LECTURE NOTES - WEEK IV

Matching

Lecture Notes - Week |V
Matching

Fernando Dias, Philine Schiewe and Piyalee Pattanaik

January 29, 2024

Aalto University

CHAPTER 1

Matching

As always, a definition at first:

Definition 1 Matching in an undirected graph is a set of edges without common vertices.

Also known as independent edge set, this problem goal is to find a subset of the edges as a matching if
each node appears in at most one edge of that matching.

From an undirected graph G = (V, E), M C E is called matching if all e € M are pairwise disjoint, i.e., if
the endpoints are different. In addition, M C E is a maximum matching in G if M is a matching with highest
cardinality, i.e.,

IM'| < |M| for all matchings M’

Some illustrations as example:

Assignment different workers to different tasks in order that there is no conflict or overlapping.

Aalto University

\:. k |

a
Setting pairs for homework assignments.

For this problem, a simple integer linear programming formulation can be calculated:

Maximize Z Xe

ecE
Subject to:
Z Xe <1 YveVv
ecd(v)
Xijj € {0, 1} Veec E

where §(v) is the set of incident edges of v € V, such that:

o(v)={ecE:e={v,w}}

Like flow problems, we can also define M-augmenting paths. Let G = (V, E) be an undirected graph and
M C E matching. A node v € V is said to be covered by M if v € e for some e € M and it is exposed by
Mif v ¢ eforall e € M.

With those, two types of paths can be defined M-alternating path P, where edges E(P) are alternately in M
and not in M (or not in M and in M) and M-augmenting path P that is a special type of M-alternating path,
where the first and last vertex exposed.

Remark: M-augmenting paths have odd number of edges.

According to Berge’s Theorem:

Theorem 1 (Petersen (1891), Berge (1957)) Let G be a graph with some matching M. Then M is the
maximum if and only if there is no M-augmenting path.

Proof 1 Proof idea = : By contraposition: Let P = (vy, €1, . . ., €k, Vk) be an M-augmenting path.
* by definition: vy, vy exposed

= |E(P)\M|=|E(P)NM|+1

Aalto University

= M = (M\ E(P)) U (E(P)\ M) is matching with |[M'| = |M| + 1

= M not maximum

From this theorem, we can derive a few lemmas, such as

Lemma 1 Let G be a graph with two matchings M, M'. Let G' = (V, E' = MaM'"), with symmetric difference

VaM = (MU M)\ (M M).
Then, the connected components of G’ are
* isolated vertices
« cycles C with |[E(C)| € 2N where edges in C are alternately in M and M’

« paths P = (w, €1, ..., ek, Vk) where edges are alternately in M and M’

graph G’

Proof 2 Proof idea: Let M, M’ matchings:

{eeM:vee} <lveV
{eeM:vee} <l veV
={ecE:vee} <2,veV

Ifga(v)={e€ E':vee}|=2:FlecM:vceandilec M': vece.

« isolated vertices v ~~ gg(v) =0

Aalto University

« cycles C with |[E(C)| € 2N ~ gg(v) =2

@

* paths P= (VO, e1, ..., €k, Vk) ~ gG’(VO) =0= gG’(Vk) =1, ggf(V,') =2,1<i<k-1
—o—9o—0o—0o o
Another way to prove the same theorem is listed below:

Theorem 2 (Petersen (1891), Berge (1957)) Let G be a graph with some matching M. Then M is the
maximum if and only if there is no M-augmenting path.

Proof 3 Proof idea:
By contraposition: Let M’ be a matching with |M'| > |M]|.
Construct G'.
IM'| > M| = |[E'n M| > |E' N M|
= dJP = (VO, e, ..., 6k, Vk) with e € M/, ek € M
=V, Vk exposed by M
= P M-augmenting path

SN
- [-
R -

graph G’

A

Aalto University

CHAPTER 2

Maximum Matching

With all of this in mind, the resulting algorithm can be expressed:

Algorithm: MAXIMUM MATCHING
Input: undirected graph G = (V, E)
Output: maximum matching M
1setM=10
2 while there exists M-augmenting path in G do
3 choose M-augmenting path P
4 L set M = (M\ E(P))U(E(P)\ M)
5 return M

In this algorithm, up to % iterations are required. There is no obvious way to find an M-augmenting path.

However, for bipartite graphs, the easier way is to find s-f-path in auxiliary graphs, while in general graphs,
Edmond’s blossom algorithm is the best approach. Nevertheless, such an algorithm is highly complex
and has a polynomial runtime.

However, the challenge still remains on finding M-alternating paths. For bipartite graph G = (V, E) with:

« V=AUB ANB=10
« EC{{ab}:acAbecB}
The easier approach is to construct auxiliary directed graph G' = (V’, E’) with:
V' =Vu{st}, st¢V
E' ={(b,a): {a,b} € M,ac A b < B}
U{(a b): {a,b} e E\M,ac A be B}
U{(s, a): aexposed, ac A}
U {(b, t): bexposed, b € B}
Then, 3 M-augmenting path in G if and only if 3 s-t-path in G'.

(br)
@"/ ®
Cr‘hh\@

© ®

o O A W N =

~

Aalto University

fig
\
s

The resulting algorithm encapsulates this procedure:

Algorithm: MAXIMUM MATCHING BIPARTITE GRAPHS
Input: undirected bipartite graph G = (V, E)
Output: maximum matching M
setM =10
construct G/
while there exists s-t-path in G’ do

choose s-t-path P

set M = (M\ E(P))U(E(P)\ M)

update G’

return M

In order to construct G/, it takes up to O(n + m), where n = |V| and m = |E|, due to no isolated nodes in
G . The remaining 7 iterations are divided into:

« finding P: O(m)
« updating M: O(n)
« updating G': O(n)

The final runtime is O(nm).

Solving matching can also be formulated as solving maximum flow. By constructing an auxiliary directed
graph G" = (V", E") with:

V'=vul{st} stéV

E" ={(a,b): {a,b} € E,ac A be B}
U{(s a): ac A}
u{(b,t): be B}

and capacity u(e) = 1 for all e € E”. With that, G’ has maximal flow with value k if and only if G has a
maximum matching of cardinality k.

	Matching
	Maximum Matching
	Connection to MaxFlow

