Computational inverse problems

Nuutti Hyvönen and Pauliina Hirvi

nuutti.hyvonen@aalto.fi, pauliina.hirvi@aalto.fi

First lecture

0 Practical issues

Information and materials

- The main information channel of the course is its MyCourses homepage:
 - https://mycourses.aalto.fi/course/view.php?id=40592
- The text books are "J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer, 2005" (mainly Chapters 2 and 3) and "D. Calvetti and E. Somersalo, Introduction to Bayesian Scientific Computing. Ten Lectures on Subjective Computing, Springer, 2007".
- Lecture notes and exercise sheets are posted on the course homepage.

Lectures

- The lectures will be given according to the timetable published in Sisu except for March 1 when the lecturer is traveling.
- The lectures have also been prerecorded and can be found at https://mycourses.aalto.fi/course/view.php?id=40592§ion=1.
- Some of the practical information in the lecture recordings may be outdated.

Exercises

- The first exercise session will held at 14-16 on Friday, March 1 in M2 (M233).
- Each week there is one home assignment: The solution to the home assignment in the exercise sheet of week m is to be returned via MyCourses as instructed at https://mycourses.aalto.fi/course/view.php?id=40592§ion=2 before the exercise session of week m+1. (For example, the solution to the home assignment of the first exercise paper should be returned before the exercise session on Friday, March 8.)
- The course assistant will demonstrate 'model' solutions to the exercise problems.

Evaluation

The course grades will be based on the weekly *home assignments* and a *home exam*.

- The home assignments constitute 25% of the grade. Each returned solution is given 0-3 points; at the end of the course, the obtained points will be summed and scaled appropriately.
- The home exam constitutes 75% of the grade. It will be held after the lectures have ended during 15 April 13 May and it will constitute of four more extensive assignments.

Timetable

The lectures of the course extend over the weeks 9–15, i.e., Period IV (plus the home exam).

- The first half will concentrate on traditional regularization techniques.
- The second half will examine inverse problems from a statistical view point.

1 What is an ill-posed problem?

Well-posed problems

Jacques Salomon Hadamard (1865-1963):

- 1. A solution exists.
- 2. The solution is unique.
- 3. The solution depends continuously on the data, in some *reasonable* topology.

III-posed problems

Nuutti Hyvönen: The ill-posed problems are the complement of the well-posed problems in the space of all problems.

Examples:

- Interpolation.
- Finding the cause of a known consequence \implies inverse problems.
- Almost all problems encountered in everyday life.

When solving an ill-posed or inverse problem, it is essential to use all possible prior and expert knowledge about the possible solutions.

An example: Heat distribution in an insulated rod

Let us consider the problem

$$u_t = u_{xx}$$
 in $(0, \pi) \times \mathbb{R}_+$,
 $u_x(0, \cdot) = u_x(\pi, \cdot) = 0$ on \mathbb{R}_+ ,
 $u(\cdot, 0) = f$ on $(0, \pi)$,

where $u(\cdot,t)$ is the heat distribution at the time t>0, f is the initial heat distribution, and the boundary conditions indicate that the heat cannot flow out of the 'rod' $[0,\pi]$.

Forward problem: Determine the 'final' distribution $u(\cdot,T)\in L^2(0,\pi)$, T>0, if the initial distribution $f\in L^2(0,\pi)$ is known.

Inverse problem: Determine the initial distribution $f \in L^2(0,\pi)$, if the (noisy) 'final' distribution $u(\cdot,T)=:w\in L^2(0,\pi)$ is known.

Forward problem

The solution to the forward problem can be given explicitly:

$$u(x,T) = \sum_{n=0}^{\infty} \hat{f}_n e^{-n^2 T} \cos(nx),$$

where $\{\hat{f}_n\}_{n=0}^{\infty} \subset \mathbb{R}$ are Fourier cosine coefficients of the initial heat distribution f, i.e., $f = \sum_{n=0}^{\infty} \hat{f}_n \cos(nx)$ in the sense of $L^2(0,\pi)$.

It is relatively easy to see that the solution operator

$$E_T: f \mapsto u(\cdot, T), \quad L^2(0, \pi) \to L^2(0, \pi)$$

satisfies the following conditions:

- E_T is linear, bounded and compact.
- E_T is injective, i.e., $Ker(E_T) = \{0\}$.
- $\operatorname{Ran}(E_T)$ is dense in $L^2(0,\pi)$.

Inverse problem

Solving the inverse problem for a general final heat distribution $w \in L^2(0,\pi)$ corresponds to inverting the compact operator $E_T: L^2(0,\pi) \to L^2(0,\pi)$, which is obviously impossible.

The *unbounded* solution operator

$$E_T^{-1}: \text{Ran}(E_T) \to L^2(0,\pi)$$

is, however, well-defined. In other words, the inverse problem has a unique solution if $w=E_Tf$ for some $f\in L^2(0,\pi)$, i.e., the measurement contains no noise.

Summary:

- If $w \in \text{Ran}(E_T)$, the third Hadamard condition is not satisfied.
- If $w \notin \text{Ran}(E_T)$, none of the Hadamard conditions is satisfied.

(Due to noise etc., the latter case is usually the valid one in practice.)

Question: Should one then ignore the ill-posed inverse problem?

Answer: No. The available measurement *always* contains *some* information about the initial heat distribution.

Heat distribution at t = 0, 0.01, 0.1, 1 and 10.

Another heat distribution at t=0,0.01,0.1,1 and 10.

Comparison of the two at t = 0, 0.01, 0.1, 1 and 10.

2 Classical regularization methods

2.1 Fredholm equation

Separable Hilbert space

A vector space H is a *real inner product space* if there exists a mapping $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{R}$ satisfying

- 1. $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in H$.
- 2. $\langle ax_1 + bx_2, y \rangle = a\langle x_1, y \rangle + b\langle x_2, y \rangle$ for all $x_1, x_2, y \in H$, $a, b \in \mathbb{R}$.
- 3. $\langle x, x \rangle \geq 0$, and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$.

Furthermore, H is a separable real Hilbert space if, in addition,

- 1. H is *complete* with respect to the norm $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$.
- 2. There exists a countable orthonormal basis $\{\varphi_n\}$ of H with respect to the inner product $\langle \cdot, \cdot \rangle$. This means that

$$\langle \varphi_j, \varphi_k \rangle = \delta_{jk}$$
 and $x = \sum_n \langle x, \varphi_n \rangle \varphi_n$ for all $x \in H$.

Fredholm equation

Let $A: H_1 \to H_2$ be a *compact* linear operator between the real separable Hilbert spaces H_1 and H_2 . In the first half of this course, we mainly concentrate on the problem of finding $x \in H_1$ satisfying the equation

$$Ax = y, (1)$$

where $y \in H_2$ is given. (In this setting, compact operators are the closure of the finite-dimensional operators, i.e., loosely speaking matrices, in the operator topology.)

Examples:

- In the example of Section 1, we have $A=E_T$ and $H_1=H_2=L^2(0,\pi)$.
- The most important case on this course is $H_1 = \mathbb{R}^n$, $H_2 = \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$ is a matrix.

2.2 Truncated singular value decomposition

Orthogonal decompositions

Let $A^*: H_2 \to H_1$ be the adjoint operator of $A: H_1 \to H_2$, i.e.,

$$\langle Ax, y \rangle = \langle x, A^*y \rangle$$
 for all $x \in H_1, y \in H_2$.

We have the orthogonal decompositions

$$H_1 = \operatorname{Ker}(A) \oplus (\operatorname{Ker}(A))^{\perp} = \operatorname{Ker}(A) \oplus \overline{\operatorname{Ran}(A^*)},$$

 $H_2 = \overline{\operatorname{Ran}(A)} \oplus (\operatorname{Ran}(A))^{\perp} = \overline{\operatorname{Ran}(A)} \oplus \operatorname{Ker}(A^*),$

where the "bar" denotes the closure of a set and

$$\operatorname{Ker}(A) = \{x \in H_1 \mid Ax = 0\},$$

$$\operatorname{Ran}(A) = \{y \in H_2 \mid y = Ax \text{ for some } x \in H_1\},$$

$$(\operatorname{Ker}(A))^{\perp} = \{x \in H_1 \mid \langle x, z \rangle = 0 \text{ for all } z \in \operatorname{Ker}(A)\}, \text{ etc.}$$

Characterization of compact operators

There exist (possible countably infinite) orthonormal sets of vectors $\{v_n\} \subset H_1$ and $\{u_n\} \subset H_2$, and a sequence of *positive* numbers $\{\lambda_n\}$, $\lambda_k \geq \lambda_{k+1}$ and $\lim_{n \to \infty} \lambda_n = 0$ in the countably infinite case, such that

$$Ax = \sum_{n} \lambda_n \langle x, v_n \rangle u_n$$
 for all $x \in H_1$ (2)

and, in particular,

$$\overline{\operatorname{Ran}(A)} = \overline{\operatorname{span}\{u_n\}}$$
 and $(\operatorname{Ker}(A))^{\perp} = \overline{\operatorname{span}\{v_n\}}.$

(Conversely, if $A: H_1 \to H_2$ has this kind of decomposition, it is compact.)

The system $\{v_n, u_n, \lambda_n\}$ is called a *singular system* of A, and (2) is a singular value decomposition (SVD) of A. (Note that $1 \le n \le \infty$ or $1 \le n \le N < \infty$ depending on $\mathrm{rank}(A) := \dim(\mathrm{Ran}(A))$.)

Solvability of Ax = y

It follows from the orthonormality of $\{u_n\}$ that

$$P: H_2 \to \overline{\operatorname{Ran}(A)}, \quad y \mapsto \sum_n \langle y, u_n \rangle u_n,$$

is an orthogonal projection, i.e., $P^2 = P$ and $\operatorname{Ran}(P) \perp \operatorname{Ran}(I - P)$.

The equation Ax = y has a solution if and only if

$$y = Py$$
 and $\sum_{n} \frac{1}{\lambda_n^2} |\langle y, u_n \rangle|^2 < \infty.$ (3)

In case that (3) is satisfied, all solutions of Ax = y are of the form

$$x = x_0 + \sum_{n} \frac{1}{\lambda_n} \langle y, u_n \rangle v_n$$

for some $x_0 \in \text{Ker}(A)$.

Intuitive interpretation of the solvability conditions:

- The first condition, y = Py, states that y cannot have components in the orthogonal complement of $\overline{\mathrm{Ran}(A)}$ if y = Ax.
- The second condition, i.e., the convergence of the series

$$\sum_{n} \frac{1}{\lambda_n^2} |\langle y, u_n \rangle|^2,$$

is redundant if $\operatorname{rank}(A) < \infty$, in which case $\overline{\operatorname{Ran}(A)} = \operatorname{Ran}(A)$. On the other hand, if $\operatorname{rank}(A) = \infty$, this condition is equivalent to asking that the norm of

$$x = x_0 + \sum_{n=1}^{\infty} \frac{1}{\lambda_n} \langle y, u_n \rangle v_n, \qquad x_0 \in \text{Ker}(A),$$

is finite, i.e., the 'potential solutions' belong to H_1 .

An example: Heat distribution in a rod (revisited)

Recall the heat equation

$$u_t = u_{xx}$$
 in $(0, \pi) \times \mathbb{R}_+$,
 $u_x(0, \cdot) = u_x(\pi, \cdot) = 0$ on \mathbb{R}_+ ,
 $u(\cdot, 0) = f$ on $(0, \pi)$.

The forward solution operator

$$E_T: f \mapsto u(\cdot, T), \quad H_1 = L^2(0, \pi) \to L^2(0, \pi) = H_2$$

is characterized by

$$E_T: v_n \mapsto \lambda_n v_n,$$

where $\{v_n\}_{n=0}^{\infty}=\{\sqrt{\frac{1}{\pi}}\}\cup\{\sqrt{\frac{2}{\pi}}\cos(n\,\cdot)\}_{n=1}^{\infty}$ form an orthonormal basis of $L^2(0,\pi)$, and $\lambda_n=\lambda_n(T)=e^{-n^2T}>0$ converges to zero as $n\to\infty$.

In consequence, we have

$$E_T f = \sum_{n=0}^{\infty} \lambda_n \langle f, v_n \rangle v_n,$$

where the inner product of $L^2(0,\pi)$ is defined in the usual way:

$$\langle f, g \rangle = \int_0^{\pi} fg \, dx, \qquad f, g \in L^2(0, \pi).$$

In this case $u_n = v_n$ (because E_T is self-adjoint). Since $\{v_n\}_{n=0}^{\infty}$ are an orthonormal basis for $L^2(0,\pi)$, we have

$$(\operatorname{Ker}(E_T))^{\perp} = \overline{\operatorname{Ran}(E_T)} = L^2(0, \pi),$$

i.e., E_T is injective and has a dense range, as mentioned already earlier. In particular, the projection onto the closure of the range of E_T is the identity operator, i.e., P = I.

We thus deduce that there exists $f \in L^2(0,\pi)$ such that

$$E_T f = w,$$

for a given $w \in L^2(0,\pi)$, if and only if

$$\sum_{n=0}^{\infty} \frac{1}{\lambda_n^2} |\langle w, v_n \rangle|^2 = \sum_{n=0}^{\infty} e^{2n^2 T} |\langle w, v_n \rangle|^2 < \infty,$$

which is a very restrictive condition and demonstrates why this inverse problem is extremely ill-posed.