
LECTURE NOTES - PART I
Main Takeaways

Lecture Notes - Part I
Main Takeaways

Fernando Dias, Philine Schiewe and Piyalee Pattanaki

February 4, 2024

1

LECTURE NOTES - PART I
Main Takeaways

CHAPTER 1
Definitions

1.1 INTRODUCTION

Variables correspond to decisions/points of interest (business decisions, parameter definitions, settings,
geometries, among others). In our formulations, it will be the values where changes will be applied, and the
goal is to find the best values, according to each particular problem.

Limiting which values each variable can assume, the domain which represents constraints and limitations
(such as logic, design, engineering, etc.).

Objective functions (which represent performance and quality measurements) are used to evaluate which
variable has the best value, considering the limitations present in the constraints.

However, mathematical programming has many applications in fields other than OR, which causes some
confusion. In this course, we will study mathematical programming in its most general form: both constraints
and objectives are nonlinear functions.

1.2 GRAPHS

Some useful definitions for this course are:

• graph G = (V ,E ,ψ): a powerful tool used in discrete mathematics and graph theory, where
objects are represented in the form of ”relation”;

• undirected graph are sub-categories of graphs where the direction of interaction does not matter.

– vertices V (or nodes and points);

– edges E (or links, arcs and line);

– function ψ : E → {X ⊆ V : |X | = 2}

• directed (where the edge direction is crucial) graph G = (V ,E ,ψ)

– vertices V

– edges E

– function ψ : E → {(v ,w) ∈ V × V : v ̸= w}

CHAPTER 1. DEFINITIONS 2

LECTURE NOTES - PART I
Main Takeaways

• Edges e can have a value associated with it: → w −→ fuv called weight or flow;

• in practice: e = {u, v}, e = (u, v) respectively, G = (V ,E)

1.3 GRAPH REPRESENTATION

incidence matrix adjacency matrix adjacency list

A ∈ {0, 1}|V |×|E |, A ∈ Z|V |×|V |, L = [ℓ(v) : v ∈ V],

av ,e =

{
1, if v ∈ e

0, if v /∈ e
av ,w = |{e = {v ,w} ∈ E}| ℓ(v) = [e : e = {u, v} ∈ E]

1 1 0 0 0 0
1 1 1 0 1 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 1

0 2 0 0 0 0
2 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

ℓ(v1) = [e1, e2]

ℓ(v2) = [e1, e2, e3, e5]
ℓ(v3) = [e3, e4]
ℓ(v4) = [e4, e5]
ℓ(v5) = [e6]
ℓ(v6) = [e6]

O(|V ||E |) O(|V |2) O(|E | log |V |)

CHAPTER 1. DEFINITIONS 3

LECTURE NOTES - PART I
Main Takeaways

CHAPTER 2
Paths and Trees

2.1 SHORTEST PATH

Challenge: finding the minimum-cost path from a node to all the other in a weighted graph.

Definition 1 (Flow network) A tuple G = (V ,E , f) is said to be a flow network if (V ,E) where for every
edge (u, v) ∈ E we have an associated positive integer flow value fuv .

Alternative: Dijkstra’s algorithm.

2.2 MINIMAL SPANNING TREES

Instance: An undirected, connected graph G, weights c : E(G)→ R.

Task: Find a spanning tree T in G of minimum weight.

This problem has been studied to extension, and two algorithms have been proposed from the literature.
The first option (in no particular order) is Kruskal’s algorithm (proposed by Joseph Kruskal in 1956). An
alternative is Prim’s algorithm (developed in 1930 by Czech mathematician Vojtěch Jarnı́k and later re-
discovered and republished by computer scientists Robert C. Prim in 1957 and Edsger W. Dijkstra in 1959).

CHAPTER 2. PATHS AND TREES 4

LECTURE NOTES - PART I
Main Takeaways

CHAPTER 3
Flows and Cuts

In graph theory, flow network is a directed graph G = (V ,E) where each edge has a capacity
u : E → R+ and each edge receives a flow f : E → R+, where the amount of flow allowed in each edge
cannot surpass its capacity (f (e) ≤ u(e), e ∈ E). Hence, the excess of a flow f at v ∈ V :

exf (v) :=
∑

e∈δ−(v)

f (e)−
∑

e∈δ+(v)

f (e)

δ−(v) = {e ∈ E : e = (u, v)} incoming edges

δ+(v) = {e ∈ E : e = (v , u)} outgoing edges

The flow in this type of graph also have the satisfy flow conservation which state that:

Definition 2 The total net flow entering a node v is zero for all nodes in the network except the source s
and sink t.

CHAPTER 3. FLOWS AND CUTS 5

LECTURE NOTES - PART I
Main Takeaways

CHAPTER 4
Matching

As always, a definition at first:

Definition 3 Matching in an undirected graph is a set of edges without common vertices.

Also known as independent edge set, this problem goal is to find a subset of the edges as a matching if
each node appears in at most one edge of that matching.

From an undirected graph G = (V ,E), M ⊂ E is called matching if all e ∈ M are pairwise disjoint, i.e., if
the endpoints are different. In addition, M ⊂ E is a maximum matching in G if M is a matching with highest
cardinality, i.e.,

|M ′| ≤ |M| for all matchings M ′

Some illustrations as example:

Assignment different workers to different tasks in order that there is no conflict or overlapping.

CHAPTER 4. MATCHING 6

LECTURE NOTES - PART I
Main Takeaways

Setting pairs for homework assignments.

For this problem, a simple integer linear programming formulation can be calculated:

Maximize
∑
e∈E

xe

Subject to:∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V

xi j ∈ {0, 1} ∀e ∈ E

where δ(v) is the set of incident edges of v ∈ V , such that:

δ(v) = {e ∈ E : e = {v ,w}}

CHAPTER 4. MATCHING 7

LECTURE NOTES - PART I
Main Takeaways

CHAPTER 5
Algorithms

Algorithm: DEPTH FIRST SEARCH (DFS)
Input: undirected graph G, vertex s ∈ V (G)
Output: tree (R,T) ⊆ G, R reachable from s

1 set R := {s}, Q := {s} and T = ∅;
2 if Q = ∅ then return R,T ;
3 else v := last vertex added to Q;
4 choose w ∈ V (G) \ R with {v ,w} ∈ E(G);
5 if there is no such w then
6 set Q := Q \ {v} and go to 2

7 set R := R ∪ {w}, Q := Q ∪ {w}, T := T ∪ {{v ,w}}, go to 2;

Algorithm: BREADTH FIRST SEARCH (BFS)
Input: undirected graph G, vertex s ∈ V (G)
Output: tree T) ⊆ G

1 set Q := {s} and T = {s};
2 while Q ̸= ∅ do
3 v := first vertex in Q
4 set Q := Q \ {v}
5 while v has a neighbour not in T do
6 w := first neightbour of v not in T
7 set Q := Q ∪ {w}
8 set T := T ∪ {{v ,w}}

CHAPTER 5. ALGORITHMS 8

LECTURE NOTES - PART I
Main Takeaways

Algorithm: DIJKSTRA’S ALGORITHM

Input: undirected, connected graph G, weights c : E(G)→ R, nodes V , source s
1 dv distance to reach node v
2 pv node predecessor to node v
3 Q ← ∅ set of ”unkown distance” nodes.
4 for each node v in V do
5 dv ←∞
6 pv ← FALSE
7 add v in Q

8 ds ← 0
9 while Q ̸= ∅ do

10 u ← node in Q with min du

11 remove u from Q
12 for each neighbor v of u still in Q do
13 d ← du + cuv

14 if alt < dv then
15 dv ← alt
16 pv ← u

17 return dv ,pv

Algorithm: KRUSKAL’S ALGORITHM

Input: undirected, connected graph G, weights c : E(G)→ R
Output: spanning tree T of minimum weight

1 sort edges such that c(e1) ≤ c(e2) ≤ . . . ≤ c(em)
2 set T := (V (G), ∅)
3 for i := 1 to m do
4 if T + ei contains no cycle then
5 set T := T + ei

6 return T

Algorithm: PRIM’S ALGORITHM

Input: undirected, connected graph G, weights c : E(G)→ R
Output: spanning tree T of minimum weight

1 choose v ∈ V (G)
2 set T := ({v}, ∅)
3 while V (T) ̸= V (G) do
4 choose an edge e ∈ δG(V (T)) of minimum weight
5 set T := T + e

6 return T

CHAPTER 5. ALGORITHMS 9

LECTURE NOTES - PART I
Main Takeaways

Algorithm: FORD-FULKERSON ALGORITHM

Input: digraph G = (V ,E), capacities u : E → Z+, s, t ,∈ V
Output: maximal s-t-flow f

1 set f (e) = 0 for all e ∈ E
2 while there exists f -augmenting path in Gf do
3 choose f -augmenting path P
4 set f (P) = mina∈E(P) uf (a)
5 augment f along P by f (P)
6 update Gf

7 return f

Algorithm: MAXIMUM MATCHING

Input: undirected graph G = (V ,E)
Output: maximum matching M

1 set M = ∅
2 while there exists M-augmenting path in G do
3 choose M-augmenting path P
4 set M = (M \ E(P)) ∪ (E(P) \M)

5 return M

Algorithm: MAXIMUM MATCHING BIPARTITE GRAPHS

Input: undirected bipartite graph G = (V ,E)
Output: maximum matching M

1 set M = ∅
2 construct G′

3 while there exists s-t-path in G′ do
4 choose s-t-path P
5 set M = (M \ E(P)) ∪ (E(P) \M)
6 update G′

7 return M

CHAPTER 5. ALGORITHMS 10

	Definitions
	Introduction
	Graphs
	Graph Representation

	Paths and Trees
	Shortest Path
	Minimal Spanning Trees

	Flows and Cuts
	Matching
	Algorithms

