
LECTURE NOTES - WEEK IV
Matching

Lecture Notes - Week IV
Matching

Fernando Dias, Philine Schiewe and Piyalee Pattanaik

January 29, 2024

1

LECTURE NOTES - WEEK IV
Matching

CHAPTER 1
Matching

As always, a definition at first:

Definition 1 Matching in an undirected graph is a set of edges without common vertices.

Also known as independent edge set, this problem goal is to find a subset of the edges as a matching if
each node appears in at most one edge of that matching.

From an undirected graph G = (V ,E), M ⊂ E is called matching if all e ∈ M are pairwise disjoint, i.e., if
the endpoints are different. In addition, M ⊂ E is a maximum matching in G if M is a matching with highest
cardinality, i.e.,

|M ′| ≤ |M| for all matchings M ′

Some illustrations as example:

Assignment different workers to different tasks in order that there is no conflict or overlapping.

CHAPTER 1. MATCHING 2

LECTURE NOTES - WEEK IV
Matching

Setting pairs for homework assignments.

For this problem, a simple integer linear programming formulation can be calculated:

Maximize
∑
e∈E

xe

Subject to:∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V

xi j ∈ {0, 1} ∀e ∈ E

where δ(v) is the set of incident edges of v ∈ V , such that:

δ(v) = {e ∈ E : e = {v ,w}}

Like flow problems, we can also define M-augmenting paths. Let G = (V ,E) be an undirected graph and
M ⊆ E matching. A node v ∈ V is said to be covered by M if v ∈ e for some e ∈ M and it is exposed by
M if v /∈ e for all e ∈ M.

With those, two types of paths can be defined M-alternating path P, where edges E(P) are alternately in M
and not in M (or not in M and in M) and M-augmenting path P that is a special type of M-alternating path,
where the first and last vertex exposed.

Remark: M-augmenting paths have odd number of edges.

According to Berge’s Theorem:

Theorem 1 (Petersen (1891), Berge (1957)) Let G be a graph with some matching M. Then M is the
maximum if and only if there is no M-augmenting path.

Proof 1 Proof idea⇒: By contraposition: Let P = (v0, e1, . . . , ek , vk) be an M-augmenting path.

• by definition: v0, vk exposed

⇒ |E(P) \M| = |E(P) ∩M|+ 1

CHAPTER 1. MATCHING 3

LECTURE NOTES - WEEK IV
Matching

⇒ M ′ = (M \ E(P)) ∪ (E(P) \M) is matching with |M ′| = |M|+ 1

⇒ M not maximum

v1

v2

v3

v4

v5

v8

v6

v7

v9

From this theorem, we can derive a few lemmas, such as

Lemma 1 Let G be a graph with two matchings M,M ′. Let G′ = (V ,E ′ = M M ′), with symmetric difference

M M ′ = (M ∪M ′) \ (M ∩M ′).

Then, the connected components of G′ are

• isolated vertices

• cycles C with |E(C)| ∈ 2N where edges in C are alternately in M and M ′

• paths P = (v0, e1, . . . , ek , vk) where edges are alternately in M and M ′

graph G

graph G′

Proof 2 Proof idea: Let M, M ′ matchings:

|{e ∈ M : v ∈ e}| ≤ 1, v ∈ V

|{e ∈ M ′ : v ∈ e}| ≤ 1, v ∈ V

⇒|{e ∈ E ′ : v ∈ e}| ≤ 2, v ∈ V

If gG′(v) = |{e ∈ E ′ : v ∈ e}| = 2: ∃!e ∈ M : v ∈ e and ∃!e ∈ M ′ : v ∈ e.

• isolated vertices v ⇝ gG′(v) = 0

CHAPTER 1. MATCHING 4

LECTURE NOTES - WEEK IV
Matching

• cycles C with |E(C)| ∈ 2N⇝ gG′(v) = 2

• paths P = (v0, e1, . . . , ek , vk)⇝ gG′(v0) = 0 = gG′(vk) = 1, gG′(vi) = 2, 1 ≤ i ≤ k − 1

Another way to prove the same theorem is listed below:

Theorem 2 (Petersen (1891), Berge (1957)) Let G be a graph with some matching M. Then M is the
maximum if and only if there is no M-augmenting path.

Proof 3 Proof idea:
By contraposition: Let M ′ be a matching with |M ′| > |M|.
Construct G′.

|M ′| > |M| ⇒ |E ′ ∩M ′| > |E ′ ∩M|
⇒ ∃P = (v0, e1, . . . , ek , vk) with e1 ∈ M ′, ek ∈ M ′

⇒ v0, vk exposed by M

⇒ P M-augmenting path

graph G′

CHAPTER 1. MATCHING 5

LECTURE NOTES - WEEK IV
Matching

CHAPTER 2
Maximum Matching

With all of this in mind, the resulting algorithm can be expressed:

Algorithm: MAXIMUM MATCHING

Input: undirected graph G = (V ,E)
Output: maximum matching M

1 set M = ∅
2 while there exists M-augmenting path in G do
3 choose M-augmenting path P
4 set M = (M \ E(P)) ∪ (E(P) \M)

5 return M

In this algorithm, up to |V |2 iterations are required. There is no obvious way to find an M-augmenting path.
However, for bipartite graphs, the easier way is to find s-t-path in auxiliary graphs, while in general graphs,
Edmond’s blossom algorithm is the best approach. Nevertheless, such an algorithm is highly complex
and has a polynomial runtime.

However, the challenge still remains on finding M-alternating paths. For bipartite graph G = (V ,E) with:

• V = A ∪ B, A ∩ B = ∅

• E ⊆ {{a, b} : a ∈ A, b ∈ B}
The easier approach is to construct auxiliary directed graph G′ = (V ′,E ′) with:

V ′ =V ∪ {s, t}, s, t /∈ V

E ′ ={(b, a) : {a, b} ∈ M, a ∈ A, b ∈ B}
∪ {(a, b) : {a, b} ∈ E \M, a ∈ A, b ∈ B}
∪ {(s, a) : a exposed, a ∈ A}
∪ {(b, t) : b exposed, b ∈ B}

Then, ∃ M-augmenting path in G if and only if ∃ s-t-path in G′.

a1

a2

a3

b1

b2

b3

b4

CHAPTER 2. MAXIMUM MATCHING 6

LECTURE NOTES - WEEK IV
Matching

a1

a2

a3

b1

b2

b3

b4

s t

The resulting algorithm encapsulates this procedure:

Algorithm: MAXIMUM MATCHING BIPARTITE GRAPHS

Input: undirected bipartite graph G = (V ,E)
Output: maximum matching M

1 set M = ∅
2 construct G′

3 while there exists s-t-path in G′ do
4 choose s-t-path P
5 set M = (M \ E(P)) ∪ (E(P) \M)
6 update G′

7 return M

In order to construct G′, it takes up to O(n + m), where n = |V | and m = |E |, due to no isolated nodes in
G . The remaining n

2 iterations are divided into:

• finding P: O(m)

• updating M: O(n)

• updating G′: O(n)

The final runtime is O(nm).

2.1 CONNECTION TO MAXFLOW

Solving matching can also be formulated as solving maximum flow. By constructing an auxiliary directed
graph G′′ = (V ′′,E ′′) with:

V ′′ =V ∪ {s, t}, s, t /∈ V

E ′′ ={(a, b) : {a, b} ∈ E , a ∈ A, b ∈ B}
∪ {(s, a) : a ∈ A}
∪ {(b, t) : b ∈ B}

and capacity u(e) = 1 for all e ∈ E ′′. With that, G′′ has maximal flow with value k if and only if G has a
maximum matching of cardinality k .

CHAPTER 2. MAXIMUM MATCHING 7

	Matching
	Maximum Matching
	Connection to MaxFlow

