
Lecture V - NP Problems and Graphs

1 Department of Mathematics and Systems Analysis,
Systems Analysis Laboratory, Aalto University, Finland

February 4, 2024



Combinatorial
Optimization

Previously on..

Complexity
class P

Complexity
class NP

TSP -
Travelling
Salesman
Problem

Previously on..

– Combinatorial Optimization 2/26



Combinatorial
Optimization

Previously on..

Complexity
class P

Complexity
class NP

TSP -
Travelling
Salesman
Problem

Matching Problems:

• Weighted Matching;

• Maximum Matching.

So far, all problems either have algorithm or a mixed integer formulation.

But what happens when an algorithm is not achievable nor efficient? A mixed
integer formulation might still be possible, but would it be enough?
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Decision Problems

Decision problem is a yes-or-no problem.

They differ from optimization problem, because the former requires an answer
that have an optimal configuration.

For instance: ”What is the shortest path between two nodes?” vs ”Is a particular
path P the shortest path between these two nodes?”.

Remark: An optimization problem has a corresponding decision problem.
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Class P

• P is the class of all decision
problems (X,Y ) for which there is a
polynomial time algorithm.

• Given x ∈ A∗: compute
f(x) ∈ {0, 1} with
time(x) ≤ p(size(x)).

Examples

• linear inequalities;

• shortest path;

• maximum matching;

• minimum cost flow.

• ...
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Class NP

• decision problem (X,Y ) belongs to
class NP if for each y ∈ Y a
certificate c can be verified in
polynomial time

• usually c is a feasible solution to
the problem

• name NP = nondeterministic
polynomial: “guessing” certificates
long enough would work

• (X,Y ) can be solved by
nondeterministic in polynomial
time

Examples

• integer linear inequalities → c is
feasible vector x

• knapsack → c is a feasible set of
items to take
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P vs. NP

Theorem
P ⊆ NP .

Proof.
(X,Y ) ∈ P can be decided in polynomial time. ⇒ x can be used as
certificate.
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P vs. NP

NP

P

NP Complete
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Definition

TSP: Travelling Salesman (or Salesperson) Problem

Imagine a scenario, where a set of cities are expecting a visit from a travelling
merchant.

As part of their visit, this salesman has to start and finish their travel in the same
city, cannot visit the same city more than once and every city has to be visited in a
single trip.
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Example

Figure: A lone traveller about to make important decisions

→ What is the shortest possible route?
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History

Such problem is called Travelling Salesman Problem, very important to the fields of
theoretical computer science and operations research.

It was first described by Irish mathematician W.R. Hamilton and British
mathematician Thomas Kirkman in the 1800s through the description of a game
where the solution involved a cycle without overlapping nodes.

– Combinatorial Optimization 14/26



Combinatorial
Optimization

Previously on..

Complexity
class P

Complexity
class NP

TSP -
Travelling
Salesman
Problem

Initial Approach

At first glance, the first solution is to try all possibilities and choose the best
solution.

−→ enumeration process

Initial challenge: for an instance with n cities, there are 2n possible combinations.

−→ impractical.

Is there any better alternative?
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Modelling - Graph

First, let us assume that the set of cities can be modelled as graph G = (V ,E, f),
where:

• V is the set of individual cities;

• E represent the paths between a pair of cities and;

• fij is the cost to travel from city i to city j, for all (i, j) ∈ E.
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Modelling - Variable and Objective

The choice to travel from city i to city j using a path (edge in our modelling)
connecting them is modelled by our decision variable.

xij =

{
1, if path goes from city i to city j
0, otherwise

}

Our objective function can be also derived from the problem description:

min

n∑
i

n∑
j,j ̸=i

xijfij

where n is the number of cities (|V | = n).
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Modelling - Constraints

Two constraints can also be derived directly from description:

Singular incoming degree:

n∑
i=1,i ̸=j

xij = 1 ∀j ∈ {1, · · · ,n}

Singular outgoing degree:

n∑
j=1,j ̸=i

xij = 1 ∀i ∈ {1, · · · ,n}

Those constraints are characterize paths.
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Modelling - Split version

These constraints imposed that every city is visited only once.

However, they do not guarantee that there is a single trip will connecting all cities.

For instance:

Figure: Two solutions that do not violate the previous constraints, but only one has a single trip.

This is the main reason why TSP is a challenging problem.
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Modelling Decisions - MTZ vs DFJ

There are two main strategies to prevent separate tour (subtour) from our potential
solution: Miller-Tucker-Zemlin and Dantzig-Fulkerson-Johnson.

Both impose the presence of a single tour using linear constraints.
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Miller-Tucker-Zemlin

Requires an additional variable to track which city has been visited starting from
initial city i = 1.

−→ By setting uj > ui, it determines the order of visiting each city (city j
will be visited after city i).
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Miller-Tucker-Zemlin

This leads to following requirement:

uj ≥ ui + 1 if xij = 1

which can encapsulated as the following constraints:

ui − uj + 1 ≤ (n− 1)(1− xij) for 2 ≤ i ̸= j ≤ n

2 ≤ ui ≤ n for 2 ≤ i ≤ n
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Miller-Tucker-Zemlin

Minimize
n∑
i

n∑
j,j ̸=i

xijfij

Subject to:
n∑

i=1,i ̸=j

xij = 1 ∀j ∈ {1, · · · ,n}

n∑
j=1,j ̸=i

xij = 1 ∀i ∈ {1, · · · ,n}

ui − uj + 1 ≤ (n− 1)(1− xij) 2 ≤ i ̸= j ≤ n

2 ≤ ui ≤ n 2 ≤ i ≤ n

xij ∈ {0, 1} i, j ∈ {1, · · · ,n}
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Dantzig-Fulkerson-Johnson

Impose an extra requirement that eliminates all subset of nodes to create a subtour.

∑
i∈Q

∑
j ̸=i,j∈Q

xij ≤ |Q| − 1 ∀Q ⊂ {1, · · · ,n}, |Q| ≥ 2
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Dantzig-Fulkerson-Johnson

Minimize
n∑
i

n∑
j,j ̸=i

xijfij

Subject to:
n∑

i=1,i ̸=j

xij = 1 ∀j ∈ {1, · · · ,n}

n∑
j=1,j ̸=i

xij = 1 ∀i ∈ {1, · · · ,n}

∑
i∈Q

∑
j ̸=i,j∈Q

xij ≤ |Q| − 1 ∀Q ⊂ {1, · · · ,n}, |Q| ≥ 2

xij ∈ {0, 1} i, j ∈ {1, · · · ,n}
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