
LECTURE NOTES - PART I
Graphs Problems I

Lecture Notes - Part I
Graphs Problems I

Fernando Dias, Philine Schiewe and Piyalee Pattanaki

January 29, 2024

1

LECTURE NOTES - PART I
Graphs Problems I

CHAPTER 1
Introduction

1.1 DEFINITIONS

Here are a few definitions to start the course. First, combinatorial:

• adjective

• relating to selecting a given number of elements from a larger number without regard to their
arrangement.

Now optimization (or optimization, whichever spelling is your favourite):

• noun

• the action of making the best or most effective use of a situation or resource.

As any part of optimization, it can be achieved by either analyzing/Visualizing properties of functions /
extreme points or by applying numerical methods. Finally, optimization has important applications in fields
such as economics, statistics, bioinformatics, machine learning, and artificial intelligence.

1.2 MATHEMATICAL PROGRAMMING AND OPTIMIZATION

In this course, optimization is viewed as the core element of mathematical programming, which is a central
OR modelling paradigm. It can be simply defined using three major concepts: variables, domain and
functions.

Variables correspond to decisions/points of interest (business decisions, parameter definitions, settings,
geometries, among others). In our formulations, it will be the values where changes will be applied, and the
goal is to find the best values, according to each particular problem. Limiting which values each variable
can assume, the domain which represents constraints and limitations (such as logic, design, engineering,
etc.). Objective functions (which represent performance and quality measurements) are used to evaluate
which variable has the best value, considering the limitations present in the constraints.

However, mathematical programming has many applications in fields other than OR, which causes some
confusion. In this course, we will study mathematical programming in its most general form: both constraints
and objectives are nonlinear functions.

CHAPTER 1. INTRODUCTION 2

LECTURE NOTES - PART I
Graphs Problems I

1.3 TYPES OF MATHEMATICAL OPTIMIZATION MODELS

As in any field of optimization, the following rule of thumb is always valid:

The simpler are the assumptions which define a type of problem, the better are the methods to
solve such problems.

For this course (and optimization in general), the following notations are useful:

• x ∈ Rn: vector of (decision) variables xj , j = 1, . . . , n;

• f : Rn → R ∪ {±∞} - objective function;

• X ⊆ Rn: ground set (physical constraints);

• gi , hi : Rn → R: constraint functions;

• gi(x) ≤ 0 for i = 1, . . . ,m : inequality constraints;

• hi(x) = 0 for i = 1, . . . , l : equality constraints.

Our goal will be to solve variations of the general problem P:

(P) : min f (x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l

x ∈ X .

Which applies to any sub-field of optimization:

• Linear programming (LP): linear f (x) = c⊤x with c ∈ Rn; constraint functions gi(x) and hi(x) are
affine (a⊤i x − bi , with ai ∈ Rn, b ∈ R); X = {x ∈ Rn : xj ≥ 0, j = 1, . . . , n}.

• Nonlinear programming (NLP): some (or all) of the functions f , gi or hi are nonlinear;

• (Mixed-)integer programming ((M)IP): LP where (some of the) variables are binary (or integer).
X ⊆ Rk × {0, 1}n−k

• Mixed-integer nonlinearprogramming(MINLP): MIP+NLP.

In this course, we might face any of the previous sub-field, but the major change is that variables can be
discretized (binary or integer).

1.4 GRAPHS

Some useful definitions for this course are:

• graph G = (V ,E ,ψ): a powerful tool used in discrete mathematics and graph theory, where
objects are represented in the form of ”relation”;

• undirected graph are sub-categories of graphs where the direction of interaction does not matter.

– vertices V (or nodes and points);

– edges E (or links, arcs and line);

CHAPTER 1. INTRODUCTION 3

LECTURE NOTES - PART I
Graphs Problems I

– function ψ : E → {X ⊆ V : |X | = 2}

• directed (where the edge direction is crucial) graph G = (V ,E ,ψ)

– vertices V

– edges E

– function ψ : E → {(v ,w) ∈ V × V : v ̸= w}

• Edges e can have a value associated with it: → w −→ fuv called weight or flow;

• in practice: e = {u, v}, e = (u, v) respectively, G = (V ,E)

Remark: E can contain multiple parallel edges.

v1

v2 v3

v4

v5 v6

e1

e2
e3

e4e5

e6

e1

e2
e3

e4e5

e6

e1

e2
e3

e4e5

e6

Several structures can be extracted from graphs, especially based on edge progression. ConsideringW in
G from u1 to uk+1, as an edge progression with the following progression:

• sequence [u1, a1, u2, . . . , uk , ak , uk+1] with k ≥ 0

• ai = {ui , ui+1} ∈ E(G)

• e.g. [v3, e3, v2, e2, v1, e1, v2, e3, v3, e4, v4]

Generally, walks encompasses any edge progression. It can be separated in closed and open walks. For
the former, a walk is considered an open walk if the starting and ending nodes are different, i.e. the starting
node and the finishing are different. At the same time, the latter is a closed walk if the starting and ending
nodes are identical, i.e. if a walk starts and ends at the same node, then it is said to be a closed walk.

• edge progression with ai ̸= aj , 1 ≤ i < j ≤ k

• e.g. [v2, e2, v1, e1, v2, e3, v3, e4, v4]

However, it can be decomposed into smaller definitions:

• trail: an open walk in which no edge is repeated;

• circuit: closed trail;

CHAPTER 1. INTRODUCTION 4

LECTURE NOTES - PART I
Graphs Problems I

• cycle: same starting and ending node.

Another case is a path, which is a walk with no repeating nodes. For a path P in G from u1 to uk+1,
u1 − uk+1 path:

• graph ({u1, . . . , uk+1}, {a1, . . . , ak}) with [u1, a1, u2, . . . , uk , ak , uk+1] walk and ui ̸= uj , 1 ≤ i < j ≤
k + 1

• e.g. [v1, e1, v2, e3, v3, e4, v4]

v1

v2 v3

v4

v5 v6

e1

e2
e3

e4e5

e6

v1

v2 v3

v4

e1

e2
e3

e4

v1

v2 v3

v4

e1

e2
e3

e4

v1

v2 v3

v4

e1

e3

e4

Finally, reachability is a concept in which v is reachable from u if there is a u − v path in G and a graph is
connected if there is a u − v path in G for all u, v ∈ V (G).

v1

v2 v3

v4

v5 v6

e1

e2
e3

e4e5

e6

1.5 ALGORITHMS

For testing connective, the more straightforward approach is a visual representation is available, such as,
for example:

v1

v2 v3

v4

v5 v6

e1
e2

e3

e4e5

e6

If visual tools are not available, there are a few usual computational representations:

CHAPTER 1. INTRODUCTION 5

LECTURE NOTES - PART I
Graphs Problems I

incidence matrix adjacency matrix adjacency list

A ∈ {0, 1}|V |×|E |, A ∈ Z|V |×|V |, L = [ℓ(v) : v ∈ V],

av ,e =

{
1, if v ∈ e

0, if v /∈ e
av ,w = |{e = {v ,w} ∈ E}| ℓ(v) = [e : e = {u, v} ∈ E]

1 1 0 0 0 0
1 1 1 0 1 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 1




0 2 0 0 0 0
2 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0


ℓ(v1) = [e1, e2]

ℓ(v2) = [e1, e2, e3, e5]
ℓ(v3) = [e3, e4]
ℓ(v4) = [e4, e5]
ℓ(v5) = [e6]
ℓ(v6) = [e6]

O(|V ||E |) O(|V |2) O(|E | log |V |)

The easiest algorithm to verify connectivity is via DFS (Depth First Search):

Algorithm: DEPTH FIRST SEARCH (DFS)
Input: undirected graph G, vertex s ∈ V (G)
Output: tree (R,T) ⊆ G, R reachable from s

1 set R := {s}, Q := {s} and T = ∅;
2 if Q = ∅ then return R,T ;
3 else v := last vertex added to Q;
4 choose w ∈ V (G) \ R with {v ,w} ∈ E(G);
5 if there is no such w then
6 set Q := Q \ {v} and go to 2

7 set R := R ∪ {w}, Q := Q ∪ {w}, T := T ∪ {{v ,w}}, go to 2;

v1

v2 v3

v4

v5 v6

e1
e2

e3

e4e5

e6

Q R

v2

T

v2

v1

e1

v1

v4

e5v4

v3

e4v3

The concept of the algorithm is as follows:

• suppose w ∈ V (G) \ R is reachable from s

⇒ P is s − w path with {x , y} ∈ E(P), x ∈ R, y ∈ V (G) \ R

⇒ x is added to Q in line 7

⇒ Algorithm does not stop before x is removed from Q (line 6)

CHAPTER 1. INTRODUCTION 6

LECTURE NOTES - PART I
Graphs Problems I

⇒ there is no w ∈ V (G) \ R with {v ,w} ∈ E(G) E

In terms of runtime, for each node, the incident edges are considered; therefore, the runtime depends on
the storage of graphs. If adjacency lists are used, the runtime is O(m) = O(|E(G)|).

Analogous to DFS, there is also BFS (Breadth First Search) with the following algorithm:

Algorithm: BREADTH FIRST SEARCH (BFS)
Input: undirected graph G, vertex s ∈ V (G)
Output: tree T) ⊆ G

1 set Q := {s} and T = {s};
2 while Q ̸= ∅ do
3 v := first vertex in Q
4 set Q := Q \ {v}
5 while v has a neighbour not in T do
6 w := first neightbour of v not in T
7 set Q := Q ∪ {w}
8 set T := T ∪ {{v ,w}}

CHAPTER 1. INTRODUCTION 7

LECTURE NOTES - PART I
Graphs Problems I

CHAPTER 2
Paths and Trees

2.1 A FEW MORE DEFINITIONS

Recalling the definitions from the previous lecture, we can further improve the definitions of paths and
cycles. For a path P in G from u1 to uk+1 (as an edge progression):

• Graph ({u1, . . . , uk+1}, {a1, . . . , ak}) with [u1, a1, u2, . . . , uk , ak , uk+1] walk and ui ̸= uj , 1 ≤ i < j ≤
k + 1

• e.g. [v1, e1, v2, e3, v3, e4, v4]

For cycles such C in G:

• graph ({u1, . . . , uk}, {a1, . . . , ak}) with [u1, a1, u2, . . . , uk , ak , u1] (closed) walk, k ≥ 2 and ui ̸= uj ,
1 ≤ i < j ≤ k

• e.g. [v2, e3, v3, e4, v4, e5, v2]

• connected if there is a u − v path in G for all u, v ∈ V (G)

v1

v2 v3

v4

v5 v6

e1

e2
e3

e4e5

e6

CHAPTER 2. PATHS AND TREES 8

LECTURE NOTES - PART I
Graphs Problems I

2.2 NEWER DEFINITIONS

A graph G without a cycle is called forest, while a connected graph G without a cycle is called tree.

Now, let G = (V ,E) undirected graph with |V | = n. Then the following are equivalent:

1. G is a tree, i.e., connected and cycle-free.

2. G is cycle-free and has n − 1 edges.

3. G is connected and has n − 1 edges.

4. G is minimally connected (removing an edge⇒ not connected anymore).

5. G is maximally cycle-free (adding an edge⇒ cycle).

6. G contains a unique u − v path for any pair of vertices u, v ∈ V .

Let G = (V ,E) undirected graph. T = (V ,E ′) with E ′ ⊆ E is a spanning tree of G iff T is a tree. Hence,
G is connected if it contains a spanning tree. Let Kn = (V ,E) be the complete graph with |V | = n vertices,
i.e., for any u, v ∈ V the edge {u, v} ∈ E exists. Then the number of spanning trees in Kn is nn−2.

v1 v2

v3v4

2.3 FINDING PATHS

The most useful instance of paths is to identify the shortest path in a graph. Finding the minimum path
length between two nodes is trivial, and via BFS, it can be easily applied. At the same time, finding the
minimum path length between a node and all the others is also trivial and BFS apply to each node
individually would suffice.

Challenge: finding the minimum-cost path from a node to all the other in a weighted graph.

A weighted graph is a graph where all the edges have a specific value. It can also named as a flow
network.

Definition 1 (Flow network) A tuple G = (V ,E , f) is said to be a flow network if (V ,E) where for every
edge (u, v) ∈ E we have an associated positive integer flow value fuv .

CHAPTER 2. PATHS AND TREES 9

LECTURE NOTES - PART I
Graphs Problems I

It also satisfying conservation of flow for every v ∈ V \ {s, t}, where s is an unique source and t is unique
sink.

∑
(u,v)∈E

fuv =
∑

(v ,w)∈E

fvw . (2.1)

Therefore, the goal is to calculate the shortest path from a node to each other vertices. Unfortunately, BFS
will not suffice (because the shortest path may not have the fewest edges).

Alternative: Dijkstra’s algorithm.

Edsger Dijkstra (1930-2002) was a Dutch computer scientist, programmer, software engineer, and science
essayist and very influential in Computer Science and Discrete Mathematics. One of this most famous
quotes is (which is encapsulated in his most famous algorithm):

”Simplicity is a prerequisite for reliability.”

Figure 2.1: Edsger W. Dijkstra

Speaking of algorithm, it is general idea for Dijkstra’s approach is as follows:

1. Iteratively increase the ”set of nodes with known shortest distances”;

2. Any node outside this set will have a ”best distance so far”;

3. Update the ”best distance so far” until add all nodes to set.

The resulting algorithm is:

CHAPTER 2. PATHS AND TREES 10

LECTURE NOTES - PART I
Graphs Problems I

Algorithm: DIJKSTRA’S ALGORITHM

Input: undirected, connected graph G, weights c : E(G)→ R, nodes V , source s
1 dv distance to reach node v
2 pv node predecessor to node v
3 Q ← ∅ set of ”unkown distance” nodes.
4 for each node v in V do
5 dv ←∞
6 pv ← FALSE
7 add v in Q

8 ds ← 0
9 while Q ̸= ∅ do

10 u ← node in Q with min du

11 remove u from Q
12 for each neighbor v of u still in Q do
13 d ← du + cuv

14 if alt < dv then
15 dv ← alt
16 pv ← u

17 return dv ,pv

v1

v2

v3

v4

v5

v6

1

2 2

4

5

4

3

2

1

In terms of runtime, this algorithm, when implemented to its best, has a runtime to O(m + n · log(n), where
m is the amount of edges and n is the number of nodes.

CHAPTER 2. PATHS AND TREES 11

LECTURE NOTES - PART I
Graphs Problems I

Alternatively, there is also an integer linear programming which can be applied (although not recommend):

min
∑

(u,v)∈E

fuv xuv (2.2a)

subject to: (2.2b)∑
(s,v)∈E

xsv = 1, (2.2c)∑
(u,t)∈E

xut = 1, (2.2d)∑
(u,v)∈E

xuv −
∑

(v ,w)∈E

xvwi = 0, (2.2e)

xuv ∈ {0, 1}, ∀(u, v) ∈ E (2.2f)

Constraints (2.2c) and (2.2d) ensures that a path starts in the source and ends in the sink, while constraint

(2.2e) guarantees that intermediary nodes have a single edge in and a single edge out. The objective
minimizes the total combined weight of the edges in that path.

2.4 MINIMAL SPANNING TREES

For spanning trees, the goal is to find an algorithm for a minimum spanning tree (MST). First, formally
establishing the problem:

Instance: An undirected, connected graph G, weights c : E(G)→ R.

Task: Find a spanning tree T in G of minimum weight.

v1

v2

v3

v4

v5

v6

1

2 2

4

5

4

3

2

1

The optimality conditions for such a problem are as follows:

Theorem 1 Let (G, c) be an instance of the MST problem and T a spanning tree in G. Then the following
are equivalent:

1. T is optimal.

2. For every e = {x , y} ∈ E(G) \ E(T), no edge on the x − y path in T has higher cost than e.

3. For every e ∈ E(T), e is a minimum cost edge of δ(V (C)), where C is a connected component of
T − e.

4. We can order E(T) = {e1, . . . , en−1} such that for each i ∈ {1, . . . , n − 1} there exists a set
X ⊆ V (G) such that ei is a minimum cost edge of δ(X) and ej /∈ δ(X) for all j ∈ {1, . . . , i − 1}.

CHAPTER 2. PATHS AND TREES 12

LECTURE NOTES - PART I
Graphs Problems I

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

1

2 2

4

5

4

3

2

12

4

5

4

3

24

3

δ(X) = {{u, v} ∈ E : u ∈ X , v /∈ x}
edges from X to V (G) \ X

This problem has been studied to extension, and two algorithms have been proposed from the literature.
The starting point comes from the following theorem:

Theorem 2 Let G = (V ,E) undirected graph with |V | = n. Then the following are equivalent:

1. G is a tree, i.e., connected and cycle-free.

2. G is cycle-free and has n − 1 edges.

3. G is connected and has n − 1 edges.

4. G is minimally connected (removing an edge⇒ not connected anymore).

5. G is maximally cycle-free (adding an edge⇒ cycle).

6. G contains a unique u − v path for any pair of vertices u, v ∈ V.

2.4.1 Kruskal’s Algorithm

The first option (in no particular order) is Kruskal’s algorithm (proposed by Joseph Kruskal in 1956).

Algorithm: KRUSKAL’S ALGORITHM

Input: undirected, connected graph G, weights c : E(G)→ R
Output: spanning tree T of minimum weight

1 sort edges such that c(e1) ≤ c(e2) ≤ . . . ≤ c(em)
2 set T := (V (G), ∅)
3 for i := 1 to m do
4 if T + ei contains no cycle then
5 set T := T + ei

6 return T

In the following picture, it is shown how each step is calculated:

‘

v1

v2

v3

v4

v5

v6

1

2 2

4

5

4

3

2

1

1; e1

2; e3 2; e4

4; e8

5; e9

4; e7

3; e6

2; e5

1; e2

1; e1

2; e3 2; e4

4; e8

5; e9

4; e7

3; e6

2; e5

1; e2

CHAPTER 2. PATHS AND TREES 13

LECTURE NOTES - PART I
Graphs Problems I

Execution:
E(T) = ∅
E(T) = {e1}
E(T) = {e1, e2}
E(T) = {e1, e2, e3}
E(T) = {e1, e2, e3, e5}
E(T) = {e1, e2, e3, e5, e6}

Test:
e1 = {v1, v3} ✓

e2 = {v5, v6} ✓

e3 = {v1, v2} ✓

e4 = {v2, v3} ✗⇝ cycle
e5 = {v4, v6} ✓

e6 = {v3, v6} ✓

e7 = {v3, v5} ✗ ⇝ cycle
e8 = {v2, v4} ✗ ⇝ cycle
e9 = {v3, v5} ✗ ⇝ cycle

In terms of correctness, T is maximally cycle-free (no further edge can be added), which is contemplated
as a tree. For each edge ei = {x , y} ∈ E(G) \ E(T):

• T + ei contains a cycle in line 4;

• there exists a x − y path in T at this point;

• all edges in T have lower weight than ei at this point.

Hence, T is MST.

In terms of runtime:

• sorting edges: O(m logm)

• loop lines 3-5: checking m times for cycles

• checking for cycle containing e = {u, v}

– DFS starting from u with at most n edges, check if v is reachable: O(n)

⇝ total running time: O(mn)

To sum up, Kruskal’s algorithm is guaranteed to be cycle-free and greedily add edges until maximally
cycle-free.

2.4.2 Prim’s Algorithm

An alternative is Prim’s algorithm (developed in 1930 by Czech mathematician Vojtěch Jarnı́k and later re-
discovered and republished by computer scientists Robert C. Prim in 1957 and Edsger W. Dijkstra in 1959).

Algorithm: PRIM’S ALGORITHM

Input: undirected, connected graph G, weights c : E(G)→ R
Output: spanning tree T of minimum weight

1 choose v ∈ V (G)
2 set T := ({v}, ∅)
3 while V (T) ̸= V (G) do
4 choose an edge e ∈ δG(V (T)) of minimum weight
5 set T := T + e

6 return T

CHAPTER 2. PATHS AND TREES 14

LECTURE NOTES - PART I
Graphs Problems I

Using the following figure as an example:

v1

v2

v3

v4

v5

v6

1

2 2

4

5

4

3

2

12

4

5

4

3

2

1

2 3

2

1

Execution:
V (T) = {v1}
E(T) = ∅
V (T) = {v1, v3}
E(T) = {{v1, v3}}
V (T) = {v1, v3, v2}
E(T) = {{v1, v3}, {v2, v3}}
V (T) = {v1, v3, v2, v6}
E(T) = {{v1, v3}, {v2, v3}, {v3, v6}}
V (T) = {v1, v3, v2, v6, v5}
E(T) = {{v1, v3}, {v2, v3}, {v3, v6}, {v5, v6}}
V (T) = {v1, v3, v2, v6, v5, v4}
E(T) = {{v1, v3}, {v2, v3}, {v3, v6}, {v5, v6}, {v4, v6}}

Test:
δG(V (T)) =
{{v1, v2}, {v1, v3}}
{{v1, v2}, {v2, v3}, {v3, v4}, {v3, v5}, {v3, v6}}
{{v2, v4}, {v3, v4}, {v3, v5}, {v3, v6}}
{{v2, v4}, {v3, v4}, {v3, v5}, {v4, v6}, {v5, v6}}
{{v2, v4}, {v3, v4}, {v4, v6}}

Regarding runtime, the best performance can be achieved as O(m log n).

Finally, a ILP formulation for MST (known as Martin formulation):

min
∑

(u,v)∈E

fuv xuv (2.3a)

subject to: (2.3b)∑
(u,v)∈E

xuv = n − 1, (2.3c)

yk
uv + yk

vi = xuv , (u, v) ∈ E , k ∈ V (2.3d)∑
k∈V\{(u,v)}

yv
uk + xuv = 1, ∀(i, j) ∈ E (2.3e)

xuv , yk
uv , y

k
vu ∈ {0, 1}, ∀(u, v) ∈ E , k ∈ V (2.3f)

In the formulation above, yk
uv denotes that edge (u, v) is in the spanning tree and node k is on the side of v .

The constraint (2.3d) guarantees that if (u, v) ∈ E is selected into the tree, any node k ∈ V must be on
either side of v (depending if yk

uv = 1 or yk
vu = 1). If (u, v) ∈ E is not in the tree, any node k cannot be on

the side of v or u.

The final constraint ensures that if (u, v) ∈ E is in the tree, edges (u, k) which connects u are on the side
of u. If it is not in the tree, there must be and edge (u, k) such that v is on the side of k (yv

uk = 1 for some
k).

CHAPTER 2. PATHS AND TREES 15

LECTURE NOTES - PART I
Graphs Problems I

CHAPTER 3
Flows and Cuts

In graph theory, flow network is a directed graph G = (V ,E) where each edge has a capacity
u : E → R+ and each edge receives a flow f : E → R+, where the amount of flow allowed in each edge
cannot surpass its capacity (f (e) ≤ u(e), e ∈ E). Hence, the excess of a flow f at v ∈ V :

exf (v) :=
∑

e∈δ−(v)

f (e)−
∑

e∈δ+(v)

f (e)

δ−(v) = {e ∈ E : e = (u, v)} incoming edges

δ+(v) = {e ∈ E : e = (v , u)} outgoing edges

The flow in this type of graph also have the satisfy flow conservation which state that:

Definition 2 The total net flow entering a node v is zero for all nodes in the network except the source s
and sink t.

This can be also expressed based on the vale of flow through through a node. If f satisfies flow conversation
rule at v , then exf (v) = 0. When all nodes satisfy flow conservation exf (v) = 0 for all v ∈ V , we
express such behaviour as circulation. Finally, in a path between the source s and the sink t , the s-t-
flow : exf (s) ≤ 0, exf (v) = 0 for all v ∈ V \ {s, t}, in which the value of s-t-flow can be calculated as
value(f) = −exf (s) = exf (t).

s

v1

v2

v3

t

2

5

3 4

1

4 3

2; 2

3; 5

1; 3 1; 4

1; 1

0; 4 3; 3

value(f) = 5

CHAPTER 3. FLOWS AND CUTS 16

LECTURE NOTES - PART I
Graphs Problems I

A cut in graph theory corresponds to a partition of the nodes in a graph splitting them into disjoint subsets.
For example, see Figure 3.1.

Figure 3.1: Example of a cut in a graph

A specific type of cut is a s-t-cut δ+(S) where S ⊆ V and s ∈ S, t /∈ S. Therefore:

δ+(S) = {e = (u, v) ∈ E : u ∈ S, v ∈ V \ S}

The capacity of such cut can be expressed as:

u(δ+(S)) =
∑

e∈δ+(S)

u(e)

s

v1

v2

v3

t

2

5

3 4

1

4 3

capacity u(δ+({s, v2, v3})) = 6

CHAPTER 3. FLOWS AND CUTS 17

LECTURE NOTES - PART I
Graphs Problems I

3.1 WEEK DUALITY

Using the definitions of flows and cuts, we can establish the following conclusion:

Lemma 1 For any S ⊆ V with s ∈ S, t /∈ S and any s-t-flow f :

1. value(f) =
∑

e∈δ+(S) f (e)−
∑

e∈δ−(S) f (e)

2. value(f) ≤ u(δ+(S))

Proof 1 From the flow conservation for v ∈ S \ {s}:

value(f) = −exf (s)

=
∑

e∈δ+(s)

f (e)−
∑

e∈δ−(s)

f (e)

=
∑
v∈S

(∑
e∈δ+(v)

f (e)−
∑

e∈δ−(v)

f (e)
)

=
∑

e∈δ+(S)

f (e)−
∑

e∈δ−(S)

f (e)

This can also expressed as:

0 ≤ f (e) ≤ u(e)

3.2 MAXIMUM FLOWS AND MINIMAL CUTS

Once again, the task of find which flow and which cuts a graph can accept is not challenging. However,
whenever optimal values (either minimal or maximal) are required, the configuration of such problems
becomes challenging.

First, we state both problems:

Problem 1 Maximum Flow Problem (MaxFlow) Given a flow network represent as a digraph G = (v ,E)
with capacities u and unique source and unique sink s and t respectively, such that s, t ∈ V.
The goal is to find an s-t-flow of maximum value.

Problem 2 Minimum Cut Problem (MinCut) Given a flow network represent as a digraph G = (v ,E) with
capacities u and unique source and unique sink s and t respectively, such that s, t ∈ V.
The goal is to find an s-t-cut of minimum capacity.

Although those two problems might seem unrelated or even contradictory, they can be directly connected
via the following lemmas:

CHAPTER 3. FLOWS AND CUTS 18

LECTURE NOTES - PART I
Graphs Problems I

Lemma 2 Let G = (V ,E) be a digraph with capacities u and s, t ∈ V. Then

max{value(f) : f s-t-flow} ≤ min{u(δ+(S)) : δ+(S) s-t-cut}.

Lemma 3 Let G = (V ,E) be a digraph with capacities u and s, t ∈ V. Let f be an s-t-flow and δ+(S) be
an s-t-cut. If

value(f) = u(δ+(S))

then f is a maximal flow and δ+(S) is a minimal cut.

Hence, a single algorithm is enough to solve both problems.
Remark: in combinatorics, many problems can be expressed as another. This is a key point for future
lectures.

3.3 IDEA FOR FINDING MAXIMAL FLOWS

If there exists non-saturated s-t-path (f (e) < u(e) for all edges), then the flow f can be increased along this
path. This means that if the path is not satured, more flow can be put into that path.

However, non-existence of such a path does not guarantee optimality.

s

v1

v2

v3

t

1; 2

3; 5

0; 3 1; 4

0; 1

0; 4 3; 3

2; 2

3; 5

1; 3 1; 4

1; 1

0; 4 3; 3

2; 2

4; 5

0; 3 2; 4

1; 1

1; 4 3; 3

value(f) = 4 value(f) = 5 value(f) = 6
u(δ+({s, v2, v3})) = 6

In this context, we introduced another concept: residual graphs. Considering that G = (V ,E) is a digraph
with capacities u, f be an s-t-flow, a residual graph is the graph Gf = (V ,Ef) with Ef = E+ ∪ E− and
capacity uf :

• forward edges +e ∈ E+:
for e = (u, v) ∈ E with f (e) < u(r), add +e = (u, v) with residual capacity uf (+e) = u(e)− f (e)

• backward edges −e ∈ E−:
for e = (u, v) ∈ E with f (e) > 0, add −e = (v , u) with residual capacity uf (−e) = f (e)

Remark: Gf can have parallel edges even if G is simple.

CHAPTER 3. FLOWS AND CUTS 19

LECTURE NOTES - PART I
Graphs Problems I

s

v1

v2

v3

t

2; 2

3; 5

1; 3 1; 4

1; 1

0; 4 3; 3

s

v1

v2

v3

t

2

2 4

3
2 1

1

33

1

In addition, we can also define f -augmenting paths:

Definition 3 An s-t-path P in Gf is called augmenting path. The value:

f (P) = min
a∈E(P)

uf (a)

is called residual capacity of P.
Remark: f (P) > 0 as uf (a) > 0 for all a ∈ Ef .

s

v1

v2

v3

t

2

2 4

3
2 1

1

33

1

f (P) = 1

With this definition in mind, the following theorem is established.

Theorem 3 An s-t-flow is optimal if and only if there exists no f -augmenting path.

CHAPTER 3. FLOWS AND CUTS 20

LECTURE NOTES - PART I
Graphs Problems I

Proof idea:

⇒ P f -augmenting path. Construct s-t-flow

f̄ (e) =


f (e) + f (P) if + e ∈ E(P)

f (e)− f (P) if − e ∈ E(P)

f (e) otherwise

with higher value.

Proof idea:

⇐ There exists no f -augmenting path. Consider s-t-cut δ+(S) defined by connected component S of s
in Gf . Show that

value(f) = u(δ+(S)).

s

v1

v2

v3

t

3

1 3

2

2 2

1

34

1

s

v1

v2

v3

t

2; 2

4; 5

0; 3 2; 4

1; 1

1; 4 3; 3

With this previous theorem in mind, we can conclude that:

Theorem 4 (Ford and Fulkerson, 1956; Dantzig and Fulkerson, 1956)
In a digraph G with capacities u, the maximum value of an s-t-flow equals the minimum capacity of an
s-t-cut.

CHAPTER 3. FLOWS AND CUTS 21

LECTURE NOTES - PART I
Graphs Problems I

Algorithm: FORD-FULKERSON ALGORITHM

Input: digraph G = (V ,E), capacities u : E → Z+, s, t ,∈ V
Output: maximal s-t-flow f

1 set f (e) = 0 for all e ∈ E
2 while there exists f -augmenting path in Gf do
3 choose f -augmenting path P
4 set f (P) = mina∈E(P) uf (a)
5 augment f along P by f (P)
6 update Gf

7 return f

3.4 FINDING MAXIMAL FLOWS

The most common algorithm for maximum flow was first published by L. R. Ford Jr. and D. R. Fulkerson in
in 1956. It is commonly known as Ford-Fulkerson algorithm. The algorithm is as follows:

s

v1

v2

v3

t

0; 2

0; 5

0; 3 0; 4

0; 1

0; 4 0; 3

0; 2

3; 5

0; 3 0; 4

0; 1

0; 4 3; 3

2; 2

3; 5

0; 3 2; 4

0; 1

0; 4 3; 3

2; 2

4; 5

0; 3 2; 4

1; 1

1; 4 3; 3

s

v1

v2

v3

t

2

5

3 4

1

4 3

2

2

3 4

1

4

3 3

2

3 2

1

4

3 3

2 2

1

3 2

4

4 3

2 2

1

1

f (P) = 3

f (P) = 2

f (P) = 1

Analysing the previous algorithms allow us to infer a few details. Lines 1, 4, 5 and 6 can be calculated in
linear time in terms the number of edges m in a graph. An efficient algorithm to apply in Line 3 is actually
DFS (Depth-First Search) which is also linear in the number of edges m. The WHILE loop requires up to
n ·U, where n is the number of nodes and U is maxe∈Eu(e). The entire algorithm has a runtime proportional
to O(n ·m · U) (polynomial).
Remark: flow f is integer.

An improved version of this algorithm allows for real values in the capacities. In this case, for non-integer
capacities, f can be arbitrarily small when P is not chosen carefully , resulting in a runtime O(n ·m2).

The resulting algorithm represent such adaption:

Last but not least, there is also linear programming formulation for this problem. See full model below:

CHAPTER 3. FLOWS AND CUTS 22

LECTURE NOTES - PART I
Graphs Problems I

Algorithm: EDMONDS-KARP ALGORITHM

Input: digraph G = (V ,E), capacities u : E → R+, s, t ,∈ V
Output: maximal s-t-flow f

1 set f (e) = 0 for all e ∈ E
2 while there exists f -augmenting path in Gf do
3 choose f -augmenting path P with minimal number of edges
4 set f (P) = mina∈E(P) uf (a)
5 augment f along P by f (P)
6 update Gf

7 return f

max
∑

e∈δ+(s)

fe (3.1a)

s.t.
∑

e∈δ−(v)

fe −
∑

e∈δ+(v)

fe = 0 v ∈ V \ {s, t} (3.1b)

fe ≤ u(e) e ∈ E (3.1c)

fe ≥ 0 e ∈ E (3.1d)

The flow conservation flow conversation constraints (3.1b) are part of many LPs and IPs, e.g. for shortest
path. The coefficient matrix of flow conversation constraints is node-arc-incidence matrix and it is totally
unimodular, i.e., all extreme points are integer.

CHAPTER 3. FLOWS AND CUTS 23

LECTURE NOTES - PART I
Graphs Problems I

CHAPTER 4
Matching

As always, a definition at first:

Definition 4 Matching in an undirected graph is a set of edges without common vertices.

Also known as independent edge set, this problem goal is to find a subset of the edges as a matching if
each node appears in at most one edge of that matching.

From an undirected graph G = (V ,E), M ⊂ E is called matching if all e ∈ M are pairwise disjoint, i.e., if
the endpoints are different. In addition, M ⊂ E is a maximum matching in G if M is a matching with highest
cardinality, i.e.,

|M ′| ≤ |M| for all matchings M ′

Some illustrations as example:

Assignment different workers to different tasks in order that there is no conflict or overlapping.

CHAPTER 4. MATCHING 24

LECTURE NOTES - PART I
Graphs Problems I

Setting pairs for homework assignments.

For this problem, a simple integer linear programming formulation can be calculated:

Maximize
∑
e∈E

xe

Subject to:∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V

xi j ∈ {0, 1} ∀e ∈ E

where δ(v) is the set of incident edges of v ∈ V , such that:

δ(v) = {e ∈ E : e = {v ,w}}

Like flow problems, we can also define M-augmenting paths. Let G = (V ,E) be an undirected graph and
M ⊆ E matching. A node v ∈ V is said to be covered by M if v ∈ e for some e ∈ M and it is exposed by
M if v /∈ e for all e ∈ M.

With those, two types of paths can be defined M-alternating path P, where edges E(P) are alternately in M
and not in M (or not in M and in M) and M-augmenting path P that is a special type of M-alternating path,
where the first and last vertex exposed.

Remark: M-augmenting paths have odd number of edges.

According to Berge’s Theorem:

Theorem 5 (Petersen (1891), Berge (1957)) Let G be a graph with some matching M. Then M is the
maximum if and only if there is no M-augmenting path.

Proof 2 Proof idea⇒: By contraposition: Let P = (v0, e1, . . . , ek , vk) be an M-augmenting path.

• by definition: v0, vk exposed

⇒ |E(P) \M| = |E(P) ∩M|+ 1

CHAPTER 4. MATCHING 25

LECTURE NOTES - PART I
Graphs Problems I

⇒ M ′ = (M \ E(P)) ∪ (E(P) \M) is matching with |M ′| = |M|+ 1

⇒ M not maximum

v1

v2

v3

v4

v5

v8

v6

v7

v9

From this theorem, we can derive a few lemmas, such as

Lemma 4 Let G be a graph with two matchings M,M ′. Let G′ = (V ,E ′ = M M ′), with symmetric difference

M M ′ = (M ∪M ′) \ (M ∩M ′).

Then, the connected components of G′ are

• isolated vertices

• cycles C with |E(C)| ∈ 2N where edges in C are alternately in M and M ′

• paths P = (v0, e1, . . . , ek , vk) where edges are alternately in M and M ′

graph G

graph G′

Proof 3 Proof idea: Let M, M ′ matchings:

|{e ∈ M : v ∈ e}| ≤ 1, v ∈ V

|{e ∈ M ′ : v ∈ e}| ≤ 1, v ∈ V

⇒|{e ∈ E ′ : v ∈ e}| ≤ 2, v ∈ V

If gG′(v) = |{e ∈ E ′ : v ∈ e}| = 2: ∃!e ∈ M : v ∈ e and ∃!e ∈ M ′ : v ∈ e.

• isolated vertices v ⇝ gG′(v) = 0

CHAPTER 4. MATCHING 26

LECTURE NOTES - PART I
Graphs Problems I

• cycles C with |E(C)| ∈ 2N⇝ gG′(v) = 2

• paths P = (v0, e1, . . . , ek , vk)⇝ gG′(v0) = 0 = gG′(vk) = 1, gG′(vi) = 2, 1 ≤ i ≤ k − 1

Another way to prove the same theorem is listed below:

Theorem 6 (Petersen (1891), Berge (1957)) Let G be a graph with some matching M. Then M is the
maximum if and only if there is no M-augmenting path.

Proof 4 Proof idea:
By contraposition: Let M ′ be a matching with |M ′| > |M|.
Construct G′.

|M ′| > |M| ⇒ |E ′ ∩M ′| > |E ′ ∩M|
⇒ ∃P = (v0, e1, . . . , ek , vk) with e1 ∈ M ′, ek ∈ M ′

⇒ v0, vk exposed by M

⇒ P M-augmenting path

graph G′

4.1 MAXIMUM MATCHING

With all of this in mind, the resulting algorithm can be expressed:

Algorithm: MAXIMUM MATCHING

Input: undirected graph G = (V ,E)
Output: maximum matching M

1 set M = ∅
2 while there exists M-augmenting path in G do
3 choose M-augmenting path P
4 set M = (M \ E(P)) ∪ (E(P) \M)

5 return M

In this algorithm, up to |V |2 iterations are required. There is no obvious way to find an M-augmenting path.
However, for bipartite graphs, the easier way is to find s-t-path in auxiliary graphs, while in general graphs,
Edmond’s blossom algorithm is the best approach. Nevertheless, such an algorithm is highly complex
and has a polynomial runtime.

However, the challenge still remains on finding M-alternating paths. For bipartite graph G = (V ,E) with:

CHAPTER 4. MATCHING 27

LECTURE NOTES - PART I
Graphs Problems I

• V = A ∪ B, A ∩ B = ∅

• E ⊆ {{a, b} : a ∈ A, b ∈ B}

The easier approach is to construct auxiliary directed graph G′ = (V ′,E ′) with:

V ′ =V ∪ {s, t}, s, t /∈ V

E ′ ={(b, a) : {a, b} ∈ M, a ∈ A, b ∈ B}
∪ {(a, b) : {a, b} ∈ E \M, a ∈ A, b ∈ B}
∪ {(s, a) : a exposed, a ∈ A}
∪ {(b, t) : b exposed, b ∈ B}

Then, ∃ M-augmenting path in G if and only if ∃ s-t-path in G′.

a1

a2

a3

b1

b2

b3

b4

a1

a2

a3

b1

b2

b3

b4

s t

The resulting algorithm encapsulates this procedure:

Algorithm: MAXIMUM MATCHING BIPARTITE GRAPHS

Input: undirected bipartite graph G = (V ,E)
Output: maximum matching M

1 set M = ∅
2 construct G′

3 while there exists s-t-path in G′ do
4 choose s-t-path P
5 set M = (M \ E(P)) ∪ (E(P) \M)
6 update G′

7 return M

In order to construct G′, it takes up to O(n + m), where n = |V | and m = |E |, due to no isolated nodes in
G . The remaining n

2 iterations are divided into:

• finding P: O(m)

• updating M: O(n)

• updating G′: O(n)

The final runtime is O(nm).

CHAPTER 4. MATCHING 28

LECTURE NOTES - PART I
Graphs Problems I

4.1.1 Connection to MaxFlow

Solving matching can also be formulated as solving maximum flow. By constructing an auxiliary directed
graph G′′ = (V ′′,E ′′) with:

V ′′ =V ∪ {s, t}, s, t /∈ V

E ′′ ={(a, b) : {a, b} ∈ E , a ∈ A, b ∈ B}
∪ {(s, a) : a ∈ A}
∪ {(b, t) : b ∈ B}

and capacity u(e) = 1 for all e ∈ E ′′. With that, G′′ has maximal flow with value k if and only if G has a
maximum matching of cardinality k .

CHAPTER 4. MATCHING 29

	Introduction
	Definitions
	Mathematical programming and optimization
	Types of mathematical optimization models
	Graphs
	Algorithms

	Paths and Trees
	A few more definitions
	Newer definitions
	Finding Paths
	Minimal Spanning Trees
	Kruskal's Algorithm
	Prim's Algorithm

	Flows and Cuts
	Week duality
	Maximum Flows and Minimal Cuts
	Idea for finding maximal flows
	Finding Maximal Flows

	Matching
	Maximum Matching
	Connection to MaxFlow

