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Summary of the previous lecture

The truncated SVD solution: For N ∋ k ≤ rank(A), there exist

unique xk ∈ H1 such that

Axk = Pky and xk ⊥ Ker(A).

where Pk : H2 → span{u1, . . . , uk} is an orthogonal projection. This

solution can be given as

xk =
k

∑

n=1

1

λn

〈y, un〉vn.
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SVD notations for matrices : For a matrix A ∈ R
m×n, the SVD is

usually written as

A = UΛV T,

where Λ ∈ R
m×n has the (non-negative!) singular values on its

diagonal, and the columns of V ∈ R
n×n and U ∈ R

m×m are composed

of the (extended!) orthonormal basis {vj}nj=1 and {uj}mj=1, respectively.

The truncated SVD solution for 1 ≤ k ≤ p := rank(A) is given by

xk = V Λ†
kU

Ty

where Λ†
k ∈ R

n×m has the elements 1/λ1, . . . , 1/λk, 0, . . . , 0 on its

diagonal. The matrix A† = V Λ†
pU

T is called the Moore–Penrose

pseudoinverse of A.
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Morozov discrepancy principle

(Let us return to the case where H1 and H2 are general separable real

Hilbert spaces, and A : H1 → H2 is a compact linear operator.)

To make the truncated SVD a more useful tool, one should come up

with some rule for choosing the spectral cut-off index k ≥ 1 appearing in

the truncated SVD problem

Ax = Pky and x ⊥ Ker(A).

Unfortunately, it is difficult (if not impossible) to invent a reliable

general scheme of doing this.

However, there exists a widely used rule of thumb called the Morozov

discrepancy principle.
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Assume that the measurement y ∈ H2 is a noisy version of some

underlying ‘exact’ data vector y0 ∈ H2. Furthermore, suppose that we

have some estimate on the discrepancy between y and y0, i.e.,

‖y − y0‖ ≈ ǫ > 0.

For example, it may be known that

y = y0 + n,

where the vector n ∈ H2 is a realization of some random variable with

known probability distribution. Knowledge about the statistics of n

could be due to, e.g., calibrations of the measurement device.
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The idea of the Morozov discrepancy principle is to choose the smallest

k ≥ 1 such that the residual satisfies

‖y −Axk‖ ≤ ǫ.

Intuitively this means that we cannot expect the approximate solution to

yield a smaller residual than the measurement error — otherwise we

would be fitting the solution to noise.

Does such k exist?

Yes, it does if ǫ > ‖Py − y‖, as explained below.
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If rank(A) = ∞, it follows from Ran(A) = Ran(P ) ⊥ Ran(I − P ) that

‖Axk − y‖2 = ‖(Axk − Py) + (Py − y)‖2

= ‖Axk − Py‖2 + ‖(P − I)y‖2

=

∞
∑

n=k+1

|〈y, un〉|2 + ‖(P − I)y‖2

→ ‖Py − y‖2 as k → ∞,

which is the best one can do since infz∈Ran(A) ‖z − y‖ = ‖Py − y‖ by

virtue of the projection theorem. (However, there is no guarantee that

‖xk‖ would not explode as k → ∞.)

On the other hand, if p = rank(A) < ∞,

‖Axp − y‖ = ‖Ppy − y‖ = ‖Py − y‖.

(Usually, one should not choose this large spectral cut-off in practice.)
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2.3 Tikhonov regularization
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Motivation of Tikhonov regularization

As pointed out on the previous slide, the norm of the residual

‖Ax− y‖

is minimized by the sequence of truncated SVD solutions {xk} as k

tends to rank(A). Unfortunately, when inverse/ill-posed problems are

considered, we typically also have

‖xk‖ → ∞ as k → rank(A).

(If rank(A) = ∞, this can be understood literally; if rank(A) = p < ∞,

this should be understood in the sense that the xp is usually rubbish —

especially, if the measurement y is noisy.)

As a consequence, it seems well-motivated to try minimizing the residual

and the norm of the solution simultaneously.
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Tikhonov regularized solution

A Tikhonov regularized solution xδ ∈ H1 is a minimizer of the Tikhonov

functional

Fδ(x) := ‖Ax− y‖2 + δ‖x‖2,
where δ > 0 is called the regularization parameter.

Theorem. A Tikhonov regularized solution exists, is unique, and is given

by

xδ = (A∗A+ δI)−1A∗y =

p
∑

j=1

λj

λ2
j + δ

〈y, uj〉vj ,

where p = rank(A) ≤ ∞.
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Proof: Let us prove this claim only in the case that H1 = R
n and

H2 = R
m; the general result follows from the same ideas, but requires

some more sophisticated functional analysis.

To begin with, note that

xT(ATA+ δI)x = ‖Ax‖2 + δ‖x‖2 ≥ δ‖x‖2 > 0

if x 6= 0. In particular, ATA+ δI ∈ R
n×n is injective, which means that

it is invertible due to the fundamental theorem of linear algebra.

Hence,

xδ := (ATA+ δI)−1ATy ∈ H1

is well-defined.
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Let {λj}pj=1 be the positive singular values of A, and {vj}pj=1 and

{uj}pj=1 the corresponding sets of singular vectors that span Ker(A)⊥

and Ran(A), respectively.

We expand xδ =
∑

(vTj xδ)vj + Qxδ, where Q : Rn → Ker(A) is an

orthogonal projection. According to the first exercise of the first exercise

session,

(ATA+ δI)xδ =

p
∑

j=1

(λ2
j + δ)(vTj xδ)vj + δ Qxδ .

Similarly,

ATy =

p
∑

j=1

λj(u
T
j y)vj .
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Equating these two expressions results in

(vTj xδ) =
λj

λ2
j + δ

(uT
j y), 1 ≤ j ≤ p,

and Qxδ = 0, which altogether means that

xδ =

p
∑

j=1

λj

λ2
j + δ

(uT
j y)vj =

p
∑

j=1

λj

λ2
j + δ

〈y, uj〉vj .
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Finally, consider x = xδ + z, where z ∈ R
n is arbitrary. We have

Fδ(x) = ‖(Axδ − y) +Az‖2 + δ‖xδ + z‖2

= ‖Axδ − y‖2 + 2 (Az)T(Axδ − y) + ‖Az‖2

+ δ
(

‖xδ‖2 + 2zTxδ + ‖z‖2
)

= Fδ(xδ) + ‖Az‖2 + δ‖z‖2

+2zT
(

(ATA+ δI
)

xδ −ATy)

= Fδ(xδ) + ‖Az‖2 + δ‖z‖2 ≥ Fδ(xδ),

where the equality holds if and only if z = 0. This shows that

xδ = (ATA+ δI)−1ATy is the unique minimizer of the Tikhonov

functional. �
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Properties of the Tikhonov regularized solution

The Tikhonov regularized solution has the following intuitive properties.

The proof of this theorem is omitted.

Theorem. Let P : H2 → Ran(A) be an orthogonal projection. The

residual ‖Axδ − y‖ is strictly increasing as a function of δ and it satisfies

lim
δ→0

‖Axδ − y‖ = ‖Py − y‖ and lim
δ→∞

‖Axδ − y‖ = ‖y‖.

Moreover, if Py ∈ Ran(A), then xδ converges to the solution of the

problem

Ax = Py and x ⊥ Ker(A)

as δ → 0. On the other hand, if Py /∈ Ran(A), then the norm ‖xδ‖
tends to infinity as δ goes to zero.
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The Morozov principle for Tikhonov regularization

Assume once again that the measurement y ∈ H2 is a noisy version of

some underlying ‘exact’ data vector y0 ∈ H2, and that

‖y − y0‖ ≈ ǫ > 0.

In the framework of the Tikhonov regularization, the Morozov

discrepancy principle advises to choose the regularization parameter

δ > 0 so that the residual satisfies

‖y −Axδ‖ = ǫ.

Such a regularization parameter exists if

‖y − Py‖ < ǫ < ‖y‖.

This follows from the above theorem because the residual ‖y −Axδ‖ is

continuous with respect to δ.
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Tikhonov regularized solution for matrices

Assume once again that H1 = R
n and H2 = R

m. In this case, the

Tikhonov functional can be given as

Fδ(x) =

∥

∥

∥

∥

∥

∥





A
√
δI



x−





y

0





∥

∥

∥

∥

∥

∥

2

, I ∈ R
n×n, 0 ∈ R

n. (5)

It is interesting to notice that the normal equation corresponding to this

least squares problem is (see 3. problem of 1. exercise session)





A
√
δI





T 



A
√
δI



x =





A
√
δI





T 



y

0



 ,

or equivalently

(ATA+ δI)x = ATy.
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Bear in mind that one does not, actually, need to form this normal

equation in Matlab when using Tikhonov regularization: After defining

K =





A
√
δI



 ∈ R
(n+m)×n and z =





y

0



 ∈ R
n+m,

the command

xdelta = K\z

computes the Tikhonov regularized solution.

Explanation: For non-square matrices the mldivide command of

Matlab tries to solve the corresponding least squares problem. As unique

minimizer is known to exist, this corresponds to multiplying z from the

left by the Moore–Penrose pseudoinverse of K (see 3. exercise of 1.

session). As all n singular values of K are larger than
√
δ (see 1.

exercise of 2. session) this pseudoinverse is well-behaved.

74



An example: Heat distribution in a rod (revisited)

Recall the discretized inverse heat conduction problem that was

discussed during the second and third lectures. Let w be the simulated

heat distribution at T=0.1 with the ‘wedge function’ as the initial data,

and A the corresponding propagation matrix A=expm(TB). We add the

same small amount of noise as previously and compute the Tikhonov

regularized solution:

wn = w + 0.001*randn(N-1,1);

zn = [wn; zeros(N-1,1)]; % augmented data vector

K = [A; sqrt(delta)*eye(N-1)]; % augmented system matrix

fdelta = K\zn; % Tikhonov regularized solution
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We do this for three different values of the regularization parameter

δ = 1 (too large), δ = 10−8 (too small), and δ = 5.95 · 10−5, which

corresponds to the Morozov discrepancy principle: We assume here that

the discrepancy between the measured data and the underlying ‘exact’

data equals the square root of the expectation value of the squared norm

of the noise vector, i.e.,

ǫ =
√
99 · 0.0012 ≈ 9.95 · 10−3.

Note that the value of δ given by the discrepancy principle depends on

the particular realization of the noise vector even though ǫ does not.

The expectation value of the norm of the noise vector would be as — if

not more — logical choice for ǫ, but it is more difficult to write down

explicitly. (Luckily, these two choices do not differ that much in the

considered case: numerical tests suggest that the latter gives

ǫ ≈ 9.92 · 10−3.)
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Generalizations of Tikhonov regularization
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Tikhonov regularization for nonlinear problems

Let us briefly consider the nonlinear case, where A : H1 → H2 is a

nonlinear operator and the examined equation is of the form

A(x) = y.

A standard way of solving such a problem is via sequential linearizations,

which leads to solving a set of linear problems involving the derivative

operator of A.

As an example, in Newton’s method one would first pick an initial guess

x0 ∈ H1 and then try to produce the (j + 1)th iterate by solving the

linearized problem

A(xj) +A′(xj)(xj+1 − xj) = y, j = 0, 1, . . . ,

recursively for xj+1. (In the general setting A′ is the Fréchet derivative

of A, but for finite-dimensional operators it is just the Jacobian matrix.)
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Unfortunately, if large alterations of x produce only small changes in

A(x), i.e., if the original equation is ill-posed, there is no guarantee that

the corresponding linearized problems can be solved as such — not even

in the least squares sense. Hence, regularization is needed.

Unlike the truncated SVD method, Tikhonov regularization generalizes

easily to this nonlinear framework. Now, it amounts to searching for

xδ ∈ H1 that minimizes the functional

Fδ(x) = ‖A(x)− y‖2 + δ‖x‖2, δ > 0.

Since Fδ is no longer quadratic in x, it is not clear that a unique

minimizer exists. Furthermore, even if a Tikhonov regularized solution

exists, it cannot usually be given by an explicit formula.
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Be that as it may, one can try to minimize Fδ(x) by using some

nonlinear optimization technique. One — but probably not the best —

way of doing this, is to pick an initial guess xδ,0 ∈ H1 and then

recursively define the (j + 1)th iterate xδ,j+1 ∈ H1 to be the unique

minimizer of the xδ,j-dependent Tikhonov functional

F̃δ,j(x) = ‖A(xδ,j) + A′(xδ,j)(x− xδ,j)− y‖2 + δ‖x‖2

= ‖A′(xδ,j)x− [y −A(xδ,j) +A′(xδ,j)xδ,j ]‖2 + δ‖x‖2,

where the dependence of A on x has been linearized with xδ,j as the

base point. Since this Tikhonov functional is of the ‘standard form’,

xδ,j+1 can be given explicitly with the help of A′(xδ,j), A(xδ,j), xδ,j , y

and δ. (In practice, evaluating A′(xδ,j) is often the most difficult part.)

Combining this with some reasonable stopping criterion does indeed give

reasonable solutions for many nonlinear inverse problems.
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More general penalty terms

A more general way of defining the Tikhonov functional is

Fδ(x) = ‖Ax− y‖2 + δG(x),

where the penalty function G : H1 → R takes non-negative values. The

existence of a unique minimizer for this kind of functional depends on

the properties of G, as does the workload needed for finding it.

One typical way of defining G is

G(x) = ‖L(x− x0)‖2, (6)

where x0 ∈ H1 is a given reference vector and L is some linear operator.

The choice of x0 and L reflects our prior knowledge about the ‘feasible’

solutions: Lx is some property that is known to be relatively close to the

reference value Lx0 for all reasonable solutions. (In standard case x0 = 0

and L = I , the solutions are ‘known’ to lie relatively close to the origin.)
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The numerical implementation of Tikhonov regularization with G of (6)

is approximately as easy as for the standard penalty term:

In the case that H1 = R
n and H2 = R

m, the operator L is just some

matrix in R
l×n and the Tikhonov functional can be given as

Fδ(x) = ‖Kx− z‖2 (7)

where

K =





A
√
δL



 and z =





y
√
δLx0



 .

Assuming that the matrix L is chosen so cleverly that all n singular

values of K are (well) larger than zero, the Tikhonov regularized solution

can be computed in Matlab by applying the pseudoinverse of K on z by

the command

xdelta = K\z
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Explanation: As shown in 3. exercise of 1. session, all minimizers of (7)

satisfy the normal equation

KTKx = KTz.

On the other hand, it was proved in 1. exercise of 1. session that the

symmetric matrix KTK ∈ R
n×n has n positive eigenvalues that are the

squares of the singular values of K. In particular, this means that KTK

is invertible, and thus there is exactly one minimizer for (7). This is

given by K†z due to 3. exercise of 1. session.

(The fact that a symmetric matrix with nonzero eigenvalues is invertible

follows, e.g., from the eigenvalue decomposition.)
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