rightsquigarrow g_{G'}(v) = 0$

• cycles C with $|E(C)| \in 2\mathbb{N} \rightsquigarrow g_{G'}(v) = 2$

• paths $P = (v_0, e_1, \dots, e_k, v_k) \rightsquigarrow g_{G'}(v_0) = 0 = g_{G'}(v_k) = 1, g_{G'}(v_i) = 2, 1 \le i \le k-1$

• • • • • •

Another way to prove the same theorem is listed below:

Theorem 2 (Petersen (1891), Berge (1957)) Let G be a graph with some matching M. Then M is the maximum if and only if there is no M-augmenting path.

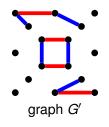
Proof 3 Proof idea: By contraposition: Let M' be a matching with |M'| > |M|. Construct G'.

$$|M'| > |M| \Rightarrow |E' \cap M'| > |E' \cap M|$$

$$\Rightarrow \exists P = (v_0, e_1, \dots, e_k, v_k) \text{ with } e_1 \in M', e_k \in M'$$

$$\Rightarrow v_0, v_k \text{ exposed by } M$$

$$\Rightarrow P M\text{-augmenting path}$$



снартея **2** Maximum Matching

With all of this in mind, the resulting algorithm can be expressed:

Algorithm: MAXIMUM MATCHING

Input: undirected graph G = (V, E)Output: maximum matching M1 set $M = \emptyset$ 2 while there exists M-augmenting path in G do 3 | choose M-augmenting path P

- 3 choose *M*-augmenting path *P* 4 set $M = (M \setminus E(P)) \cup (E(P) \setminus M)$
- 5 return M

In this algorithm, up to $\frac{|V|}{2}$ iterations are required. There is no obvious way to find an *M*-augmenting path. However, for bipartite graphs, the easier way is to find *s*-*t*-path in auxiliary graphs, while in general graphs, Edmond's blossom algorithm is the best approach. Nevertheless, such an algorithm is highly complex and has a polynomial runtime.

However, the challenge still remains on **finding** *M*-alternating paths. For bipartite graph G = (V, E) with:

•
$$V = A \cup B, A \cap B = \emptyset$$

•
$$E \subseteq \{\{a, b\} : a \in A, b \in B\}$$

The easier approach is to construct **auxiliary directed graph** G' = (V', E') with:

$$V' = V \cup \{s, t\}, \quad s, t \notin V$$

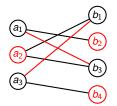
$$E' = \{(b, a): \{a, b\} \in M, a \in A, b \in B\}$$

$$\cup \{(a, b): \{a, b\} \in E \setminus M, a \in A, b \in B\}$$

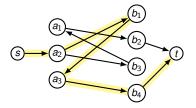
$$\cup \{(s, a): a \text{ exposed}, a \in A\}$$

$$\cup \{(b, t): b \text{ exposed}, b \in B\}$$

Then, \exists *M*-augmenting path in G if and only if \exists *s*-*t*-path in *G*'.



LECTURE NOTES - WEEK IV Matching



The resulting algorithm encapsulates this procedure:

Algorithm: MAXIMUM MATCHING BIPARTITE GRAPHS

Input: undirected bipartite graph G = (V, E)Output: maximum matching M1 set $M = \emptyset$ 2 construct G'3 while there exists s-t-path in G' do 4 choose s-t-path P

- s set $M = (M \setminus E(P)) \cup (E(P) \setminus M)$
- 6 update G'

7 return M

In order to construct *G*', it takes up to O(n + m), where n = |V| and m = |E|, due to no isolated nodes in *G*. The remaining $\frac{n}{2}$ iterations are divided into:

- finding P: O(m)
- updating M: O(n)
- updating G': O(n)

The final runtime is O(nm).

2.1 CONNECTION TO MAXFLOW

Solving matching can also be formulated as solving maximum flow. By constructing an auxiliary directed graph G'' = (V'', E'') with:

$$V'' = V \cup \{s, t\}, \quad s, t \notin V$$
$$E'' = \{(a, b) \colon \{a, b\} \in E, a \in A, b \in B\}$$
$$\cup \{(s, a) \colon a \in A\}$$
$$\cup \{(b, t) \colon b \in B\}$$

and capacity u(e) = 1 for all $e \in E''$. With that, G'' has maximal flow with value k if and only if G has a maximum matching of cardinality k.