
Part I - Graph Problems

Overview
▶ Depth-First Search (DFS)→ connectivity;

▶ Dijkstra→ shortest path;

▶ Prim and Kruskal→MST;

▶ Ford-Fulkerson→ maximum flow;

▶ Maximum Matching→ matchings.

MaximumMatching

Algorithm 1:Maximum Matching

Input: undirected graph G = (V , E)
Output: maximum matching M

1 set M = ∅
2 while there exists M-augmenting path in G do
3 choose M-augmenting path P
4 set M = (M \ E(P)) ∪ (E(P) \M)
5 return M

Prim’s
Algorithm 2: Prim’s Algorithm
Input: undirected, connected graph G, weights

c : E(G) → R
Output: spanning tree T of minimum weight

1 choose v ∈ V (G)
2 set T := ({v}, ∅)
3 while V (T ) ≠ V (G) do
4 choose an edge e ∈ 𝛿G (V (T )) of minimum weight

5 set T := T + e
6 return T

Dijkstra’s

Algorithm 3: Dijkstra’s Algorithm
Input: undirected, connected graph G, weights

c : E(G) → R, nodes V , source s
1 dv distance to reach node v
2 pv node predecessor to node v
3 Q ← ∅ set of "unkown distance" nodes.

4 for each node v in V do
5 dv ←∞
6 pv ← FALSE
7 add v in Q
8 ds ← 0 while Q ≠ ∅ do
9 u← node in Q with min du

10 remove u from Q
11 for each neighbor v of u still in Q do
12 d ← du + cuv
13 if alt < dv then
14 dv ← alt
15 pv ← u

Kruskal’s
Algorithm 4: Kruskal’s Algorithm
Input: undirected, connected graph G, weights

c : E(G) → R
Output: spanning tree T of minimum weight

1 sort edges such that c(e1) ≤ c(e2) ≤ . . . ≤ c(em)
2 set T := (V (G), ∅)
3 for i := 1 to m do
4 if T + ei contains no cycle then
5 set T := T + ei
6 return T

Ford-Fulkerson’s
Algorithm 5: Ford-Fulkerson Algorithm

Input: digraph G = (V , E), capacities u : E→ Z+,
s, t, ∈ V

Output: maximal s-t-flow f
1 set f (e) = 0 for all e ∈ E
2 while there exists f -augmenting path in Gf do
3 choose f -augmenting path P
4 set Δf (P) = mina∈E(P) uf (a)
5 augment f along P by Δf (P)
6 update Gf

7 return f

DFS
Algorithm 6: Depth First Search (DFS)

Input: undirected graph G, vertex s ∈ V (G)
Output: tree (R, T ) ⊆ G, R reachable from s

1 set R := {s}, Q := {s} and T = ∅;
2 if Q = ∅ then return R, T ;
3 else v := last vertex added to Q;
4 choose w ∈ V (G) \ R with {v,w} ∈ E(G);
5 if there is no such w then
6 set Q := Q \ {v} and go to 2

7 set R := R ∪ {w}, Q := Q ∪ {w}, T := T ∪ {{v,w}}, go
to 2;

Fernando Dias
fernando.dias@aalto.fi

Combinatorial Optimization


