Lecture IV - Matching

¹ Department of Mathematics and Systems Analysis, Systems Analysis Laboratory, Aalto University, Finland

January 29, 2024

Aalto University

Aalto University

Combinatorial Optimization

Previously on

Previously on..

Combinatorial Optimization

Previously on

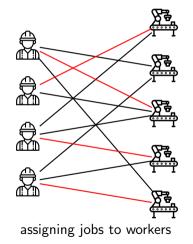
- Flow: Ford-Fulkerson;
- Flow: Edmond-Karp.

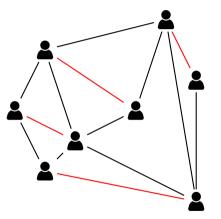
Both algorithms allow us to find what is the **maximum flow** that can be pushed through a **flow network**.

PREVIOUSLY ON...

Motivation

Combinatorial Optimization



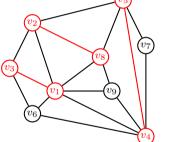


finding pairs for homework assignment

Definition

- G = (V, E) undirected graph
- $M \subset E$ is called *matching* if all $e \in M$ are pairwise disjoint, i.e., if the endpoints are all different
- *M* ⊂ *E* is a *maximum matching* in *G* if *M* is a matching with highest cardinality, i.e.,

 $|M'| \leq |M|$ for all matchings M'



IP-formulation

Combinatorial Optimization

$$\max \sum_{e \in E} x_e$$
s.t.
$$\sum_{e \in \delta(v)} x_e \le 1, \qquad v \in V$$

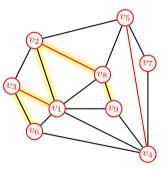
$$x_e \in \{0,1\}, \quad e \in E$$

• incident edges of $v \in V$:

$$\delta(v) = \{e \in E \colon e = \{v, w\}\}$$

$M\mbox{-}{\rm augmenting}$ paths

- G = (V, E) undirected graph, $M \subseteq E$ matching
- $v \in V$ is *covered* by M if $v \in e$ for some $e \in M$
- $v \in V$ is exposed by M if $v \notin e$ for all $e \in M$
- M-alternating path P: edges E(P) are alternately in M and not in M (or not in M and in M)
- *M*-augmenting path *P*: *M*-alternating path with first and last vertex exposed
- ${}^{\hspace{0.1em}{}^{\hspace{.1em}}}$ M-augmenting paths have odd number of edges

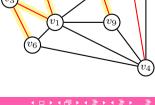


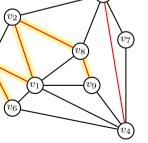
Theorem (Petersen (1891), Berge (1957))

Let G be a graph with some matching M. Then M is maximum if and only if there is no *M*-augmenting path.

Proof idea \Rightarrow By contraposition: Let $P = (v_0, e_1, \ldots, e_k, v_k)$ be an M-augmenting path.

- by definition: v_0, v_k exposed
- $\Rightarrow |E(P) \setminus M| = |E(P) \cap M| + 1$
- $\Rightarrow M' = (M \setminus E(P)) \cup (E(P) \setminus M)$ is matching with |M'| = |M| + 1
- $\Rightarrow M$ not maximum





Lemma

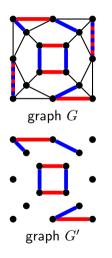
Lemma

Let G be a graph with two matchings M,M'. Let $G'=(V,E'=M\Delta M'),$ with symmetric difference

 $M\Delta M' = (M \cup M') \setminus (M \cap M').$

Then the connected components of G' are

- isolated vertices
- cycles C with $|E(C)| \in 2\mathbb{N}$ where edges in C are alternately in M and M'
- paths $P = (v_0, e_1, \dots, e_k, v_k)$ where edges are alternately in M and M'



Combinatorial Optimization

Proof idea: M, M' matchings:

$$\begin{split} |\{e \in M \colon v \in e\}| &\leq 1, v \in V \\ |\{e \in M' \colon v \in e\}| &\leq 1, v \in V \\ \Rightarrow |\{e \in E' \colon v \in e\}| &\leq 2, v \in V \end{split}$$

 $\begin{aligned} & \text{If } g_{G'}(v) = |\{e \in E' \colon v \in e\}| = 2: \\ \exists ! e \in M \colon v \in e \text{ and } \exists ! e \in M' \colon v \in e. \end{aligned}$

Combinatorial Optimization

- isolated vertices $v \rightsquigarrow g_{G'}(v) = 0$
- cycles C with $|E(C)| \in 2\mathbb{N} \rightsquigarrow g_{G'}(v) = 2$

• paths $P = (v_0, e_1, \dots, e_k, v_k) \rightsquigarrow g_{G'}(v_0) = 0 = g_{G'}(v_k) = 1$, $g_{G'}(v_i) = 2$, $1 \le i \le k-1$

Theorem (Petersen (1891), Berge (1957))

Let G be a graph with some matching M. Then M is maximum if and only if there is no M-augmenting path.

Proof idea \Leftarrow : By contraposition: Let M' be a matching with |M'| > |M|. Construct G'.

$$\begin{split} |M'| > |M| \Rightarrow |E' \cap M'| > |E' \cap M| \\ \Rightarrow \exists P = (v_0, e_1, \dots, e_k, v_k) \text{ with } e_1 \in M', e_k \in M' \quad \text{graph } G \\ \Rightarrow v_0, v_k \text{ exposed by } M \\ \Rightarrow P \text{ } M\text{-augmenting path} \end{split}$$

Algorithm: MAXIMUM MATCHING Input: undirected graph G = (V, E)Output: maximum matching M

- 1 set $M = \emptyset$
- 2 while there exists M-augmenting path in G do

3 choose
$$M$$
-augmenting path P

4
$$\$$
 set $M = (M \setminus E(P)) \cup (E(P) \setminus M)$

5 return M

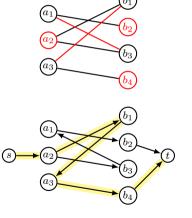
- at most $\frac{|V|}{2}$ iterations
- not obvious how to find an *M*-augmenting path
- for bipartite graphs: find *s*-*t*-path in auxiliary graph
- for general graphs: Edmond's blossom algorithm
 - complex algorithm
 - polynomial runtime

How to find M-alternating paths

- bipartite graph G = (V, E) with
 - $V = A \cup B$, $A \cap B = \emptyset$
 - $E \subseteq \{\{a, b\} \colon a \in A, b \in B\}$
- for matching M construct auxiliary directed graph $G^\prime = (V^\prime, E^\prime)$ with

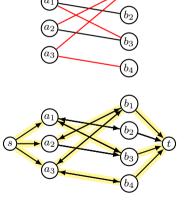
$$V' = V \cup \{s, t\}, \quad s, t \notin V$$
$$E' = \{(b, a) \colon \{a, b\} \in M, a \in A, b \in B\}$$
$$\cup \{(a, b) \colon \{a, b\} \in E \setminus M, a \in A, b \in B\}$$
$$\cup \{(s, a) \colon a \text{ exposed}, a \in A\}$$
$$\cup \{(b, t) \colon b \text{ exposed}, b \in B\}$$

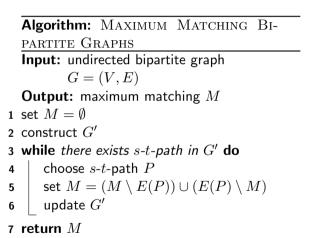
• \exists *M*-augmenting path in G if and only if \exists *s*-*t*-path in *G*'



Combinatorial Optimization

Algorithm: MAXIMUM MATCHING BI-PARTITE GRAPHS **Input:** undirected bipartite graph G = (V, E)**Output:** maximum matching M1 set $M = \emptyset$ 2 construct G'3 while there exists s-t-path in G' do choose s-t-path P4 set $M = (M \setminus E(P)) \cup (E(P) \setminus M)$ 5 update G'6 7 return M





- n = |V|, m = |E|, no isolated nodes in G
- construction of G': O(n+m)
- at most $\frac{n}{2}$ iterations
 - finding P: O(m)
 - updating M: O(n)
 - updating G': O(n)
- \Rightarrow total runtime O(nm)

Combinatorial

Optimization

Connection to MaxFlow

- solve maximum matching as maximum flow problem
- construct auxiliary directed graph $G^{\prime\prime}=(V^{\prime\prime},E^{\prime\prime})$ with

$$V'' = V \cup \{s, t\}, \quad s, t \notin V$$

$$E'' = \{(a, b) \colon \{a, b\} \in E, a \in A, b \in B\}$$

$$\cup \{(s, a) \colon a \in A\}$$

$$\cup \{(b, t) \colon b \in B\}$$

and capacity u(e) = 1 for all $e \in E''$

• G'' has maximal flow with value k if and only if G has maximum matching of cardinality k

