
Chapter 9

Probability metrics

9.1 Total variation distance

For probability measures µ1 and µ2 on a measurable space (S,S), the total
variation distance is defined by

dtv(µ1, µ2) = sup
A2S

|µ1(A)� µ2(A)|. (9.1.1)

Proposition 9.1.1. dtv is a metric on the space of probability measures on
(S,S).

Proof. (i) Obviously dtv(µ1, µ1) = 0. On the other hand, if dtv(µ1, µ2) = 0,
then |µ1(A)� µ2(A)| = 0 for all A 2 S, so that µ1 = µ2.

(ii) Obviously dtv(µ1, µ2) = dtv(µ1, µ2).
(iii) Let µ1, µ2, µ3 be probability measures on (S,S). The triangle in-

equality for the Euclidean norm on the real line implies that

sup
A2S

|µ1(A)� µ3(A)|  sup
A2S

⇣
|µ1(A)� µ2(A)|+ |µ2(A)� µ3(A)|

⌘

 sup
A2S

|µ1(A)� µ2(A)|+ sup
A2S

|µ2(A)� µ3(A)|,

so that dtv(µ1, µ3)  dtv(µ1, µ2) + dtv(µ2, µ3).

The following result provides a helpful symmetry property for densities
of probability measures. Remember that by Radon–Nikodym theorem, any
pair of probability measures admit density functions with respect to some
reference measure.
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Lemma 9.1.2. Let µ1, µ2 be probability measures admitting density functions
f1, f2 : S ! R+ with respect to a measure ⌫ on (S,S). Then

Z

S

(f1 � f2)+ d⌫ =

Z

S

(f2 � f1)+ d⌫ =
1

2

Z

S

|f1 � f2| d⌫ (9.1.2)

and Z

S

(f1 ^ f2) d⌫ = 1�
1

2

Z

S

|f1 � f2| d⌫.

Draw a picture.

Proof. Observe that |x� y| = (x � y)+ + (y � x)+ where a+ = max{a, 0}
denotes the positive part of a real number a. Then

Z

S

|f1 � f2| d⌫ =

Z

S

(f1 � f2)+ d⌫ +

Z

S

(f2 � f1)+ d⌫. (9.1.3)

Denoting A1 = {x : f1(x) > f2(x)}, we see that

(f1 � f2)+ = (f1 � f2)1A1 ,

(f2 � f1)+ = (f2 � f1)1Ac
1
.

Hence
Z

S

(f1 � f2)+ d⌫ =

Z

A1

(f1 � f2) d⌫ = µ1(A1)� µ2(A1),
Z

S

(f2 � f1)+ d⌫ =

Z

Ac
1

(f2 � f1) d⌫ = µ2(A
c
1)� µ1(A

c
1).

Because µ1(A1) = 1 � µ1(Ac
1) and µ2(A1) = 1 � µ2(Ac

1), we find that the
above integrals are equal to each other, and we conclude using (9.1.3) that
(9.1.2) is valid.

Next, we note that
Z

S

(f1^f2) d⌫ =

Z

A1

f2 d⌫+

Z

Ac
1

f1 d⌫ = µ2(A1)+µ1(A
c
1) = 1�µ1(A1)+µ2(A1).

It follows that
Z

S

(f1 ^ f2) d⌫ = 1�

Z

S

(f1 � f2)+ d⌫ = 1�
1

2

Z

S

|f1 � f2| d⌫.
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Proposition 9.1.3. Let µ1 and µ2 be probability measures on (S,S) ad-
mitting densities1 f1, f2 : S ! R+ with respect to a reference measure ⌫ on
(S,S). Then

dtv(µ1, µ2) =
1

2

Z

S

|f1(x)� f2(x)| ⌫(dx). (9.1.4)

Proof. (i) By Lemma 9.1.2, we see that

1

2

Z

S

|f1 � f2| d⌫ =

Z

S

(f1 � f2)+ d⌫.

By writing (f1 � f2)+ = (f1 � f2)1A for A = {x : f1(x) > f2(x)}, we see that

Z

S

(f1�f2)+ d⌫ =

Z

A

f1 d⌫�

Z

A

f2 d⌫ = µ1(A)�µ2(A)  |µ1(A)� µ2(A)|.

Hence 1
2

R
S |f1 � f2| d⌫  dtv(µ1, µ2).

(ii) Fix a set A 2 S. Observe that (f1�f2)1A  (f1�f2)+1A  (f1�f2)+
pointwise. Hence

µ1(A)�µ2(A) =

Z

A

f1 d⌫�

Z

A

f2 d⌫ =

Z

S

(f1�f2)1A d⌫ 

Z

S

(f1�f2)+ d⌫.

Similarly, we find that

µ2(A)� µ1(A) 

Z

S

(f2 � f1)+ d⌫.

In light of Lemma 9.1.2, both of the rightmost integrals appearing in the
above inequalities are equal to 1

2

R
S |f1 � f2| d⌫. As a consequence,

|µ1(A)� µ2(A)| 
1

2

Z

S

|f1 � f2| d⌫.

Because this is true for all A 2 S, we see that dtv(µ1, µ2) 
1
2

R
S |f1 � f2| d⌫.

The factor 1
2 in front of the L1-distance could be eliminated by normal-

ising the total variation distance di↵erently. The motivation for the current
normalisation is that now dtv(µ1, µ2) 2 [0, 1] always, as confirmed by for-
mula (9.1.1).

1Here we need densities to be finite-valued because we compute f1 � f2.
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Example 9.1.4. Denote by Ber(p) the Bernoulli distribution with parameter
p 2 [0, 1]. Determine the total variation distance between Ber(p) and Ber(q).

Recall that Ber(p) is a probability measure with density

fp(x) =

8
><

>:

1� p x = 0,

p x = 1,

0 else,

with respect to the counting measure # on (Z, 2Z). By Proposition 9.1.3,

dtv(Ber(p),Ber(q)) =
1

2

Z

Z
|fp(x)� fq(x)|#(dx)

=
1

2

X

x2Z

|fp(x)� fq(x)|

=
1

2

⇣
|(1� p)� (1� q)|+ |p� q|

⌘

= |p� q|.

9.2 Couplings

A coupling of probability measures µ1 on (S1,S1) and µ2 on (S2,S2) is a
probability measure � on (S1⇥S2,S1⌦S2) with marginal distributions µ1, µ2,
that is,

�(B1 ⇥ S2) = µ1(B1) for all B1 2 S1,

�(S1 ⇥ B2) = µ2(B2) for all B2 2 S2.
(9.2.1)

This is related to mass transportation.
Equivalently, a coupling is a pair (X1, X2) of random variables X1 : ⌦ !

S1 and X2 : ⌦ ! S2 defined on some probability space (⌦,A,P) such that
Law(X1) = µ1 and Law(X2) = µ2.

Proposition 9.2.1. dtv(µ1, µ2) = inf�2�(µ1,µ2) �{(x1, x2) : x1 6= x2}, where
�(µ1, µ2) denotes the set of couplings of µ1 and µ2, and the infimum is at-
tained by a coupling �⇤.

Proof. (i) Assume that � is a coupling of µ1 and µ2. Then � is a probability
measure on (S ⇥ S,S ⌦ S) with marginals µ1 and µ2. Then for any A 2 S,

µ1(A)� µ2(A) = �(A⇥ S)� �(S ⇥ A)

=

Z

S⇥S

⇣
1A⇥S(x1, x2)� 1S⇥A(x1, x2)

⌘
�(dx1, dx2)

=

Z

S⇥S

⇣
1A(x1)� 1A(x2)

⌘
�(dx1, dx2).
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We note that 1A(x1)� 1A(x2) = 0 whenever x1 = x2. Therefore,

|1A(x1)� 1A(x2)|  1D(x1, x2)

where D = {(x1, x2) 2 S ⇥ S : x1 6= x2}. It follows that

|µ1(A)� µ2(A)| 

Z

S⇥S

|1A(x1)� 1A(x2)|�(dx1, dx2)



Z

S⇥S

1D(x1, x2)�(dx1, dx2)

= �(D).

We conclude that

dtv(µ1, µ2)  �(D) for all couplings �. (9.2.2)

(ii) We will construct2 a coupling of µ1 and µ2. We assume that µ1 and
µ2 admit3 density functions f1, f2 : S ! R+ for some reference measure ⌫.
Define

c =

Z

S

(f1 ^ f2) d⌫.

Assume 0 < c < 1, and define The case with c = 0 and the case with c = 1 are
homeworks?

g0(x) =
f1(x) ^ f2(x)

c
,

g1(x) =
(f1(x)� f2(x))+

1� c
,

g2(x) =
(f2(x)� f1(x))+

1� c
.

With the help of Lemma 9.1.2, we see that
R
S gk d⌫ = 1 for all k, so that

the weighted measures µk(A) =
R
A gk d⌫ are probability measures on (S,S).

Now define (see Remark 9.2.3 for an intuitive meaning)

�⇤ = c(µ0 �  
�1) + (1� c)(µ1 ⌦ µ2),

where  : x 7! (x, x). Being a linear combination of probability measures
µ0� �1 and µ1⌦µ2, we see that �⇤ is a probability measure on (S⇥S,S⌦S).

2This could be in appendix, not the most important thing.
3This is without loss of generality. Let ⌫ = µ1 + µ2. This is a finite measure that

dominates µ1 and µ2 in the sense that ⌫(A) = 0 =) µ1(A) = 0 and µ2(A) = 0. By the
Radon–Nikodym theorem ref there exist densities f1, f2 : S ! R+ of µ1, µ2 with respect
to ⌫.
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(iii) Let us verify that �⇤ is a coupling of µ1 and µ2. Fix a set B1 2 S.
We note that

 �1(B1 ⇥ S) = {x 2 S : (x, x) 2 B1 ⇥ S} = B1.

Hence

�⇤(B1 ⇥ S) = c µ0( 
�1(B1 ⇥ S)) + (1� c) (µ1 ⌦ µ2)(B1 ⇥ S)

= cµ0(B1) + (1� c)µ1(B1),

so that by plugging in the density formulas, we see that

�⇤(B1 ⇥ S) =

Z

B1

⇣
(f1 ^ f2) + (f1 � f2)+

⌘
d⌫ =

Z

B1

f1 d⌫ = µ1(B1).

A similar computation shows that �⇤(S⇥B2) = µ2(B2) for all B2 2 S. Hence
�⇤ is a coupling of µ1 and µ2.

(iv) Finally, by noting that  �1(D) = ;, we find that

�⇤(D) = (1� c)(µ1 ⌦ µ2)(D)  1� c = dtv(µ1, µ2).

In light of (9.2.2), we conclude that

�⇤(D) = inf
�2�(µ1,µ2)

�(D) = dtv(µ1, µ2).

Example 9.2.2 (Coupling two coins). Construct a coupling � of Bernoulli
distributions Ber(p) and Ber(q) such that 0  p  q  1, for which the
probability �{(i, j) : i 6= j} is small.

Define a probability mass function on Z2 by h(i, j) = Lij for i, j 2 {0, 1}
and f(i, j) = 0 otherwise, where

L =


1� q q � p
0 p

�
.

Then the probability measure �(A) =
P

(i,j)2A h(i, j) on (Z2, 2Z
2
) has marginals

Ber(p) and Ber(q), and

�{(i, j) : i 6= j} = L01 + L10 = q � p.

Hence by the coupling inequality ref , we find that dtv(Ber(p),Ber(q))  q�p.
We saw in Example 9.1.4 that dtv(Ber(p),Ber(q)) = q � p. Hence the �

is actually an optimal coupling.
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Remark 9.2.3. A probabilistic interpretation of Proposition 9.2.1 is ob-
tained by construction random variables X1, X2 whose joint law is the opti-
mal coupling �⇤. Let I,W0,W1,W2 be independent random variables defined
on some probability space such that Law(I) = Ber(c) and Law(Wk) = µk for
k = 0, 1, 2. Define

X1 =

(
W0 I = 1,

W1 I = 0,
and X2 =

(
W0 I = 1,

W2 I = 0.

Then the joint law of X1 and X2 equals the optimal coupling �⇤ (homework).

Lindvall [Lin92] points out a subtle thing: To compute P(X1 6= X2) the
diagonal {(x, x) : x 2 S} should be a measurable set in S ⌦ S. This is ok for
Polish spaces.

9.3 Convergence in total variation

Convergence in total variation for discrete probability spaces corresponds to
pointwise convergence of probability mass functions. Somewhat surprisingly,
pointwise convergence and L1-convergence are equivalent in this setting.

Proposition 9.3.1. Let S be countable. Then the following are equivalent
for probability measures µn, µ on (S, 2S) with probability mass functions fn, f :

(i) dtv(µn, µ) ! 0.

(ii) fn(x) ! f(x) for every x 2 S.

(iii)
P

x2S |fn(x)� f(x)| ! 0.

Proof. (i) () (iii) follows by Proposition 9.1.3.
(iii) =) (ii) is obvious.
(ii) =) (iii). Assume that fn(x) ! f(x) for every x 2 S. Enumerate

S = {x1, x2, . . . }. Fix ✏ > 0. Because
P1

k=1 f(xk) = 1, we may fix an integer
K � 1 such that

P1
k>K f(xk)  ✏. Then

X

k>K

fn(xk) =
X

k>K

f(xk) +
X

k>K

(fn(xk)� f(xk))

=
X

k>K

f(xk) +
X

kK

(f(xk)� fn(xk))



X

k>K

f(xk) +
X

kK

|fn(xk)� f(xk)|.
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Hence
X

x2S

|fn(x)� f(x)| =
X

kK

|fn(xk)� f(xk)|+
X

k>K

|fn(xk)� f(xk)|



X

kK

|fn(xk)� f(xk)|+
X

k>K

(fn(xk) + f(xk))

 2
X

kK

|fn(xk)� f(xk)|+ 2
X

k>K

f(xk)

 2Kmax
kK

|fn(xk)� f(xk)|+ 2✏.

By taking limits as n ! 1, we find that

lim sup
n!1

X

x2S

|fn(x)� f(x)|  2✏.

Because the above inequality is true for all ✏ > 0, we conclude that (iii) holds.

9.4 Poisson approximation

LetX1, . . . , Xn be mutually independent Ber(p)-distributed random variables
defined on some probability space (⌦,A,P). Define Sn = X1 + · · · + Xn.
Observe that ESn =

Pn
k=1 EXk = np. When np is a small, a classical

result, discovered by Siméon Poisson4, is that Sn is approximately Poisson
distributed.

Proposition 9.4.1. When pn = �/n for some constant 0 < � < 1, then
Bin(n, pn) ! Poi(�) in total variation as n ! 1.

Proof. Fix an integer n � 1. We construct a coupling of Bin(n, pn) and
Poi(�) as follows. Let � be an optimal coupling of Ber(pn) and Poi(pn), so
that �{(x1, x̃1) : x1 6= x̃1} = dtv(Ber(pn),Poi(pn)). Define

Sn = X1 + · · ·+Xn,

S̃n = X̃1 + · · ·+ X̃n,

where (X1, X̃1), . . . , (Xn, X̃n) are independent �-distributed random vari-
ables in Z2, defined on some probability space (⌦,A,P). Then Law(Sn) =
Bin(n, pn) and5 Law(S̃n) = Poi(npn). Hence the joint law �n = Law(Sn, S̃n)

41781 – 1840, PhD École Polytechnique 1800 for Lagrange and Laplace.
5This is a preliminary, that the sum of independent Poisson random variables is Poisson.
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constitutes a coupling of Bin(n, pn) and Poi(npn). The construction of the
coupling shows that Sn 6= S̃n is possible only when Xk 6= X̃k for some
k = 1, . . . , n. Hence the union bound implies that

P(Sn 6= S̃n) 

nX

k=1

P(Xk 6= X̃k).

We conclude by the coupling inequality that

dtv(Bin(n, pn),Poi(npn))  n dtv(Ber(pn),Poi(pn)). (9.4.1)

Next, with the help of Proposition 9.1.3 we note that (exercise)

dtv(Ber(p),Poi(p)) = p(1� e�p) for all 0  p  1. (9.4.2)

By plugging this into (9.4.1) and applying the bound 1�t  e�t, we conclude
that

dtv(Bin(n, pn),Poi(npn))  np2n.

Recalling that pn = �/n, we see that

dtv(Bin(n, pn),Poi(�))  �2/n ! 0 as n ! 1.

9.5 Wasserstein distances

The Wasserstein distance6 of order p between probability measures on a
metric space (S, d) is defined by

Wp(µ1, µ2) = inf
�2�(µ1,µ2)

✓Z

S⇥S

d(x1, x2)
p �(dx1, dx2)

◆1/p

, (9.5.1)

where �(µ1, µ2) denotes the set of coupling of µ1 and µ2. The Wasserstein
distance W1 is also called earth mover’s distance, because it can be viewed
as a minimum transportation cost in the following setting:

• µ1(dx1) is the amount of mass supplied at x1,

• µ2(dx2) is the amount of mass demanded at x2,

• d(x1, x2) is the transportation cost from x1 to x2.

6Named after Leonid Vaserstein (1944–). PhD 1969 @ Moscow State University.
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A coupling � corresponds to a transportation plan in which �(dx1, dx2) is the
amount of mass transported from x1 to x2. The cost of the transportation
plan is

R
S⇥S d(x1, x2)�(dx1, dx2). The constraint � 2 �(µ1, µ2) means that

the transportation plan meets supply and demand.

Example 9.5.1 (Discrete metric). For the metric d0(x, y) = 1(x 6= y), we
see that

Z

S⇥S

d0(x1, x2)�(dx1, dx2) = �{(x1, x2) : x1 6= x2}.

Proposition 9.2.1 tells that the Wasserstein distance W1 corresponding to the
discrete metric equals the total variation distance.

Example 9.5.2 (Euclidian metric). Consider the space Rn equipped with the
metric d(x, y) = kx� yk induced by the Euclidean norm kxk = (

Pn
i=1 x

2
i )

1/2.
Let P1(Rn) be the space of probability measures µ on (Rn,B(Rn)) such thatR
Rn kxkµ(dx) < 1. It is possible but not that easy to prove that W1 is a
metric on P1(Rn), see [AGS08, Vil09].

9.6 Wasserstein distances on the real line

Wasserstein distances are in general not easy to compute in analytical form.
Neither are optimal coupling achieving a minimum in (9.5.1) easy to find.
An exception is the case of univariate probability distributions on the real
line, for which an optimal coupling can be formed by a standard simulation
method known as inverse transform sampling. In deriving a simple formula
for Wasserstein distances for probability distributions on R, the following
formulas will turn out useful.

Lemma 9.6.1. For any (possibly dependent) real-valued random variables
X and Y defined on a probability space (⌦,A,P),

E(Y �X)+ =

Z

R
P(X  t < Y ) dt, (9.6.1)

E|Y �X| =

Z

R

⇣
P(X  t < Y ) + P(Y  t < X)

⌘
dt. (9.6.2)

Proof. The Lebesgue measure of any real interval [x, y) can be expressed
either as the interval length (y � x)+, or as the integral of the indicatorR
R 1[x,y)(t) dt. As a consequence, we see that

(Y (!)�X(!))+ =

Z

R
1[X(!),Y (!))(t) dt =

Z

R
1At(!) dt,
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where At = {! : X(!)  t < Y (!)}. By taking expectations and using
Fubini’s theorem to interchange the expectation and the integral, we find
that

E(Y �X)+ =

Z

R
E1At dt =

Z

R
P(At) dt,

which confirms (9.6.1).
A symmetric argument shows that formula (9.6.1) also holds with the

roles of X and Y swapped. By writing |Y �X| = (Y � X)+ + (X � Y )+,
and taking expectations, we find that

E|Y �X| = E(Y �X)+ + E(X � Y )+.

Formula (9.6.2) thens follows by applying (9.6.1) and its symmetric analogue.

Proposition 9.6.2. For probability measures on (R,B(R)), the Wasserstein
distance of order 1 can be computed by W1(µ1, µ2) =

R
R |F1(t)� F2(t)| dt

where Fi(t) = µi((�1, t]) is the cumulative distribution function of µi.

Proof. (i) We construct a coupling of µ1 and µ2 using a method called inverse
transform sampling that is a standard method to simulate random variables
from a given univariate probability distribution. Assume that the F1, F2 are
invertible7. Then define X1 = F�1

1 (U) and X2 = F�1
2 (U) with U being

uniformly distributed in (0, 1). Then Law(X1, X2) is a coupling of µ1 and µ2

(check this yourself), and

E|X1 �X2| = E|F�1
1 (U)� F�1

2 (U)| =

Z 1

0

|F�1
1 (u)� F�1

2 (u)| du.

We claim that
Z 1

0

|F�1
1 (u)� F�1

2 (u)| du =

Z

R
|F1(t)� F2(t)| dt.

By Lemma 9.6.1, we see that

E|X1 �X2| =

Z

R

⇣
P(X1  t < X2) + P(X2  t < X1)

⌘
dt.

We note that

P(X1  t < X2) = P(F�1
1 (U)  t < F�1

2 (U))

= P(F2(t) < U  F1(t)).

7If they are not, we use use a generalised inverse, that is, a quantile function.
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Because P(U 2 B) equals the Lebesgue measure of B for any B ⇢ [0, 1], we
conclude that

P(X1  t < X2) = (F1(t)� F2(t))+.

By symmetry, the above formula holds also with the roles of X1 and X2

swapped. We conclude that

E|X1 �X2| =

Z

R

⇣
P(X1  t < X2) + P(X2  t < X1)

⌘
dt

=

Z

R

⇣
(F1(t)� F2(t))+ + (F2(t)� F1(t))+

⌘
dt

=

Z

R
|F1(t)� F2(t)| dt.

Hence � = Law(X1, X2) is a coupling of µ1 and µ2, for which
Z

R2

|x1 � x2|�(dx1, dx2) =

Z

R
|F1(t)� F2(t)| dt. (9.6.3)

(ii) It remains to show that no coupling of µ1 and µ2 attains a smaller
value for

R
R2 |x1 � x2|�(dx1, dx2) than the right side of (9.6.3). Let (X1, X2) 2

R2 be random vector such that Law(X1) = µ1 and Law(X2) = µ2. By
Lemma 9.6.1, we see that

E|X1 �X2| =

Z

R

⇣
P(X1  t < X2) + P(X1  t < X2)

⌘
dt.

We also note that

P(X1  t < X2) = P(X1  t,X2 > t) = F1(t)� F12(t),

P(X2  t < X1) = P(X2  t,X1 > t) = F2(t)� F12(t),

where Fi(t) = P(Xi  t) and F12(t) = P(X1  t, X2  t). Hence

E|X1 �X2| =

Z

R

⇣
F1(t) + F2(t)� 2F12(t)

⌘
dt. (9.6.4)

Furthermore, F12(t)  Fi(t) for i = 1, 2 implies that F12(t)  F1(t) ^ F2(t).
We also note that the formula x� (x ^ y) = (x� y)+ implies that

x+ y � 2(x ^ y) = (x� y)+ + (y � x)+ = |x� y|.

Therefore, (9.6.4) implies that

E|X1 �X2| �

Z

R

⇣
F1(t) + F2(t)� 2(F1(t) ^ F2(t))

⌘
dt

=

Z

R
|F1(t)� F2(t)| dt.
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Because the above inequality holds for all random vectors (X1, X2) with
Law(X1) = µ1 and Law(X2) = µ2, we conclude that

Z

R
|F1(t)� F2(t)| dt  W1(µ1, µ2).


