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Force Measurement 

ELEC-C1310 Laboratory Exercise in Automation and Control Engineering 

 

 

1. Introduction  

Force is a quantity capable of changing the size, shape, or motion of an object. It is a vector quantity 

and therefore, it has both direction and magnitude. 

The forces acting within and between parts of a mechanism are fundamental to the safety, assembly, 

and use of any piece of equipment. The measurement of those forces is vital to understanding and 

monitoring the activity, which the mechanism is designed to undertake. To make reliable and accurate 

measurements of force, it is necessary to use appropriate measurement techniques. 

In this laboratory exercise, you will take measurements to determine the material properties of different 

specimens. You will take experiments to measure the contact force and estimate the modulus of 

elasticity (Young’s modulus) of bulk materials using contact mechanics theory. Contact mechanics is 

the study of the deformation of solids that touch each other at one or more points. 

1.1. Classical theory of elastic contact 

Contact mechanics is the study of the deformation of solids that touch each other at one or more points. 

The contact theory between elastic bodies determines the contact areas, indentation depths and 

interaction force between bodies and surfaces for simple geometries. One example of the contact 

theory is the case of non-adhesive elastic contact between a sphere (here a non-deformable sphere) and 

an elastic surface as illustrated in Figure 1.  

When a sphere with radius 𝑅 indents a surface to depth 𝑑, between the sphere and the surface is the 

area of a spherical cap with base radius: 

𝑎 = √𝑅𝑑 (1) 

 

 

  

Figure 1.  Non-adhesive elastic contact between a non-deformable sphere and an elastic surface. 

 

https://en.wikipedia.org/wiki/Deformation_(mechanics)
https://en.wikipedia.org/wiki/Solids
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According to Hertzian theory for non-adhesive elastic contact, the relationship between the applied 

force (F) and the displacement (d) is: 

𝐹 =
4

3
 𝐸∗ 𝑅

1
2⁄  𝑑3/2 (2) 

where 𝐸∗ is the effective elastic modulus and is defined as: 

1

𝐸∗
=  

1 − 𝜈1
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𝐸1
+  

1 − 𝜈2
2

𝐸2
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and 𝐸1 , 𝐸2  are the elastic moduli and 𝜈1 , 𝜈2  are the Poisson’s ratio of the plane material and the 

spherical body, respectively. 

1.2. Elastic modulus (Young’s modulus) and Poisson’s ratio 

Elastic modulus (Young’s modulus) is a mechanical property of solid materials that measures the 

stiffness of the material. It defines the relationship between stress (force per unit area) and strain 

(proportional deformation) in a material. 

Young's modulus E is calculated by dividing the tensile stress 𝜎 by the tensile strain 𝜀: 

𝐸 =
𝜎

𝜀
=

𝐹 𝐴⁄

∆𝐿 𝐿0⁄
=

𝐹𝐿0

𝐴∆𝐿
 (4) 

where F is the exerted force, A is the cross-section of the area that the force is applied over, ΔL is the 

change in length of the body, and L0 is the original length of the body. Figure 2 illustrates the case of 

tensile force, where the force is applied along the axis of deformation. 

 

 

Figure 1. Definition of Young’s modulus1. 

Poisson's ratio is a mechanical property of solid materials, and determines a measure of the phenomena 

in which a material tends to expand in directions perpendicular to the direction of compression. Most 

materials have Poisson's ratio values ranging between 0 and 0.5. Poisson’s ratio value for 

incompressible materials is 0.5. 

To have a better understanding of Poisson’s effect, consider a cube with side length of L, subjected to 

tension along the x-axis, as illustrated in Figure 3. The green cube is unstrained and the red cube 

denotes the expansion in the x direction by ∆𝐿 due to tension, and contraction in the y and z directions 

by ∆𝐿′. 

 

 

1  Adapted from: http://www.markedbyteachers.com/gcse/maths/investigate-the-elastic-properties-of-a-strip-of-metal-hacksaw-blade-and-use-the-

results-to-determine-the-value-of-young-s-modulus-of-the-metal.html 

https://en.wikipedia.org/wiki/Modulus_of_elasticity
https://en.wikipedia.org/wiki/Stiffness
https://en.wikipedia.org/wiki/Stress_(physics)
https://en.wikipedia.org/wiki/Strain_(physics)
http://www.markedbyteachers.com/gcse/maths/investigate-the-elastic-properties-of-a-strip-of-metal-hacksaw-blade-and-use-the-results-to-determine-the-value-of-young-s-modulus-of-the-metal.html
http://www.markedbyteachers.com/gcse/maths/investigate-the-elastic-properties-of-a-strip-of-metal-hacksaw-blade-and-use-the-results-to-determine-the-value-of-young-s-modulus-of-the-metal.html
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Figure 2. Definition of Poisson’s ratio2. 

1.3. Stress Relaxation 

Stress relaxation is the gradual reduction in stress with time at constant strain. Shortly after the strain 

is applied to a polymer, the stress tends to decrease in response to the same amount of strain. This is 

referred to as stress relaxation.  

1.4. Laboratory Measurements 

In this laboratory experiment, you are conducting force measurements to determine the Young’s 

modulus of samples of elastic materials and observing stress relaxation phenomena. In the experiment, 

a ruby ball with the diameter of 3 mm indents the surface of an elastic material as illustrated in Figure 1. 

Ruby is one of the hardest known materials. Since the elastic modulus of ruby ball is very high, the 

second term on the right hand side of the Equation 3 is negligible: 

1

𝐸∗
=  

1 − 𝜈1
2

𝐸1
 (5) 

The Poisson’s ratio for incompressible materials is 0.5, and in this laboratory work we assume all the 

sample materials to be incompressible. 

To calculate the Young’s modulus of the sample material, this experiment involves measuring the 

force by using a force sensor and recording the displacement by controlled movement of a precision 

stage that holds the sample. Inserting the measured values to Equation 2 yields the Young’s modulus 

of the elastic sample material. 

Observation of the stress relaxation phenomena will be conducted by measuring the force several times 

with certain delay in between measurement for the same value of indentation. 

 

2. Hardware and Software 

2.1. Hardware overview 

Figure 4 and 5 show the setup diagram for this laboratory exercise. The material sample to be 

characterized is mounted on a sample holder. The force sensor is attached at fixed position above the 

sample. The sample holder is attached to a micro-translation stage so that it can move vertically (Z-

axis) in order to indent the sample by the tip of force sensor. The micro-translation stage is attached to 

a manual stage (XY-axis) via aluminum adapter, thus the sample can be moved laterally in XY-

 

2 Adapted from: https://en.wikipedia.org/wiki/Poisson%27s_ratio 

https://en.wikipedia.org/wiki/Deformation_(mechanics)
https://en.wikipedia.org/wiki/Poisson%27s_ratio
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direction for fine alignment relative to the tip of force sensor. The force sensor measures the force 

exerted by indentation of the material. Output signal of force sensor is amplified by an amplifier to be 

in the same range as input voltage range of the DAQ (Data Acquisition device). Amplified signal is 

then digitized by a DAQ, and digitized signal is read by a PC. A motor controller controls the 

movement of the micro-translation stage according to the commands sent from the PC to the motor 

controller. 

 

Figure 4. Experimental setup diagram. 

 

Figure 5. Experimental setup diagram, side view. 

 

Short description of the hardware is provided in the following. 

1.  Motorized Micro-translation Stage (Z-axis), M-112.1DG (Physik Instrumente) 

The micro-translation stage has translation range up to 25 mm with minimum 0.05 µm incremental 

motion and maximum motion velocity of 1.5 mm/s. It has integrated rotary encoder as the position 

sensor. It has a load capacity of 20 N and is able to withstand up to 10 N lateral force. In this 

laboratory exercise setup the micro-translation stage is placed vertically, thus the force exerted by 

the measurement system (sample holder, sample, and force sensor) must be lower than the 

maximum lateral force. We will call this as “micro-translation stage” or simply as “stage”.  
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Detailed specification can be found in “Technical Data” section of “Motorized Micro-translation 

Stage - M110_Precision_Positioning_Stage.pdf”. 

2.  Motor Controller, C-863 (Physik Instrumente) 

The controller is used to control the motion of the micro-translation stage based on commands sent 

from the PC, e.g. move the stage to certain position, set the speed, get the current position of the 

stage, etc. The controller communicates with PC via USB or RS-232. 

Detailed specification can be found in “Specifications” section of “Motor Controller - 

PI_Datasheet_C-863_20150120.pdf”. 

3.  Manual Stage (XY-axis), M-460A-XY (Newport) 

The manual stage is used for fine alignment of sample holder in lateral direction (XY-axis). The 

two adjustment screws can be turned to move the sample holder in X and Y directions. 

4.  Low Range Force Sensor, FSB 101 (tei technologies) 

The sensor is a resistivity based load cell, having a measurement range from 0 g to 50 g with 0.05 g 

resolution (see Note). This force sensor has a Wheatstone bridge, and it must be connected to 

excitation voltage source (2 connectors for supply voltage and ground). The sensor output is a 

differential voltage (2 connectors). 

Note: the force is expressed in grams, or specifically gram-force, which is equivalent to a mass of 

one gram multiplied by the standard acceleration due to gravity on Earth (9.80665 m/s2). 

Detailed specification can be found in “ForceSensor_FSB101.pdf”. 

5.  Analogue Strain Gauge Amplifier, AMP 320 (efe sensor) 

The amplifier has two functions: (1) to supply the excitation voltage to the force sensor, and (2) to 

amplify the signal from the force sensor to be in the same range as the DAQ input. It has internal 

switches to adjust the required amplification, level of excitation voltage, as well as type of output 

(e.g. voltage or current, and its range). 

Detailed specification can be found in “Amplifier_AMP320_ENGLISH.pdf”. 

6.  Data Acquisition (DAQ) device, USB6003 (National Instrument) 

The DAQ has digital input/output and analogue input/output. For this laboratory exercise, digital 

input will be used to read the signal from the sensor after amplification. This DAQ has internal 

ADC (analogue to digital converter) to convert analog input into digital data, thus the digital device 

(e.g. PC) can read the data. Maximum sample rate is 100 kS/s (kilo-samples per second), i.e. the 

DAQ is able to read and convert the analogue input 100000 times in 1 second, or every 10 µs. The 

ADC has 16-bit resolution, thus if the input range is set to -10V to +10V, it is able to detect the 

voltage change as small as:  

(Max Input Range) − (Min Input Range)

2(ADC bit resolution) − 1
=

(+10 V) − (−10 V)

216 − 1
≈ 0.305 mV 

The DAQ communicates with PC via USB. 

Detailed specification can be found in “Analog Input” section of “DAQ - NI USB-6003 

Specifications.pdf”. 

7.  PC 

The PC runs MATLAB to perform reading from DAQ and send command to Motor Controller. 
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2.2. Force sensor calibration 

Since this laboratory exercise requires a ruby ball to be attached at the force sensor tip, the sensor has 

to be calibrated to account for the added mass. This calibration was done by attaching various reference 

masses to the tip, and observing the amplified sensor output for each. The calibration result is shown 

in Figure 6, and the linear fit function to convert from voltage of amplified sensor output to gram (or 

gram-force) of exerted force is: 

𝐹 = 𝐴 ∙ 𝑣 + 𝐵 
(6) 

𝐹 is exerted force, in gram. 

𝑣 is amplified sensor output, in Volt. 

𝐴 = 6.0744 g/V 

𝐵 = 0.0102 g 

Increasing F value (positive) represent the case where the force sensor is pushed, and decreasing F 

value (negative) represent the case where the force sensor is pulled. 

When calculating forces in the laboratory exercise, use the calibration values given above. 

 

 

Figure 6. Sensor calibration result. 
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2.3. System capability 

From the hardware’s specification, we can estimate the system capability in terms of range and 

resolution of force, and range of indentation depth. Range represents the span of value (minimum to 

maximum) of a parameter, and resolution represents smallest change in value of a parameter. 

Range of force: From the specification of the force sensor, the range of force is 0 g to 50 g for both 

direction (thus actually -50 g to +50 g). Let’s estimate whether our system is able to detect such range. 

In the laboratory exercise we will only use push force, i.e. the force range is 0 g to 50 g. By using the 

sensor calibration result, we can estimate the range of expected amplified sensor output, and shown in 

the following. Therefore, we can set the DAQ input range to +/- 10 V. 

 Minimum Maximum 

Push force 0 g 50 g 

Amplified sensor output 0.01 V 8.2 V 

 

Resolution of force: From the specification of the force sensor, the resolution of force is 0.05 g; which 

represents the smallest force change detectable by the force sensor. Let’s estimate whether our system 

is able to detect such smallest exerted force change. 

In our setup, we need to ensure that the DAQ is able to detect the voltage change smaller than the 

smallest change in amplified sensor output (due to smallest change in exerted force). We can consider 

the case where a force F1 is first exerted on the sensor, and then a force F2 = F1 + ∆F, with ∆F 

equivalent to sensor resolution. 

F1: 

F2: 

Force different: 

𝐹1 = 𝐴 ∙ 𝑣1 + 𝐵
𝐹1 + ∆𝐹 = 𝐴 ∙ 𝑣2 + 𝐵

∆𝐹 = 𝐴 ∙ (𝑣2 − 𝑣1)
 

So the change of 0.05 g in force value (∆𝐹) is equivalent to change of 13.9 mV in amplified sensor 

output (v2 – v1 = 0.05 g / (3.5949 g/V)). Since smallest signal change that is detectable by the DAQ is 

about 0.3 mV, our system will be able to detect the force change of 0.05 g. 

 

Range of indentation depth: Once the material sample has been brought into contact with the force 

sensor tip, we estimate the maximum allowable indentation depth to avoid exceeding the force sensor 

range. 

We can use the Hertzian theory to estimate the maximum indentation depth for a given maximum force. 

𝑑𝑚𝑎𝑥 = (
3

4
 

𝐹𝑚𝑎𝑥

𝐸∗ 𝑅1/2
)

2/3

 

Therefore, the maximum indentation depth is depend on the material properties. For rubber with 

Young’s modulus of 1 MPa and Poisson’s ratio of 0.50, its effective Young’s modulus is 1.33 MPa 

and the maximum indentation depth can be made before exerting force more than 25 g to the force 

sensor is: 
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𝑑𝑚𝑎𝑥 = (
3

4
 

25 𝑔 ×
1

1000
𝑔

𝑘𝑔  × 9.80665 𝑚/𝑠2

1.33 × 106 𝑃𝑎 × (3 𝑚𝑚 ×
1

1000
𝑚

𝑚𝑚)1/2
)

2/3

= 233.46 µ𝑚 

Softer material (small Young’s modulus) has larger maximum indentation depth, while harder material 

(larger Young’s modulus) has smaller maximum indentation depth. 

 

2.4. Software 

The hardware-software interfacing diagram is shown in Figure 7. MATLAB will be used as main user 

interface. PI-863.dll (dynamic-link library) contains functions to interact with the micro-translation 

stage, and Data Acquisition Toolbox will be used to interact with the DAQ device.  

 

Figure 7. Hardware-software interfacing diagram. 

 

Interfacing with micro-translation stage via motor controller: 

PI-863.dll library provides the functions to connect to the stage, get the position of the stage, set 

properties of stage (e.g. name, velocity, displacement range, etc.), and various motion commands. The 

steps to initialize the micro-translation stage is as the following. 

1.  Load the PI-863.dll into MATLAB workspace, hence we can call the functions within PI-863.dll 

library from MATLAB. 

lib_PI = NET.addAssembly('C:\Users\MNRLab\Desktop\STUDENTS\lib\PI-863.dll'); 

2.  Call PI-863 function to connect to the stage, the function will search for any connected stage(s) to 

the PC. Once found then assign the name to the stage. 

PI.PI_C863.Connect % Search and connect 

PI.PI_C863.AssignStage('X', 'M-112.1DG', 1) % Assign the name of ‘X’ 

3.  Reference the stage to at least one of its translation range limits. Negative Limit represent the 

minimum range, e.g. position 0 mm, and Positive Limit represent the maximum range, e.g. 25 mm 

for M-112.1DG Stage. 

PI.PI_C863.GotoNegativeLimitSwitch('X'); % Ask Stage “X” to go to its Negative 

Limit 
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PI.PI_C863.WaitReferencing('X'); 

The following are examples on how to use various motion commands, please refer to the “Appendix 1” 

for the detail description of each commands. 

1. Set motion velocity. 

PI.PI_C863.SetVelocity('X', 1.0); % Set velocity to 1.0 mm/s 

2. Move the stage to absolute position. 

PI.PI_C863.Move('X',10.00); % Move to position 10 mm 

3. Move the stage by a relative displacement. 

PI.PI_C863.MoveRelative('X',0.2); % This will move the stage by 0.20 mm 

Note that the commands is non-blocking, in which the next command will be executed even though 

the previous command is not completed yet (i.e. still running in the background). For example if we 

run the script containing these commands: 

PI.PI_C863.Move('X',15.00); 

PI.PI_C863.GetPosition('X') % Display the current position 

GetPosition() command will be executed immediately after Move() command even though the 

stage has not reach the position 15 mm. Therefore, in this case GetPosition() command will 

return the current position of the stage, which may not be the final target.  

start_pos = PI.PI_C863.GetPosition('X'); % Get start position 

PI.PI_C863.SetVelocity('X', 0.75); % Set velocity to 0.75 mm/s 

PI.PI_C863.Move('X',15.00); % Move to new position 

WaitMillisecond(((15.00-start_pos)/0.75)*1000); % Wait (in millisecond) 

PI.PI_C863.GetPosition('X') % Display the new position 

Note that MATLAB function pause() can only create delay with resolution of 1 second, so we use 

WaitMillisecond() which has milli-second resolution. 

 

Interfacing with DAQ device: 

MATLAB Data Acquisition Toolbox provides various functions to work with DAQ device. In this 

laboratory exercise, we need to know how to connect to DAQ device, how to configure input channel, 

and how to perform data acquisition. Please refer to “Appendix 1” for the detail description of each 

commands. 

1. Connect and configure the DAQ device. 

MATLAB configure and control the DAQ device using a session object, so we need to create a 

session. 

s = daq.createSession('ni'); % Create session object 

Use the following command to get the device ID. 

devices = daq.getDevices; % Get the info of connected device 

devID = devices.ID; % Get the ID of connected device 

Add measurement channel. In this laboratory setup, the output of the amplifier (SGA/A) is 

connected to Analog Input 0 as differential voltage input. 
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channelInput = 0;  % Analog Input 0 

addAnalogInputChannel(s, devID, channelInput, 'Voltage'); % As voltage 

measurement 

Now we can set the measurement setting, e.g. sampling rate and acquisition duration. 

s.Rate = 100000; % Set sampling rate to 100 kS/s (maximum for USB6003) 

s.DurationInSeconds = 10; % In second 

2. Read sensor value. 

curr_reading = inputSingleScan(s); 

3. Perform continuous data acquisition. 

We can perform data acquisition either in the foreground (as blocking command) or in the 

background (as non-blocking command). In this laboratory instruction, we will not discuss the 

continuous data acquisition in the background since require usage of events and listeners. However, 

we will provide you with the script to perform continuous background acquisition during the 

laboratory exercise. 

Continuous data acquisition in the foreground can be performed using the following command. 

data = startForeground(s); % Start foreground acquisition 

startForeground(s) command will run for a specified duration as set in 

s.DurationInSeconds and at specified sampling rate as set in s.Rate. For example, if we 

set the duration as 5 second and sampling rate as 100000 (i.e. 100 kS/s), then the data will contain 

500000 data. The next command will not be executed (blocked) until startForeground(s) 

has completed. 

 

3. Measurement Methods 

Obtaining the force-displacement curve (in this case, displacement is indentation of material sample) 

can be performed in various ways. In this laboratory exercise, we will use the following methods. 

3.1. Continuous Motion 

In this method, once the material sample has been brought into contact with the tip of the sensor, the 

continuous motion of sample against force sensor starts at a constant velocity, and we are interested in 

reading the force values at specific intervals. In other words, we are looking for relationship between 

indentation (stage absolute position) and applied stress (force value). We designed a simulator where 

you can find the relationship between indentation and force values for three materials EcoFlex, PDMS, 

and EVA. To plot the data, you need to utilize a timer which estimates the stage absolute position 

based on known velocity and elapsed time. The method is illustrated in Figure 8. Termination 

condition is set based on maximum indentation or maximum force. 

In real setup, we can read current stage position and force values using provided commands.   
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Figure 8. Continuous motion method. 

 

3.2. Steps Motion 

To observe stress relaxation, we need to keep material under constant stress for a while. Once the 

material sample has been brought into contact with the tip of the sensor, the measurement will start. 

The stage moving step by step and force recording takes place at each step with specified interval until 

termination condition is met. Termination condition could be based on either final position or 

maximum force value. 

 

Figure 9. Steps motion method. 

  



 

12 

 

Pre-assignment 

Answer the following questions and submit before the pre-assignment deadline. 

1. Find from literature the value of Young’s modulus and Poisson’s ratio for the materials: Rubber, 

PDMS, PMMA, and Ruby ball. 

2. Describe the stress relaxation phenomenon in terms of force and indentation. 

3. Explain general working principle of resistivity-based load cell. 

4. The force sensor FSB 101  is internally arranged in form of Wheatstone bridge, what is the proper 

DAQ input mode: DIFF (differential) or SRE (single reference ended)? 

5. Modify the MATLAB script to implement one simulator and two measurement scripts.  

a. Simulator_Continuous motion; (filename: Script_Simulator_Continuous.m)  

b. Continuous motion; (filename: Script_Continuous.m)  

c. Steps motion (filename: Script_Steps.m). 

(Please use the template script provided on the MyCourses page, under “Materials” section → 

“Micro-force measurement”). Note: please refer to section 3 (Measurements) of this lab book, and 

follow the instructions stated in MATLAB scripts to modify the code.  

6. Plot force curves for EcoFlex, PDMS, and EVA utilizing Continuous motion simulator (filename: 

Script_Simulator_Continuous.m) 

Hint! In simulator script (filename: Script_Simulator_Continuous.m) once you utilize a timer to 

estimate the stage position, you will get force curve against displacement. If the timer utilized in a 

correct way you must get a curve similar to Figure 10 for PDMS.  

Please note you suppose to get different plots for three samples, based on the choice you will make for 

material in prompt window.  

 

Figure 10. Force curve for PDMS material (simulation results). 
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Hands on Exercise 

Prepare your scripts as instructed in Pre-Assignment! 

Experiment 1: Familiarize with the instruments and commands 

In order to avoid the sample holder accidentally hitting the sensor tip, move the sample holder away 

horizontally. 

 

Part 1: Familiarize with the stage commands 

1. Load the library and connect to the stage. 

% Load the library 

lib_PI = NET.addAssembly('C:\Users\MNRLab\Desktop\STUDENTS\lib\PI-863.dll'); 

  

% Connect and assign the name for stage 

PI.PI_C863.Connect 

PI.PI_C863.AssignStage('X', 'M-112.1DG', 1) 

 

2. Reference the stage. 

% Reference the stage to negative limit 

PI.PI_C863.GotoNegativeLimitSwitch('X'); 

PI.PI_C863.WaitReferencing('X'); 

 

3. Play around with these functions to understand their behavior. 

% Set velocity to 0.1 mm/s (maximum is 1.5 mm/s) 

PI.PI_C863.SetVelocity('X', 0.1); 

 

PI.PI_C863.GetPosition('X') 

PI.PI_C863.MoveRelative('X',0.5); 

PI.PI_C863.Move('X',10.0); 

 

Part 2: Familiarize with the data acquisition commands 

1. Configure the DAQ 

devices = daq.getDevices; % Get the list of available devices 

  

% Set the properties of DAQ device 

devID = devices.ID;   % Get the device ID 

channelInput = 0;     % Which channel input the sensor is connected to 

samplingRate = 100000;% Valid range from 0.1 to 100000.0 scans/sec 
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% Create session and assign input 

s = daq.createSession('ni'); 

addAnalogInputChannel(s, devID, channelInput, 'Voltage'); % Set as voltage 

measurement 

s.Rate = samplingRate; 

  

% Set acquisition duration 

s.DurationInSeconds = 10; % In second 

 

2. Read measurement data 

% Read sensor value 

curr_reading = inputSingleScan(s); 

 

% Read measurement data for a specified duration as set in DurationInSeconds 

[data,time] = s.startForeground; % This is a blocking command 

 

 

Preparation: Before executing your measurement script 

You will need to repeat this Preparation task before performing Experiment 2, 3, and 4. 

1. Move the sample holder away horizontally. 

2. Attach sample to the sample holder. 

3. Move back the sample holder such that the sensor tip is around the center of sample top surface. Do 

not let sensor tip touch the sample yet! (If necessary, move down the sample holder by sending 

Move() or MoveRelative() command to the stage). 

4. Read the sensor output value, record this value (let’s call this initial value). 

5. To determine the start position we need to find the point at which the sample comes in to contact 

with the sensor tip. We can conclude that the sample has touch the sensor tip if the sensor output 

value is changed, e.g. by 0.3V. We can gradually move the sample holder using the following steps. 

a. Move the sample holder up by sending Move() or MoveRelative() command to the stage. 

b. Read the sensor output value, use inputSingleScan(s) command. 

c. Check the different between current sensor output value and initial value: if the different is less 

than 0.3V then repeat from step 5.a, if not then stop and read the stage position. 

 

Experiment 2: Measure the force-displacement curve using the method of continuous motion 

1. Do Preparation step. 

2. Execute your “Script_Continuous.m” to automate the measurement (Note: consider the sensor force 

range!).  

3. Save the measurement data. 
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Experiment 3: Measure the force-displacement curve using the method of steps motion 

1. Do Preparation step. 

2. Execute your “Script_Steps.m” to automate the measurement (Note: consider the sensor force 

range!). 

3. Save the measurement data. 

4. Now, modify your “Script_Steps.m” to read the sensor value multiple time with certain delay 

between readings. Repeat step 1-3. 

 

Experiment 4: Measure the force-displacement curve using the method of steps motion with 

continuous sensor reading 

1. Instructors will provide the script. 

2. Do Preparation step. 

3. Execute the provided script and observe the result plot. Does it look like what you expected? 

4. Save the measurement data.  
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Final Report 

1. Explain shortly what you have performed in the Lab. 

2. Plot the force-displacement curve for all your experiment results. 

3. Calculate the modulus of elasticity (Young’s modulus) of each material sample from experiment 

results. 

4. Compare your calculated Young’s modulus results with literature. Is the derived value in range of 

existing data? 

5. Explain the result of Experiment 4 based on stress relaxation concept.  
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Appendix 1 

Some useful PI-863 commands.  

PI.PI_C863.Connect 

 Connect to the PI motion controller. This should be called before any operation. 

  
PI.PI_C863.AssignStage (deviceName, model, deviceNumber) 

 Assign a stage to the system, and give it a friendly name. The range of motion can be later 

changed using SetRange(). 

Remark: You can find the model of the stages on the hardware. If you are not sure which 

stage is connected to which axis, you can check it with the PIMikroMove software. 

 deviceName The name that you wouldlike to refer in your code, e.g. X, Y, 

Gripper, etc 

 model Model of the stage, e.g. M-404.8PD, M-111.1DG, M-122.2DD. 

 deviceNumber The deviceNumber of the controller, starting from 1, 2, 3, 4, ... 

   
PI.PI_C863.GotoNegativeLimitSwitch (deviceName) 

 Go to the negative limit switch. Note: this is the hardware limit, not the software limit. The 

operation will also reset the valid motion range. This operation is necessary before any 

Move command is used. 

 deviceName Name of the axis 

   
PI.PI_C863.WaitReferencing (deviceName) 

 Wait a referencing command, e.g. GotoReference, GotoNegativeLimitSwitch, 

GotoPositiveLimitSwitch to finish 

 deviceName Name of the axis 

   
PI.PI_C863.SetVelocity (deviceName, v) 

 Set the velocity of the axis 

   
PI.PI_C863.GetPosition (deviceName) 

 Get the position of the axis 

 deviceName Name of the axis 

   
PI.PI_C863.Move (deviceName, v) 

 Move the stage to an absolute position 

 deviceName Name of the stage 

 v Target position 

   
PI.PI_C863.MoveRelative (deviceName, v) 

 Move a stage to the target position related to its current position. Return 0 if success, 1 if 

out of range. 

 deviceName Name of the stage 

 v Target position related to current position for the stage 
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Some useful Data Acquisition Toolbox commands. 

daq.createSession(vendor) 

 Create data acquisition session for specific vendor hardware, return a session object. Create 

one session per vendor and configure the properties accordingly (e.g. add channel, set 

sampling rate, etc). 

Some useful session’s properties: 

 Rate Specify the device’s sampling rate, in scans per second. 

 IsContinuous Specify if operation continues until manually stopped. 

 DurationInSeconds Specify duration of acquisition. 

   
addAnalogInputChannel(s,deviceID,channelID,measurementType) 

 Add analog input channel to the specified session. 

 s Session object. 

 deviceID Device ID as defined by the device vendor. Use 

daq.getDevices to obtain the Device ID. 

 channelID Location of the channel on the device. 

 measurementType Vendor-defined measurement type (e.g. ‘Voltage’, 

‘Current’, ‘Accelerometer’, etc). 

   
inputSingleScan(s) 

 Acquire single scan from all input channels in the session.  

 s Session object. 

   
startForeground(s) 

 Starts operations of the session object and block MATLAB command line and other code 

until the session operation is completed. 

 s Session object. 

   
startBackground(s) 

 Starts the operation of the session object without blocking MATLAB command line and 

other code. 

 s Session object. 
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Appendix 2: Linear Regression 

 

Linear regression is an approach for modeling the relationship between a dependent, or response, 

variable y and one or more explanatory independent, or predictor, variables X (consist of x1, x2, …, xn). 

If only one independent variable is considered, the relation is 

𝑦(𝑥) = 𝑝1 ∙ 𝑥 + 𝑝2 

where 𝑝1 is the slope, and 𝑝2 is the y-intercept. 

We can use the MATLAB function of polyfit(x,y,n) (polynomial curve fitting) to perform 

linear regression by supplying independent variable x, dependent variable y, and setting n (polynomial 

order) to 1, i.e. linear. The following provides an illustration on how to use polyfit() function to 

perform linear regression. 

 

Consider that you have set of data as in the following table. 

𝒙: 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

𝒚: -2.71 -1.29 -0.34 0.29 2.35 3.68 4.68 6.01 7.24 

 

First, assign the data into MATLAB variable, e.g. x and y. 

>> x = [0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00]; 

>> y = [-2.71, -1.29, -0.34, 0.29, 2.35, 3.68, 4.68, 6.01, 7.24]; 

Use  polyfit  to model y as linear function of x, the polyfit returns coefficients of 𝑝1 and 𝑝2. 

>> p = polyfit(x,y,1) 

p = 

    5.0087   -2.7964 

Fitted function can be calculated as: 

>> yfit = p(1)*x + p(2); 

Plot the results; use circle mark to represent original data and line to represent fitted data. 

>> plot(x,y,'o'); % Plot original data using circle mark 

>> hold on;  % Next plot will be plotted on previous window, not by creating 

new window 

>> plot(x,yfit); % Plot fitted function, default mark is line 

>> hold off; % Stop “hold on” 

>> xlabel('x'); ylabel('y'); % Label the axis 
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The plot result should look like this: 

 

 

In the case of modelling the force 𝐹 and the indentation depth 𝑑 in the Hertzian theory, 

𝐹 =
4
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2 

Even though the relationship of 𝐹 and 𝑑 is not linear, we can instead model the relationship between 

𝐹 and 𝑑
3

2 which is linear. 

𝐹 = (
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Once the relationship between 𝐹 and 𝑑
3

2  has been modelled by using linear regression to obtain 𝑝1 

(slope) and 𝑝2 (y-intercept), we can calculate effective elastic moduli as the following. 

𝐸∗ = 𝑝1  ∙
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