# Computational inverse problems 

Nuutti Hyvönen and Pauliina Hirvi<br>nuutti.hyvonen@aalto.fi, pauliina.hirvi@aalto.fi

First lecture

## 0 Practical issues

## Information and materials

- The main information channel of the course is its MyCourses homepage:
https://mycourses.aalto.fi/course/view.php?id=40592
- The text books are "J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer, 2005" (mainly Chapters 2 and 3) and "D. Calvetti and E. Somersalo, Introduction to Bayesian Scientific Computing. Ten Lectures on Subjective Computing, Springer, 2007".
- Lecture notes and exercise sheets are posted on the course homepage.


## Lectures

- The lectures will be given according to the timetable published in Sisu except for March 1 when the lecturer is traveling.
- The lectures have also been prerecorded and can be found at https://mycourses.aalto.fi/course/view.php?id=40592\&section=1.
- Some of the practical information in the lecture recordings may be outdated.


## Exercises

- The first exercise session will held at 14-16 on Friday, March 1 in M2 (M233).
- Each week there is one home assignment: The solution to the home assignment in the exercise sheet of week $m$ is to be returned via MyCourses as instructed at https://mycourses.aalto.fi/course/view.php?id=40592\&section=2 before the exercise session of week $m+1$. (For example, the solution to the home assignment of the first exercise paper should be returned before the exercise session on Friday, March 8.)
- The course assistant will demonstrate 'model' solutions to the exercise problems.


## Evaluation

The course grades will be based on the weekly home assignments and a home exam.

- The home assignments constitute $25 \%$ of the grade. Each returned solution is given $0-3$ points; at the end of the course, the obtained points will be summed and scaled appropriately.
- The home exam constitutes $75 \%$ of the grade. It will be held after the lectures have ended during 15 April - 13 May and it will constitute of four more extensive assignments.


## Timetable

The lectures of the course extend over the weeks $9-15$, i.e., Period IV (plus the home exam).

- The first half will concentrate on traditional regularization techniques.
- The second half will examine inverse problems from a statistical view point.

1 What is an ill-posed problem?

## Well-posed problems

## Jacques Salomon Hadamard (1865-1963):

1. A solution exists.
2. The solution is unique.
3. The solution depends continuously on the data, in some reasonable topology.

## III-posed problems

Nuutti Hyvönen: The ill-posed problems are the complement of the well-posed problems in the space of all problems.

Examples:

- Interpolation.
- Finding the cause of a known consequence $\Longrightarrow$ inverse problems.
- Almost all problems encountered in everyday life.

When solving an ill-posed or inverse problem, it is essential to use all possible prior and expert knowledge about the possible solutions.

An example: Heat distribution in an insulated rod
Let us consider the problem

$$
\begin{array}{ll}
u_{t}=u_{x x} & \text { in }(0, \pi) \times \mathbb{R}_{+}, \\
u_{x}(0, \cdot)=u_{x}(\pi, \cdot)=0 & \text { on } \mathbb{R}_{+}, \\
u(\cdot, 0)=f & \text { on }(0, \pi),
\end{array}
$$

where $u(\cdot, t)$ is the heat distribution at the time $t>0, f$ is the initial heat distribution, and the boundary conditions indicate that the heat cannot flow out of the 'rod' $[0, \pi]$.

Forward problem: Determine the 'final' distribution $u(\cdot, T) \in L^{2}(0, \pi)$, $T>0$, if the initial distribution $f \in L^{2}(0, \pi)$ is known.

Inverse problem: Determine the initial distribution $f \in L^{2}(0, \pi)$, if the (noisy) 'final' distribution $u(\cdot, T)=: w \in L^{2}(0, \pi)$ is known.

## Forward problem

The solution to the forward problem can be given explicitly:

$$
u(x, T)=\sum_{n=0}^{\infty} \hat{f}_{n} e^{-n^{2} T} \cos (n x)
$$

where $\left\{\hat{f}_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ are Fourier cosine coefficients of the initial heat distribution $f$, i.e., $f=\sum_{n=0}^{\infty} \hat{f}_{n} \cos (n x)$ in the sense of $L^{2}(0, \pi)$.
It is relatively easy to see that the solution operator

$$
E_{T}: f \mapsto u(\cdot, T), \quad L^{2}(0, \pi) \rightarrow L^{2}(0, \pi)
$$

satisfies the following conditions:

- $E_{T}$ is linear, bounded and compact.
- $E_{T}$ is injective, i.e., $\operatorname{Ker}\left(E_{T}\right)=\{0\}$.
- $\operatorname{Ran}\left(E_{T}\right)$ is dense in $L^{2}(0, \pi)$.


## Inverse problem

Solving the inverse problem for a general final heat distribution $w \in L^{2}(0, \pi)$ corresponds to inverting the compact operator $E_{T}: L^{2}(0, \pi) \rightarrow L^{2}(0, \pi)$, which is obviously impossible.

The unbounded solution operator

$$
E_{T}^{-1}: \operatorname{Ran}\left(E_{T}\right) \rightarrow L^{2}(0, \pi)
$$

is, however, well-defined. In other words, the inverse problem has a unique solution if $w=E_{T} f$ for some $f \in L^{2}(0, \pi)$, i.e., the measurement contains no noise.

## Summary:

- If $w \in \operatorname{Ran}\left(E_{T}\right)$, the third Hadamard condition is not satisfied.
- If $w \notin \operatorname{Ran}\left(E_{T}\right)$, none of the Hadamard conditions is satisfied.
(Due to noise etc., the latter case is usually the valid one in practice.)

Question: Should one then ignore the ill-posed inverse problem?

Answer: No. The available measurement always contains some information about the initial heat distribution.

Heat distribution at $t=0,0.01,0.1,1$ and 10 .


Another heat distribution at $t=0,0.01,0.1,1$ and 10 .


Comparison of the two at $t=0,0.01,0.1,1$ and 10 .


## 2 Classical regularization methods

### 2.1 Fredholm equation

## Separable Hilbert space

A vector space $H$ is a real inner product space if there exists a mapping $\langle\cdot, \cdot\rangle: H \times H \rightarrow \mathbb{R}$ satisfying

1. $\langle x, y\rangle=\langle y, x\rangle$ for all $x, y \in H$.
2. $\left\langle a x_{1}+b x_{2}, y\right\rangle=a\left\langle x_{1}, y\right\rangle+b\left\langle x_{2}, y\right\rangle$ for all $x_{1}, x_{2}, y \in H, a, b \in \mathbb{R}$.
3. $\langle x, x\rangle \geq 0$, and $\langle x, x\rangle=0 \Leftrightarrow x=0$.

Furthermore, $H$ is a separable real Hilbert space if, in addition,

1. $H$ is complete with respect to the norm $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$.
2. There exists a countable orthonormal basis $\left\{\varphi_{n}\right\}$ of $H$ with respect to the inner product $\langle\cdot, \cdot\rangle$. This means that

$$
\left\langle\varphi_{j}, \varphi_{k}\right\rangle=\delta_{j k} \quad \text { and } \quad x=\sum_{n}\left\langle x, \varphi_{n}\right\rangle \varphi_{n} \quad \text { for all } x \in H .
$$

## Fredholm equation

Let $A: H_{1} \rightarrow H_{2}$ be a compact linear operator between the real separable Hilbert spaces $H_{1}$ and $H_{2}$. In the first half of this course, we mainly concentrate on the problem of finding $x \in H_{1}$ satisfying the equation

$$
\begin{equation*}
A x=y \tag{1}
\end{equation*}
$$

where $y \in H_{2}$ is given. (In this setting, compact operators are the closure of the finite-dimensional operators, i.e., loosely speaking matrices, in the operator topology.)

## Examples:

- In the example of Section 1, we have $A=E_{T}$ and

$$
H_{1}=H_{2}=L^{2}(0, \pi)
$$

- The most important case on this course is $H_{1}=\mathbb{R}^{n}, H_{2}=\mathbb{R}^{m}$ and $A \in \mathbb{R}^{m \times n}$ is a matrix.
2.2 Truncated singular value decomposition


## Orthogonal decompositions

Let $A^{*}: H_{2} \rightarrow H_{1}$ be the adjoint operator of $A: H_{1} \rightarrow H_{2}$, i.e.,

$$
\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle \quad \text { for all } x \in H_{1}, y \in H_{2} .
$$

We have the orthogonal decompositions

$$
\begin{aligned}
& H_{1}=\overline{\operatorname{Ker}(A) \oplus(\operatorname{Ker}(A))^{\perp}=\operatorname{Ker}(A) \oplus \overline{\operatorname{Ran}\left(A^{*}\right)}} \\
& H_{2}=\overline{\operatorname{Ran}(A)} \oplus(\operatorname{Ran}(A))^{\perp}=\overline{\operatorname{Ran}(A)} \oplus \operatorname{Ker}\left(A^{*}\right)
\end{aligned}
$$

where the "bar" denotes the closure of a set and

$$
\begin{aligned}
\operatorname{Ker}(A) & =\left\{x \in H_{1} \mid A x=0\right\} \\
\operatorname{Ran}(A) & =\left\{y \in H_{2} \mid y=A x \text { for some } x \in H_{1}\right\} \\
(\operatorname{Ker}(A))^{\perp} & =\left\{x \in H_{1} \mid\langle x, z\rangle=0 \text { for all } z \in \operatorname{Ker}(A)\right\}, \quad \text { etc. }
\end{aligned}
$$

## Characterization of compact operators

There exist (possible countably infinite) orthonormal sets of vectors $\left\{v_{n}\right\} \subset H_{1}$ and $\left\{u_{n}\right\} \subset H_{2}$, and a sequence of positive numbers $\left\{\lambda_{n}\right\}$, $\lambda_{k} \geq \lambda_{k+1}$ and $\lim _{n \rightarrow \infty} \lambda_{n}=0$ in the countably infinite case, such that

$$
\begin{equation*}
A x=\sum_{n} \lambda_{n}\left\langle x, v_{n}\right\rangle u_{n} \quad \text { for all } x \in H_{1} \tag{2}
\end{equation*}
$$

and, in particular,

$$
\overline{\operatorname{Ran}(A)}=\overline{\operatorname{span}\left\{u_{n}\right\}} \quad \text { and } \quad(\operatorname{Ker}(A))^{\perp}=\overline{\operatorname{span}\left\{v_{n}\right\}} .
$$

(Conversely, if $A: H_{1} \rightarrow H_{2}$ has this kind of decomposition, it is compact.)

The system $\left\{v_{n}, u_{n}, \lambda_{n}\right\}$ is called a singular system of $A$, and (2) is a singular value decomposition (SVD) of $A$. (Note that $1 \leq n \leq \infty$ or $1 \leq n \leq N<\infty$ depending on $\operatorname{rank}(A):=\operatorname{dim}(\operatorname{Ran}(A))$.)

## Solvability of $A x=y$

It follows from the orthonormality of $\left\{u_{n}\right\}$ that

$$
P: H_{2} \rightarrow \overline{\operatorname{Ran}(A)}, \quad y \mapsto \sum_{n}\left\langle y, u_{n}\right\rangle u_{n}
$$

is an orthogonal projection, i.e., $P^{2}=P$ and $\operatorname{Ran}(P) \perp \operatorname{Ran}(I-P)$.
The equation $A x=y$ has a solution if and only if

$$
\begin{equation*}
y=P y \quad \text { and } \quad \sum_{n} \frac{1}{\lambda_{n}^{2}}\left|\left\langle y, u_{n}\right\rangle\right|^{2}<\infty \tag{3}
\end{equation*}
$$

In case that (3) is satisfied, all solutions of $A x=y$ are of the form

$$
x=x_{0}+\sum_{n} \frac{1}{\lambda_{n}}\left\langle y, u_{n}\right\rangle v_{n}
$$

for some $x_{0} \in \operatorname{Ker}(A)$.

Intuitive interpretation of the solvability conditions:

- The first condition, $y=P y$, states that $y$ cannot have components in the orthogonal complement of $\overline{\operatorname{Ran}(A)}$ if $y=A x$.
- The second condition, i.e., the convergence of the series

$$
\sum_{n} \frac{1}{\lambda_{n}^{2}}\left|\left\langle y, u_{n}\right\rangle\right|^{2}
$$

is redundant if $\operatorname{rank}(A)<\infty$, in which case $\overline{\operatorname{Ran}(A)}=\operatorname{Ran}(A)$. On the other hand, if $\operatorname{rank}(A)=\infty$, this condition is equivalent to asking that the norm of

$$
x=x_{0}+\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}\left\langle y, u_{n}\right\rangle v_{n}, \quad x_{0} \in \operatorname{Ker}(A)
$$

is finite, i.e., the 'potential solutions' belong to $H_{1}$.

## An example: Heat distribution in a rod (revisited)

Recall the heat equation

$$
\begin{array}{ll}
u_{t}=u_{x x} & \text { in }(0, \pi) \times \mathbb{R}_{+} \\
u_{x}(0, \cdot)=u_{x}(\pi, \cdot)=0 & \text { on } \mathbb{R}_{+} \\
u(\cdot, 0)=f & \text { on }(0, \pi)
\end{array}
$$

The forward solution operator

$$
E_{T}: f \mapsto u(\cdot, T), \quad H_{1}=L^{2}(0, \pi) \rightarrow L^{2}(0, \pi)=H_{2}
$$

is characterized by

$$
E_{T}: v_{n} \mapsto \lambda_{n} v_{n}
$$

where $\left\{v_{n}\right\}_{n=0}^{\infty}=\left\{\sqrt{\frac{1}{\pi}}\right\} \cup\left\{\sqrt{\frac{2}{\pi}} \cos (n \cdot)\right\}_{n=1}^{\infty}$ form an orthonormal basis of $L^{2}(0, \pi)$, and $\lambda_{n}=\lambda_{n}(T)=e^{-n^{2} T}>0$ converges to zero as $n \rightarrow \infty$.

In consequence, we have

$$
E_{T} f=\sum_{n=0}^{\infty} \lambda_{n}\left\langle f, v_{n}\right\rangle v_{n}
$$

where the inner product of $L^{2}(0, \pi)$ is defined in the usual way:

$$
\langle f, g\rangle=\int_{0}^{\pi} f g d x, \quad f, g \in L^{2}(0, \pi)
$$

In this case $u_{n}=v_{n}$ (because $E_{T}$ is self-adjoint). Since $\left\{v_{n}\right\}_{n=0}^{\infty}$ are an orthonormal basis for $L^{2}(0, \pi)$, we have

$$
\left(\operatorname{Ker}\left(E_{T}\right)\right)^{\perp}=\overline{\operatorname{Ran}\left(E_{T}\right)}=L^{2}(0, \pi),
$$

i.e., $E_{T}$ is injective and has a dense range, as mentioned already earlier. In particular, the projection onto the closure of the range of $E_{T}$ is the identity operator, i.e., $P=I$.

We thus deduce that there exists $f \in L^{2}(0, \pi)$ such that

$$
E_{T} f=w
$$

for a given $w \in L^{2}(0, \pi)$, if and only if

$$
\sum_{n=0}^{\infty} \frac{1}{\lambda_{n}^{2}}\left|\left\langle w, v_{n}\right\rangle\right|^{2}=\sum_{n=0}^{\infty} e^{2 n^{2} T}\left|\left\langle w, v_{n}\right\rangle\right|^{2}<\infty
$$

which is a very restrictive condition and demonstrates why this inverse problem is extremely ill-posed.

